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Abstract 

We assess how climate transition risk, through its effects on asset prices, could impact financial stability. 

Using copula functions, we characterize the conditional distribution of financial firm returns under 

different climate-related market scenarios. We account for average and tail effects of climate transition 

scenarios to the value of financial firms using three systemic risk metrics: climate transition expected 

returns, climate transition value-at-risk, and climate transition expected shortfalls. Empirical evidence 

indicates that European banks experience the highest systemic impacts from a disorderly transition, and 

that the cost of rescuing more risk-exposed financial firms from climate transition losses is relatively 

manageable. 
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1.  Introduction 

Transitioning towards a low-carbon economy entails risks that may impair the performance of 

firms, with potential ramifications for financial stability. Central banks have warned of the potentially 

destabilizing effects of climate change risks1 on financial stability (e.g., the Bank of England, 2017; De 

Nederlandsche Bank, 2017; ESRB, 2016),2 and policymakers have underscored the potential of climate 

transition as a source of systemic risk.3 Therefore, assessing the impact of climate transition risks on 

financial firms and on the stability of the financial system is currently a high priority on the agenda of 

central banks, regulators, and investors (Carney, 2015; European Systemic Risk Board, 2016, Campiglio 

et al., 2018). 

In this paper, we develop an empirical setup to assess the impact of climate transition risk on 

financial stability. We characterize the distribution of financial firm returns under three different climate 

transition scenarios: hothouse world, disorderly transition, and orderly transition. Those scenarios 

account for the potential asset re-pricing effects of climate transition (Carney, 2015). As described by 

their quantiles, in the hothouse world scenario, the value of highly vulnerable (brown) firms to transition 

experience upward movements while the value of (green) firms with low vulnerability to transition 

experience downward movements; in the disorderly transition scenario, green and brown firms 

experience upward and downward movements, respectively; and in an orderly transition scenario, green, 

neutral, and brown firm values remain in and around their median values. These movements are coherent 

with changes in expectations,4 and consequently changes in future expected cash-flow from those firms, 

if the climate transition materializes faster than expected (disorderly transition), slower than expected 

(hot house world) or its timing is aligned with the climate transition roadmap (orderly transition). 

 
1 Climate change conveys two main type of risks: (a) physical risk, associated with the impact of extreme weather 

events such as droughts, floods, hurricanes, etc, and (b) transition risks related to the impact of changes in 

regulations, business models, technologies, and consumer preferences aimed at being consistent with a low-carbon 

economy. This research focuses on the effects of transition risks on financial stability. 
2 The concerns of central banks regarding climate-related risk for financial system stability boosted the 

development of the Network for Greening the Financial System, an initiative of central banks and financial 

regulators (including the Bank of England and De Nederlandsche Bank). The aim of the NFGS is to foster 

environment and climate risk management in the financial sector and mobilize mainstream finance to support the 

transition toward a sustainable economy. 
3 See, e.g., https://www.ecb.europa.eu/press/blog/date/2021/html/ecb.blog210318~3bbc68ffc5.en.html. 
4 Change in expectations could be driven by technological changes, policy changes or changes in the preferences 

of investors and consumers. 

https://www.banque-france.fr/en/financial-stability/international-role/network-greening-financial-system
https://www.ecb.europa.eu/press/blog/date/2021/html/ecb.blog210318~3bbc68ffc5.en.html
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We quantify the impact of each climate transition scenario on financial firm returns in terms of 

three metrics: the average return of the conditional distribution, a left quantile of the conditional 

distribution, and the average return below that conditional quantile, labelled climate transition expected 

returns (CTER), climate transition value-at-risk (CTVaR), and climate transition expected shortfalls 

(CTES), respectively. The three metrics are computed from the conditional distribution of individual 

financial firm asset returns, which captures dependence of financial firm returns with green, brown, and 

neutral asset returns under different climate transition scenarios. 

We apply our methodology to European financial firms, including banks, insurance companies, 

financial services companies, and real estate firms over the period 2013-2020. Our main findings suggest 

that the systemic impact of climate transition scenarios differs widely across financial institutions. Banks 

experience more systemic impacts in a disorderly transition than in a hothouse world scenario, while the 

opposite occurs for the other firm types, but especially for real estate firms. We also find that the 

systemic impact of the different climate transition scenarios broadly diverges within the financial firm 

group, yielding potential winners and losers. Southern European financial firms are more exposed to a 

disorderly transition scenario, while Northern European, France and the United Kingdom are more 

exposed to a hothouse world scenario. These results may be explained by domestic markets in which 

carbon-intensity firms and energy-efficient firms represent an important share of the market.5 

We also assess the implications of climate-related systemic risk for financial firms in terms of 

capital shortfalls (Acharya et al., 2017, Brownless and Engle, 2017). For banks, we document that capital 

shortfalls are negligible in the orderly transition scenario and sizeable (about 40 billion euros) in the 

disorderly transition scenario, but concentrated in a small number of entities and so absorbable within 

the banking sector.6 For the remaining financial firms, we find that insurance firms experience small 

capital shortfalls in any climate transition risk scenario, whereas financial services and real estate firms 

 
5 For example, by the end of 2021, 22.31% of the market capitalization in the main Spanish stock index (IBEX35) 

belongs to NACE sectors with a high exposure to transition risk, whereas only 10% of the market capitalization in 

the main Finnish stock index (OTM Helsinki) is exposed to this type of climate risk (Alessi and Battiston, 2022). 
6 This would be in the case of allowing netting within financial firms, i.e., the capital needs of one firm is 

compensated for by the capital buffer of the remaining firms in the sector. 
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experience modest capital losses in a hothouse world scenario, but negligible capital losses in the 

remaining scenarios. 

Our study contributes to the literature that addresses the impact of climate-related risks on 

financial systems. Battiston et al. (2017), for their network-based climate stress-test of climate risk 

impact in green and brown scenarios, report that European bank exposure to the fossil-fuel sector is 

small (3%-12%), but is significant and heterogeneous to climate-policy sectors (40%-54%); they also 

report that the systemic impact of climate risk is expected to be moderate in an orderly transition 

scenario. Also for Europe, Weyzig et al. (2014) find that the fossil-fuel company revaluation risk for 

financial stability is limited. Using a calibrated ecological macroeconomic model, Dafermos et al. 

(2018) argue that climate change is likely to damage the liquidity of firms and negatively affect credit 

expansion and financial stability, suggesting that those negative climate-induced effects could be 

reduced by green quantitative easing. Stolbova et al. (2018) report how shocks from the introduction of 

climate policies generate feedback effects between the real economy and the financial sector that 

reinforce mispricing and risk transmission. In a recent study of bank exposure to a portfolio of stranded 

assets, Jung et al. (2023) report a climate stress-testing procedure to measure the climate risk impact on 

the capital of large global banks, documenting substantial capital shortfalls for most of the studied banks. 

We add to this literature by introducing a new empirical framework to assess the impact of climate 

transition risks under different climate-related market scenarios and the implications in terms of tail risk 

measures and capital shortfalls using realistic (non-Gaussian) modelling assumptions. Our systemic risk 

measures – which can be readily computed using publicly available market data on individual financial 

firms and on market assets – can thus reflect changing market conditions, such as induced by the 

COVID-19 pandemic, and so facilitate timely identification of systemic climate-related risks from a 

financial stability perspective. 

The remainder of the paper is laid out as follows. Section 2 develops our methodological 

approach, encompassing a definition of climate transition risk metrics, a description of climate transition 

scenarios, and our empirical modelling approach to quantifying the financial impact of climate transition 

risks. Section 3 describes data for European financial firms. Section 4 discusses empirical results for the 

systemic risk impact of the different climate transition scenarios for the European financial system, 
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while Section 5 provides information on the transition risk implications for capital shortfalls. Finally, 

Section 7 concludes. 

2.  Methods 

In this section, we first define the CTER, CTVaR and CTES metrics that assess the climate 

transition risk impact on financial firms. We then outline the climate transition scenarios and the 

dependence modelling approach to describing and estimating the climate transition risk impact on 

financial stability under those different scenarios. 

2.1 Climate transition risk metrics 

Following the systemic risk literature (Acharya et al., 2017; Browless and Engle, 2017; Adrian 

and Brunnermeier, 2016),7 we identify potential vulnerabilities of financial firm returns to different 

climate transition scenarios using the CTER, CTVaR, and CTES metrics, defined as follows. 

DEFINITION 1. CTER is the expected return of financial firm 𝑖 in the event of a climate transition 

scenario 𝐶𝑇𝑠: 

𝐶𝑇𝐸𝑅𝑖 = 𝐸(𝑟𝑖  |𝐶𝑇𝑠) = ∫ 𝑟𝑖 𝑓(𝑟𝑖|𝐶𝑇𝑠) 𝑑𝑟𝑖

∞

−∞

, 

where 𝑟𝑖 denotes the market returns of financial firm 𝑖, and 𝑓(𝑟𝑖|𝐶𝑇𝑠) is the density of the returns of 

financial institution i conditional on 𝐶𝑇𝑠 . 

DEFINITION 2. CTVaR is the maximum possible loss of a financial institution 𝑖 conditional on a 

climate transition scenario 𝐶𝑇𝑠 for a confidence level of 1 − 𝛾: 

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

= 𝐹𝑖|𝐶𝑇𝑠
−1 (𝛾), 

where 𝐹𝑖|𝐶𝑇𝑠
−1 (·) is the inverse cumulative probability distribution of 𝑟𝑖 conditional on 𝐶𝑇𝑠 , i.e., 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
 

is the 𝛾% quantile of the conditional distribution of returns: 𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

|𝐶𝑇𝑠) = 𝛾. 

DEFINITION 3. CTES is the expected return of the financial firm 𝑖 when firm returns fall below the 

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 in the event of a climate transition scenario 𝐶𝑇𝑠: 

 
7 For a survey of this literature, see Benoit et al. (2017). 
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𝐶𝑇𝐸𝑆𝑖
𝛾

= 𝐸(𝑟𝑖 |𝐶𝑇𝑠, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

 ) =
1

𝛾
∫ 𝑟𝑖  𝑓(𝑟𝑖|𝐶𝑇𝑠) 𝑑𝑟𝑖 .

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

 

That is, 𝐶𝑇𝐸𝑆𝑖
𝛾
 is the expected return value for those returns located in the 𝛾-tail of the conditional 

distribution of returns. 

Figure 1 illustrates how the unconditional distribution of firm 𝑖 (blue line) shifts in response to 

the potential impact of a climate transition scenario (red line), along with the above-defined climate 

transition risk metrics from the conditional firm returns density. 

[INSERT FIGURE 1 HERE] 

2.2 Climate transition scenarios 

We consider three market scenarios, aligned with the narrative of main climate transition 

scenarios suggested by regulators and supervisory authorities, characterized in terms of their potential 

asset re-pricing effects: hothouse world (or no transition), disorderly transition to a green economy, and 

orderly transition to a green economy.8 

Let 𝑟𝑔, 𝑟𝑛, and 𝑟𝑏 denote the market returns of green, neutral, and brown firms, reflecting low, 

medium, and large vulnerability to climate transition risk, respectively. Hence, the narrative and re-

pricing effects from each transition scenario are as follows. 

In the hothouse world scenario, current policies are preserved, emissions grow, and temperatures 

increase by more than 3ºC in a 50-year period. Policy actions to favour transition are implemented 

slowly and tardily, and investors adjust their expectations accordingly.9 In this scenario brown firms 

have more time to offload stranded assets without suffering a large price impact and their asset prices 

 
8 Regulatory and supervisory authorities might consider more than three scenarios for the transition towards a low-

carbon economy, although in terms of market-revaluation we could find a common framework and similar 

narratives across market authorities for the classification of their scenarios. For instance, the hot house world 

scenario would entail similar tail market movements that we could expect in the Nationally Determined 

Contributions and Current Policies scenarios for the NGFS (NGFS, 2021) or the Current Policies Scenario for the 

Australian Prudential Regulation Authority (Australian Prudential Regulation Authority, 2021) European Central 

Bank (European Central Bank, 2022), Federal Reserve (Board of Governors of the Federal Reserve System, 2023), 

Bank of England (Bank of England, 2021) and Bank of Canada (Bank of Canada and Office of the Superintendent 

of Financial Institutions, 2022). For a comparison between different climate transition scenarios across supervisory 

authorities, see Table 1 from Acharya et al. (2023). 
9 Additional changes related with technical innovation and consumer preferences would happen under this 

scenario, e.g. insufficient climate technological innovation and no relevant consumer preferences for 

environmentally friendly products in the hot house world. The description of the policy actions is done for 

illustrative purposes, to depict the umbrella of scenario narratives that could lead to the market outcomes employed 

to build our climate transition scenarios. 
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increase, while green asset prices decline as green firms lose the opportunity to boost their business. 

Thus, the relative price impact of a hothouse world scenario can be described in terms of upward and 

downward movements in brown and green asset market returns, as described by their quantiles: 𝑟𝑔 ≤ 𝑞𝑔
𝛼 

and 𝑟𝑏 ≥ 𝑞𝑏
𝛽

, where the 𝛼- and 𝛽-quantiles of green and brown asset returns are given by 𝑃(𝑟𝑔 ≤ 𝑞𝑔
𝛼) =

𝛼 and 𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛽

) = 1 − 𝛽, respectively. Arguably, the returns of neutral assets experience no 

particular impact as they are barely affected by the transition risk to a low-carbon economy. 

In the disorderly transition scenario, an active stance is adopted through climate policies aimed at 

mitigating emissions and limiting global warming below 2ºC above pre-industrial levels by 2070; 

however, the implementation of measures is delayed in time, so those policies are introduced abruptly 

to achieve the emissions goal, resulting in higher transition risks. Abrupt policy constraints on the use 

of carbon intensive energy may cause frictions in the transition, generating operational difficulties for 

firms that are more exposed to risk, ultimately affecting the value of their assets (e.g., assets may become 

stranded). In contrast, firms with lower exposure to transition risk face a privileged position in the market 

in the short-term. As a result, market expectations regarding green asset prices curve upwards, while the 

opposite happens with brown asset prices. This impact can be described in terms of upward and 

downward movements of green and brown asset market returns, characterized by their quantiles: 𝑟𝑔 ≥

𝑞𝑔
𝛽

 and 𝑟𝑏 ≤ 𝑞𝑏
𝛼, where the 𝛼- and 𝛽-quantiles of green and brown asset returns are given by 

𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝛼) = 𝛼 and 𝑃 (𝑟𝑔 ≤ 𝑞𝑔

𝛽
) = 1 − 𝛽, respectively. As with the hothouse world scenario, the 

impact of a disorderly transition on neutral asset returns is negligible, as those returns are barely affected 

by transition risks. 

Finally, in the orderly transition scenario, climate policies aimed at keeping global warming below 

2ºC in the next 50 years are implemented smoothly, allowing firms to progressively adapt to the new 

business setting. In this context, the transition risk is moderate; since all firms will be able to gradually 

adapt to the new setup, their values are not expected to experience abrupt changes. Investors would 

therefore expect asset returns to move around their median values (i.e., with no abrupt price changes), 
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described as: 𝑞𝑏
𝐿 ≤ 𝑟𝑏 ≤ 𝑞𝑏

𝑈, 𝑞𝑛
𝐿 ≤ 𝑟𝑛 ≤ 𝑞𝑛

𝑈 and 𝑞𝑔
𝐿 ≤ 𝑟𝑔 ≤ 𝑞𝑔

𝑈, where 𝑞𝑗
𝐿 and 𝑞𝑗

𝑈 are the lower and upper 

quantiles around the median for the asset 𝑗 = 𝑔, 𝑛, 𝑏. 

2.3 Modelling the financial impacts of climate transition risks 

The CTER, CTVaR, and CTES metrics under the three climate transition scenarios are presented 

in Table 1. Empirical estimation of those metrics requires knowledge of the joint density of the returns 

of financial firm i and the climate transition scenario, and the probability of that climate transition 

scenario unfolding (that is, of the conditional density for each financial institution). 

[INSERT TABLE 1 HERE] 

We characterize the probability distribution of returns using copula functions.10 Copulas allow  

marginal and dependence features to be connected, in such a way that the probability distribution of two 

market returns can be expressed in terms of a bivariate copula function 𝐶 as 𝐹(𝑟𝑗, 𝑟ℎ) =

𝐶𝑗ℎ (𝐹𝑗(𝑟𝑗), 𝐹ℎ(𝑟ℎ)), where C is a cumulative distribution copula with uniform marginal variables given 

by 𝐹𝑗(𝑟𝑗) = 𝑢𝑗 , 𝐹ℎ(𝑟ℎ) = 𝑢ℎ, and where 𝐹𝑗(𝑟𝑗) and 𝐹ℎ(𝑟ℎ) denote the marginal distribution function of 

the j and h stock returns that stem from the corresponding densities, 𝑓𝑗(𝑟𝑗) and 𝑓ℎ(𝑟ℎ). Likewise, the 

conditional marginal distribution can be obtained from the conditional copula function as 𝐹𝑗|ℎ(𝑟𝑗|𝑟ℎ) =

𝐶𝑗|ℎ(𝑢𝑗|𝑢ℎ) =
𝜕𝐶𝑗ℎ(𝑢𝑗,𝑢ℎ)

𝜕𝑢ℎ
. Copulas can also be extended to the multivariate case, i.e., the probability 

distribution for the trivariate case can be written in terms of a copula function as 𝐹(𝑟𝑗, 𝑟ℎ , 𝑟𝑘) =

𝐶𝑗ℎ𝑘(𝐹𝑗(𝑟𝑗), 𝐹ℎ(𝑟ℎ), 𝐹𝑘(𝑟𝑘)), while the conditional marginal distribution for two variables or one 

variable is obtained from the conditional copula as 𝐹𝑗ℎ|𝑘(𝑟𝑗, 𝑟ℎ|𝑟𝑘) = 𝐶𝑗ℎ|𝑘(𝑢𝑗|𝑢𝑘, 𝑢ℎ|𝑢𝑘) and 

𝐹𝑗|ℎ𝑘(𝑟𝑗|𝑟ℎ , 𝑟𝑘) = 𝐶𝑗|ℎ𝑘 (𝑢𝑗|(𝑢ℎ, 𝑢𝑘)) , with 𝑢𝑗|𝑢𝑘 = 𝐶𝑗|𝑘(𝑢𝑗|𝑢𝑘) and 𝑢𝑗|(𝑢ℎ , 𝑢𝑘) =

𝐶𝑗|𝑘,ℎ((𝑢𝑗|𝑢ℎ)|(𝑢𝑘|𝑢ℎ)). By separating marginal and joint dependence features, copulas flexibly model 

multivariate distributions, reporting information on conditional dependence, joint tail dependence, and 

 
10 For a detailed analysis of copulas, see Joe (1997) and Nelsen (2006). 
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nonlinearities to accurately assess the systemic impact of tail events such as extreme climate transition 

scenarios.11 

Using copulas, we can express the probability of each climate transition scenario and the joint 

density between that scenario and the returns of financial firm i as follows. 

Result 1. The probability of a disorderly transition scenario is given by: 

𝑃 (𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) = ∫  𝐶(𝑢𝑏 ≤ 𝛼, 𝑢𝑔 ≥ 1 − 𝛽|𝑢𝑛) 𝑑𝑢𝑛

1

0

, (1) 

where 𝐶(𝑢𝑏 ≤ 𝛼, 𝑢𝑔 ≥ 1 − 𝛽|𝑢𝑛) = 𝐶𝑏|𝑛(𝛼|𝑢𝑛) − 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝛼|𝑢𝑛), 𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)). The 

probability for the hothouse world scenario is computed by swapping around the green and brown 

subscripts. The probability for an orderly transition scenario is given by: 

𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ 𝐶 (0.5 −
𝛼

2
≤ 𝑢𝑏 ≤ 0.5 +

𝛼

2
, 0.5 −

𝛽

2
≤ 𝑢𝑔 ≤ 0.5 +

𝛽

2
|𝑢𝑛) 𝑑𝑢𝑛

0.5+
𝛿
2

0.5−
𝛿
2

, 

 

 

(2) 

where: 

𝐶 (0.5 −
𝛼

2
≤ 𝑢𝑏 ≤ 0.5 +

𝛼

2
, 0.5 −

𝛽

2
≤ 𝑢𝑔 ≤ 0.5 +

𝛽

2
|𝑢𝑛) = 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑎|𝑢𝑛), 𝐶𝑔|𝑛(𝑏|𝑢𝑛)) +

𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑑|𝑢𝑛), 𝐶𝑔|𝑛(𝑒|𝑢𝑛)) − 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑎|𝑢𝑛), 𝐶𝑔|𝑛(𝑒|𝑢𝑛)) −

𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑑|𝑢𝑛), 𝐶𝑔|𝑛(𝑏|𝑢𝑛)), with 𝑃(𝑞𝑗
𝑈 ≥ 𝑟𝑗 ≥ 𝑞𝑗

𝐿) = 𝜂, 𝑃(𝑟𝑗 ≤ 𝑞𝑗
𝑈) = 0.5 +

𝜂

2
 and 𝑃(𝑟𝑗 ≤ 𝑞𝑗

𝐿) =

0.5 −
𝜂

2
 with 𝜂 = 𝛼, 𝛽, 𝛿 for 𝑗 = 𝑔, 𝑛, 𝑏; and where 𝑎 = 0.5 +

𝛼

2
, 𝑏 = 0.5 +

𝛽

2
, 𝑑 = 0.5 −

𝛼

2
 and 𝑒 =

0.5 −
𝛽

2
. ⧠ 

Proof: See Appendix. 

Interestingly, copulas in Result 1 arise from a specific hierarchical dependence structure among 

green, neutral, and brown assets, shown in the upper panel of Figure 2. This dependence is given by a 

 
11 This modelling flexibility explains why this framework is the backbone of scenarios for stress testing. See for 

instance: shorturl.at/GHQV7. 
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C-vine copula,12 where the central node in the first tree (𝑇1) represents neutral asset returns, and the 

edges connecting two nodes capture joint dependence between the returns of those nodes through 

bivariate copulas, allowing conditional dependence between those two variables to be computed. 

Likewise, the second tree (𝑇2) reflects two nodes representing green and brown asset returns conditional 

on neutral asset returns, with the edges providing information on the joint dependence between those 

variables as given by the corresponding copula. For the three bivariate copulas arising from this 

dependence structure, we can obtain all conditional copulas involved in Result 1 necessary to compute 

the probability of different climate transition scenarios. 

[INSERT FIGURE 2 HERE] 

Result 2. The joint density for the returns of a financial institution i and a disorderly transition scenario 

is: 

𝑓 (𝑟𝑖 ,  𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) = ∫ 𝐶(𝑢𝑏 ≤ 𝛼, 𝑢𝑔 ≥ 1 − 𝛽|𝑢𝑛, 𝑢𝑖)𝑓𝑖 (𝐹𝑖

−1(𝑢𝑖)) 𝑑𝑢𝑛,

1

0

(3) 

where 𝐶(𝑢𝑏 ≤ 𝛼, 𝑢𝑔 ≥ 1 − 𝛽|𝑢𝑛, 𝑢𝑖) is given by: 

𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖) − 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖)). Swapping 

around the green and brown subscripts, the density for the hothouse world scenario follows. As for the 

orderly transition scenarios, density is computed as: 

 𝑓(𝑟𝑖 , 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

=  ∫ 𝐶(𝑑 ≤ 𝑢𝑏 ≤ 𝑎, 𝑒 ≤ 𝑢𝑔 ≤ 𝑏|𝑢𝑛, 𝑢𝑖)𝑓𝑖(𝐹𝑖
−1(𝑢𝑖)) 

0.5+
𝛿
2

0.5−
𝛿
2

𝑑𝑢𝑛, 

 

(4) 

where: 

𝐶(𝑑 ≤ 𝑢𝑏 ≤ 𝑎, 𝑒 ≤ 𝑢𝑔 ≤ 𝑏|𝑢𝑛, 𝑢𝑖) =  𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖})) +

𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖})) − 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖})) −

𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖})). ⧠ 

 
12 For an analysis of vine copulas, see Bedford and Cooke (2002); Kurowicka and Cooke(2006); Aas et al. (2009). 

In the trivariate case, the C- and D-vine copulas are equivalent when the pivotal node in the first tree of the C-vine 

is the central node in the first tree of the D-vine. 
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Proof: See Appendix. 

Remarkably, in Result 2 the conditional copulas required to obtain the joint densities under 

different climate transition scenarios arise from a specific hierarchical dependence structure between 

the financial institution and market assets, represented in the lower (shaded) panel of Figure 2 through 

a C-vine copula. The first tree (�̅�1) connects the returns of the financial firm with the two nodes of the 

second tree (𝑇2) of the hierarchical dependence of the assets in the market. For the three bivariate copulas 

arising from this dependence structure, we can obtain all the conditional copulas involved in Result 2. 

From Results 1 and 2 we now can now compute the 𝐶𝑇𝐸𝑅𝑖 value. For a disorderly transition 

scenario,13 this is: 

 𝐸 (𝑟𝑖 | 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

=
1

𝑃 (𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

∫ ∫ 𝐹𝑖
−1(𝑢𝑖)

1

0

𝐶(𝑢𝑏 ≤ 𝛼, 𝑢𝑔 ≥ 1 − 𝛽|𝑢𝑛, 𝑢𝑖)𝑑𝑢𝑛𝑑𝑢𝑖 ,
1

0

 

 

 

(5) 

while for the hothouse world scenario, the value of the 𝐶𝑇𝐸𝑅𝑖 is obtained by swapping around the green 

and brown subscripts. For an orderly transition scenario, 𝐶𝑇𝐸𝑅𝑖 is computed as: 

𝐸(𝑟𝑖|𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

=
1

𝐴
∫ ∫ 𝐹𝑖

−1(𝑢𝑖)𝐶(𝑑 ≤ 𝑢𝑏 ≤ 𝑎, 𝑒 ≤ 𝑢𝑔 ≤ 𝑏|𝑢𝑛, 𝑢𝑖)𝑑𝑢𝑛𝑑𝑢𝑖 .
0.5+

𝛿
2

0.5−
𝛿
2

 
1

0

  

 

 

(6) 

where 𝐴 = 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿). As for the values of 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 and 𝐶𝑇𝐸𝑆𝑖

𝛾
, 

we need information on the joint probability of each climate transition scenario and the returns of firm 

i, and also information on the joint density between that scenario and those returns, given that returns 

for firm i are below a threshold given by 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
. This information is described as follows. 

Result 3. The probability of a disorderly transition scenario when returns for firm i are below a threshold 

given by 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 is: 

 
13 Proofs of Eqs. (5) and (6) are reported in the Appendix. 
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 𝑃 (𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
; 𝑟𝑛)    

=  ∫ ∫ 𝐶(𝑢𝑏 ≤ 𝛼, 𝑢𝑔 ≥ 1 − 𝛽|𝑢𝑛, 𝑢𝑖)
1

0

𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0

𝑑𝑢𝑛𝑑𝑢𝑖 . 

 

 

(7) 

The probability for the hothouse world scenario follows by swapping around the green and brown 

subscripts. For an orderly transition scenario, this is: 

𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ ∫ 𝐶(𝑑 ≤ 𝑢𝑏 ≤ 𝑎, 𝑒 ≤ 𝑢𝑔 ≤ 𝑏|𝑢𝑛, 𝑢𝑖)
0.5+

𝛿
2

0.5−
𝛿
2

𝑑𝑢𝑛𝑑𝑢𝑖 . ⧠
𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
)

0

 

 

(8) 

Proof: See Appendix. 

Result 4. The joint density for a disorderly transition scenario and the returns of a financial institution i 

when those returns are below a threshold 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 is: 

𝑓 (𝑟𝑖 ≤ 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

),  𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) = ∫ 𝑓 (𝑟𝑖 ,  𝑟𝑔 ≥ 𝑞𝑔

𝛽
, 𝑟𝑏 ≤ 𝑞𝑏

𝛼; 𝑟𝑛) 𝑑𝑢𝑖 .
𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
)

0

(9) 

The density for the hothouse world scenario follows by swapping around the green and brown subscripts. 

For an orderly transition scenario, this is: 

 𝑓(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ 𝑓(𝑟𝑖, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)𝑑𝑢𝑖 .
𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
)

0

⧠ 

 

(10) 

Proof: See Appendix. 

We can now obtain the value of 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 under different transition scenarios. For a disorderly 

transition scenario, the 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 is the quantile that verifies that 

𝑃 (𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

|𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) = 𝛾, namely: 

𝑃 (𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

𝑃 (𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

= 𝛾,  
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where the ratio of probabilities, denoted by 𝐺(·), derives from Result 1 and 3. Hence, given that 

𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

) = 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

), the value of 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 is computed as:14 

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

= 𝐹𝑖
−1(𝐺−1(𝛾)). (11) 

For the hothouse world and orderly transition scenarios, the value of 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 is given by Eq. (11) but 

the ratio of probabilities is given by the corresponding 𝐺(·). 

Finally, the tail risk effects from a disorderly transition scenario can be quantified with the 𝐶𝑇𝐸𝑆𝑖
𝛾
 

as: 

𝐸 (𝑟𝑖  | 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛) =

1

𝑃 (𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛)

 

∫ ∫ 𝐹𝑖
−1

(𝑢𝑖)
1

0

𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0

𝐶(𝑢𝑏 ≤ 𝛼, 𝑢𝑔 ≥ 1 − 𝛽|𝑢𝑛,𝑢𝑖)𝑑𝑢𝑛𝑑𝑢𝑖, 

 

(12) 

where 𝑃 (𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛) is given by Result 3. Swapping around the green and 

brown subscripts we obtain 𝐶𝑇𝐸𝑆𝑖
𝛾
 for the hothouse world transition scenario. For an orderly transition 

scenario, 𝐶𝑇𝐸𝑆𝑖
𝛾
 is given by: 

𝐸(𝑟𝑖|𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

=
1

𝐵
∫ ∫ 𝐹𝑖

−1(𝑢𝑖)𝐶(𝑑 ≤ 𝑢𝑏 ≤ 𝑎, 𝑒 ≤ 𝑢𝑔 ≤ 𝑏|𝑢𝑛, 𝑢𝑖)𝑑𝑢𝑛

0.5+
𝛿
2

0.5−
𝛿
2

𝑑𝑢𝑖 ,
𝐹𝑖 (𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
)

−∞

 

 

 

(13) 

where 𝐵 = 𝑃 (𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
, 𝑞𝑏

𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏
𝐿, 𝑞𝑔

𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔
𝐿 , 𝑞𝑛

𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛
𝐿). 

2.4 Estimation 

Estimation of the systemic impact of climate transition scenarios requires information on the 

copula functions as represented in Figure 2. Those copulas are estimated using the two-step inference 

functions for margins (IFM) approach (Joe and Xu, 1996). 

In the first IFM step, we estimate the univariate marginal distribution functions of the 𝑗 = 𝑖, 𝑔, 𝑛, 𝑏 

returns by maximum likelihood (ML), where the dynamics of those returns is assumed to be described 

by an autoregressive moving average (ARMA) model of order m and k: 

 
14 Proofs of Eqs. (11)-(13) are reported in the Appendix. 
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 𝑟𝑗,𝑡  = 𝜙0 + ∑ 𝜙𝑞𝑟𝑗,𝑡−𝑞
m
𝑞=1 + ∑ 𝜑𝑘𝜖𝑗,𝑡−𝑘

k
𝑘=1 + 𝜖𝑗,𝑡  , (14) 

where 𝜙𝑞 and 𝜑𝑟 denote the parameters of the AR and MA components of the model, and 𝜖𝑗,𝑡 is the 

stochastic component that is assumed to have a zero mean and variance with dynamic behaviour as 

represented by a threshold generalized autoregressive conditional heteroskedasticity (TGARCH) model: 

 𝜎𝑗,𝑡
2  = 𝜔0 + ∑ 𝛽𝑞𝜎𝑗,𝑡−𝑘

2K
𝑘=1 + ∑ 𝛼ℎ𝜖𝑗,𝑡−ℎ

2H
ℎ=1 + ∑ 𝛿ℎ1𝑡−ℎ𝜖𝑗,𝑡−ℎ

2H
ℎ=1 , (15) 

where 𝜔0, 𝛽𝑞 and 𝛼ℎ are the parameters of the volatility model, and where 1𝑡−ℎ = 1 if 𝜖𝑗,𝑡−ℎ < 0, and 

otherwise is zero. The parameter 𝛿ℎ accounts for the asymmetric effect of shocks, thus, for 𝛿ℎ > 0, 

negative shocks have more impact on variance than positive shocks. Asymmetries and fat tails in the 

marginal distribution of returns are captured by assuming that the return distribution is given by 

Hansen’s (1994) skewed-t density with 𝜗 (2 < 𝜗 < ∞) degrees of freedom and asymmetry parameter 𝜆 

(−1 < 𝜆 < 1). The number of lags for the mean and variance of returns is selected using the Akaike 

information criterion (AIC). From marginal models, we obtain the pseudo-sample observations for the 

copula as given by the integral probability transformation of standardized returns. 

In the second IFM step, the multivariate dependence is captured through a hierarchical estimation 

of the time-varying copula parameters. First, we estimate the parameters of the dependence model for 

the green, neutral, and brown assets as represented in the upper panel of Figure 2 (common for all 

financial institutions), using sequential ML (Aas et al. 2009; Hobaek Haff, 2013), which consists of 

estimating bivariate copula parameters for the first tree level using the probability integral 

transformations from marginals as pseudo-sample observations, and then obtaining pseudo-sample 

observations from those copulas to estimate copula parameters for the next tree. Second, for each 

financial institution i we estimate the dependence structure of that financial institution with the market 

assets as represented in the lower panel of Figure 2. Bivariate copula parameters are estimated using 

sequential ML: copulas for the first tree are estimated using both pseudo-observations from the second 

tree of the dependence model (the conditional copula values for green and brown assets) and pseudo-

sample observations from the probability integral transformation of the marginal of returns for financial 

firm i, and then, from the bivariate copulas in the first tree we generate pseudo-observation to estimate 

the parameters of the copula in the second tree. 
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For estimation of all the bivariate dependencies represented in Figure 2, we use different bivariate 

copula specifications with time-varying parameters following Patton (2006) as reported in Table 2, 

selecting the most appropriate copula model using the AIC corrected for small sample bias (Breymann 

et al., 2003). 

[INSERT TABLE 2 HERE] 

3.  Data 

3.1 Firm vulnerability to climate transition risk 

To delimit climate transition scenarios, we need to categorize green, brown, and neutral asset 

returns. To that end, we use rated information on the vulnerability of the firm’s value to transition risk 

as reported by Sustainalytics – a widely recognized leading provider of environmental, social, and 

governance (ESG) information. 

On an annual basis, Sustainalytics computes a rating called the carbon risk score (CRS), which is 

based on exposure to and management of carbon transition risk by firms in 146 subindustries. Carbon 

exposure, which largely depends on the type of business, measures the extent to which carbon risk is 

materialized across the firm’s value chain (including operations, products, and services). It is measured 

by subindustry and is specifically adjusted at the firm level by considering (a) company operations or 

product mix deviations with respect to its subindustry, and (b) the firm’s financial strength and 

geographical components that could undermine the firm’s capacity to address carbon risks. Management 

of carbon risk measures the firm’s management ability and quality in terms of reducing emissions and 

related carbon risks. Management, as characterized by implementation of company’s policies, 

programmes and systems in operations, products, and services, is ultimately reflected in (a) reductions 

in carbon emissions, (b) level of reliance on fossil fuels, and (c) development of greener products and 

services. Once carbon risk management is accounted for, the remaining risk is unmanaged carbon risk, 

defined as unmanageable risks beyond the control of the company and manageable risks that have not 

been accounted for. 

For unmanaged carbon risk, Sustainalytics assigns a CRS that evaluates the extent to which the 

company’s value is placed at risk by transition to a low-carbon economy. Accordingly, firms are rated 
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with a CRS between 0 and 100, reflecting negligible (0), low (1 to 9.99), medium (10 to 29.99), high 

(30 to 49.99), and severe (50 or more) carbon transition risk.15 As a transition risk measure, the CRS 

metric is more informative than carbon emissions according to Greenhouse Gas (GHG) Protocol Scopes 

1, 2, and 3, as it considers not only carbon emissions information, but also policies and actions to manage 

the impact of transition to a low-carbon economy on a firm’s value.16 Moreover, information on CRS 

ratings is available to institutional and private investors, who can assess the resilience of their 

investments to climate transition risks (Reboredo and Otero, 2021; Reboredo and Ugolini, 2022). 

Using firm-level CRS values, we sort firms into quintiles in such a way that they are categorized 

as green or brown when included in the first and fifth quintiles, respectively, and as neutral otherwise. 

The distinctive feature of green, neutral, and brown firms is their vulnerability to transition to a low-

carbon economy, with green (brown) firms exhibiting the lowest (highest) risk exposure, and neutral 

firms having average risk exposure. Using returns for non-financial firms within each category, we 

compute green, neutral, and brown returns as the average returns for the companies included in the 

corresponding category.17 

3.2 Data source 

Our dataset includes both European financial firms and European listed firms that are annually 

rated with a CRS. The sample goes from 2013, when information on CRS at the firm level becomes 

available, to 2020, with all data sourced from Bloomberg. 

The sample includes 939 European listed firms, representing 99.4% of the firms included in the 

Eurostoxx-600 index and 97% of market capitalization of that index at the end of 2020. Those firms are 

annually grouped into the green, neutral, or brown asset categories, depending on whether they belong 

to the first CRS quintile, to the second, third or fourth CRS quintiles, or to the fifth CRS quintile, 

 
15 For a detailed analysis of rating methods, see: https://www.morningstar.com/lp/low-carbon-economy. 

16 We have performed a robustness check by considering green, brown and neutral portfolios using information 

from scope 1 and scope 2 CO2 carbon emissions at the firm level. Empirical evidence, available on request, lead 

to similar qualitative results presented here. 
17 Alternatively, we could also use market weights to determine the returns of each asset category, even though the 

dynamics of the returns for each category might be mainly determined by a single firm with large market 

capitalization. 

https://www.morningstar.com/lp/low-carbon-economy
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respectively. Weekly returns for each asset class are computed as the average of the log-returns of the 

assets in the corresponding category. 

The sample of European financial firms includes 190 firms representing 85% of the Euro Stoxx 

financials index (data for the end of 2020): 43 banks (24 of which are classified as domestic systemically 

important banks by the Financial Stability Board in 2020), 36 insurance companies, 52 financial services 

companies, and 59 real estate firms. We consider various categories of financial firms given that their 

different business models are likely to affect their exposure to climate transition risks. Systemic risk for 

similar financial firms has been investigated by Engle et al. (2015) and for a similar set of banks by 

Borri and Giorgio (2022). By market capitalization (data for the end of 2020), the largest firms are as 

follows: HSBC, BNP Paribas, Banco Santander, and Intesa Sanpaolo (banks); Allianz, Chubb, Zurich 

Insurance, and AXA (insurance companies); UBS Group, London Stock Exchange, Deutsche Böerse, 

and Credit Suisse (financial services firms); and Deutsche Wohnen, Segro, Gecina, and LEG 

Immobilien (real estate firms). Total capitalization is 1,680 billion euros, for a median value of 10 billion 

euros. For all the financial firms, we compile data for weekly market prices in euros, and use data on 

debt book value and the market value of the equity in euros obtained from Compustat. 

Table 3 presents summary statistics for the returns of different asset and financial firm categories. 

It confirms that green, neutral, and brown assets have dissimilar performances in terms of returns and 

volatilities, with green assets outperforming brown and neutral assets in terms of greater realized returns 

and lower volatility. Moreover, probability distributions of green, neutral, and brown assets also differ 

according to skewness and kurtosis information, and according to tail behaviour as reflected in the 

empirical value-at-risk (VaR) and expected shortfall (ES) values in the left and right sides of the 

distribution. Extreme movements in the green, neutral, and brown returns are dissimilar, with brown 

assets experiencing larger extreme downward movements than green assets. 

For the financial sample, Table 3 shows that financial services companies outperform the other 

categories, while real estate and insurance companies have similar average returns. Banks yield average 

negative returns and display greater volatility than the other financial firms. All financial firms are 

characterized by higher volatility than market assets and also by negative skewness and fat tails. 
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According to the empirical VaR and ES metrics, banks show higher levels of tail risk than the other 

financial firms. 

[INSERT TABLE 3 HERE] 

Figure 3 shows the cumulative performance of green, neutral, and brown assets, along with the 

(average) cumulative returns for each financial institution category. Over the sample period, cumulative 

returns for green assets are above the cumulative returns for brown assets, although the differences are 

slightly reduced in the last year of the sample period due to the COVID-19 pandemic. Financial firms 

show different patterns, with banks underperforming the other financial firms and experiencing severe 

cuts between mid-2015/mid-2016 and from the pandemic outset. Financial services and real estate 

returns display similar dynamics, closely co-moving with neutral asset returns. 

[INSERT FIGURE 3 HERE] 

3.3 Financial firm exposure to green, neutral, and brown assets 

To assess average exposure of financial firms to green, neutral, and brown assets, for each 

financial firm we run a capital asset pricing model (CAPM)-type regression, where the market return 

factor is decomposed into green, neutral, and brown asset returns, while the three regression betas 

provide information on the sensitivity of each financial firm’s returns to the different asset returns. The 

product of those betas multiplied by the respective average values of the green, neutral, and brown asset 

returns under specific climate transition scenarios yields the average impact of a particular scenario on 

a financial institution. We assess those average impacts in three circumstances, as follows: (a) green and 

brown returns are above and below their respective median values, reflecting a disorderly transition 

scenario using median quantiles as thresholds; (b) brown and green returns are above and below their 

respective median values, reflecting a hothouse world scenario using medians as thresholds; and (c) 

green, neutral, and brown returns are below their 75% and above their 25% respective quantiles, 

consistent with an orderly transition scenario. 

Panel A of Figure 4 shows the distribution of betas across the financial firms included in different 

categories. The graphic evidence indicates that banks and insurance companies are more exposed to 

brown than to green asset returns, whereas financial services and real estate firms are more sensitive to 
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green and neutral asset returns than to brown assets. Banks overall show the highest average beta for 

brown returns. There is also wide dispersion in the betas within each financial firm category, with the 

betas for neutral assets exhibiting the greatest dispersion. 

[INSERT FIGURE 4 HERE] 

Consistent with the distribution of betas, the distribution of average impacts from different climate 

transition scenarios differs widely across and within different categories of financial firms, as reflected 

in Panel B of Figure 4. Specifically, banks receive the highest positive and lowest positive average return 

impacts from a hothouse world scenario and a disorderly transition scenario, respectively, whereas the 

opposite occurs for real estate firms. The average impact for insurance firms is similar for the different 

transition scenarios, while for financial services, the impact of a disorderly transition scenario is slightly 

more positive than of a hothouse world scenario. Finally, graphically reflected is great heterogeneity in 

the size of the impact within and between climate transition scenarios. 

4.  Empirical evidence on the systemic impact of climate transition 

4.1 Model estimation 

We start by estimating marginal model parameters for green, neutral, and brown asset returns and for 

each financial firm in our sample. Table 4 reports estimates, where the number of lags in the mean and 

variance specifications are the values that minimize the AIC, considering different values between 0 and 

2. Evidence for green, neutral, and brown marginal densities reported in the first three columns of Table 

4 shows that those returns exhibited no serial dependence, whereas conditional variances were persistent 

and displayed significant positive leverage effects, with bad news having a greater impact on volatility 

than good news. The distribution of green, neutral, and brown assets is negatively skewed and has fat 

tails. Goodness-of-fit metrics for the model residuals point to the fact that no serial correlation remains, 

in either the residuals in levels or the residuals squared, and that the skewed-t distribution adequately 

accounts for the asymmetry and tail return features, given that the Kolmogorov-Smirnov (KS) test 

supports uniformity in the standardized model residuals. 

[INSERT TABLE 4 HERE] 
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As the number of marginal models for the financial firms is large, rather than individual parameter 

estimates and goodness-of-fit results, we report only summary statistics for firms grouped into the four 

categories reported in the last four columns of Table 4. Overall, some financial firms show evidence of 

serial correlation in returns, volatility is persistent (mainly for banks), and there is some evidence of 

positive leverage effects for financial firms that is smaller in size than for market assets. Goodness-of-

fit tests support the fitted marginal models, reporting no misspecification errors for any of the financial 

firms, and confirming that the return distribution is well characterized by a skewed student-t with fat 

tails, which, in some cases, behaves as a symmetric student-t. 

Using the probability integral transformation obtained from marginal model estimations, we first 

estimate the market dependence structure (see the upper panel of Figure 2). Table 5 shows parameter 

estimates for the three estimated copulas that describe the dependence structure for green, neutral, and 

brown assets. The copula that best characterizes dependence between green and neutral assets is a static 

BB1 copula with average positive dependence and asymmetric tail dependence (greater lower tail 

dependence). Dependence between brown and neutral assets is also well described by a BB1 copula, 

with positive dependence oscillating over time, basically influenced by one of the copula parameters. 

Finally, conditional dependence between green and brown assets is well characterized by an independent 

copula. 

[INSERT TABLE 5 HERE] 

Table 6 summarizes estimates of the dependence structure between financial firms and the market 

(see the lower (shaded) panel of Figure 2). Copula estimates indicate that dependence between financial 

institutions and green returns is positive for most financial firms, with some evidence of independence 

for 22.2% of firms. Likewise, dependence between financial firms and brown returns conditional on 

neutral asset returns is mostly positive and low, with evidence of independence for 31.1% of firms. 

Consistent with the market dependence information, green and brown returns conditional on neutral and 

financial firm returns are independent. 

[INSERT TABLE 6 HERE] 

4.2 Evidence on the systemic risk impacts of climate transition scenarios 
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Using information from the bivariate copulas that characterize the market and the dependence 

structure for financial firms, for the sample period we compute the systemic risk impact for each 

financial firm arising from each climate transition scenario (hothouse world, disorderly transition, and 

orderly transition). Specifically, at each time t we compute the values for the systemic metrics, i.e., 

CTER, CTVaR, and CTES, for confidence levels of 𝛼 = 0.20, 𝛽 = 0.20, and 𝛾 = 0.10, and for 

quantiles 𝐹𝑗(𝑞𝑗
𝑈) = 0.60 and 𝐹𝑗(𝑞𝑗

𝐿) = 0.40 for 𝑗 = 𝑔, 𝑛, 𝑏.18 

4.2.1 Systemic risk impacts of climate transition scenarios 

Figure 5 depicts estimates of the three systemic risk metrics for the different types of financial 

institutions. As CTER is an additive measure, aggregated values for each financial institution type are 

obtained as the weighted average of the individual values, weighted by the market value of each firm 

over the total market value of all financial firms in that category. Since CTVaR and CTES are not additive 

measures, for each climate transition scenario we report median values in the cross-section sample, 

along with 25% and 75% percentile values (represented by shaded areas). 

Figure 5 highlights dissimilar temporal dynamics patterns of the systemic risk impact of climate 

transition scenarios for different types of financial firms. For the CTER metric, Panel A of Figure 5 

shows that the value of all financial firms deteriorates in a hothouse world scenario. However, the 

decline in CTER from a hothouse world scenario is of a smaller size for banks (average value of -0.8%, 

receiving positive impacts at specific time periods), while real estate firms receive the largest impact 

(average value of -2.3%). This evidence is consistent with the diverse exposure of financial firms to 

different type of assets, with banks more exposed to brown asset than real estate firms (see Figure 4). 

The impact of a hothouse world scenario is therefore more severe for real estate firms than for banks. In 

contrast, real estate firms and financial services firms are positively affected by a disorderly transition, 

while banks receive a negative impact and insurance companies a slightly positive impact. Not 

surprisingly, the effects of the COVID-19 pandemic are reflected in all the transition scenarios, even 

 
18 Those confidence levels correspond to empirical quantiles for green, neutral, and brown weekly returns, 

respectively, as follows: 𝑞0.2 =-1.27, -1.44, -1.99; 𝑞0.4
𝐿 = 0.21, -0.07, -0.19; 𝑞0.6

𝑈 = 0.87, 0.76, 0.75; 𝑞0.8 =1.66, 

1.58, 1.89. The online appendix provides a robustness check for different confident levels. 
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despite the systemic impact from a disorderly transition scenario being higher for banks than for the 

remaining firms. For all financial firms, the impact of an orderly transition scenario is negligible. 

[INSERT FIGURE 5 HERE] 

Interestingly, median values and interquartile ranges for CTVaR represented in Panel B of Figure 

5 also reflect the greater exposure of banks to brown assets, as CTVaR estimates for banks in a hothouse 

world scenario are higher (average value of -4.8%) than in a disorderly transition scenario (average 

value of -7.2%); this is due to the fact that banks are more positively impacted by upturns in brown asset 

prices than by upturns in green asset prices. Remarkably, the opposite is observed for insurance, 

financial services, and real estate firms, where the value of CTVaR is higher in the disorderly transition 

scenario than in the hothouse world scenario (e.g., for real estate firms, average CTVaR values are -2.2% 

and -5.5% in the former and latter scenarios, respectively). Also, the non-banking sector presents higher 

cross-section heterogeneity than the banking sector, especially in the hothouse world scenario. 

Panel C of Figure 5 shows that expected tail losses for insurance, financial services, and real estate 

firms are larger in a hothouse world scenario that in a disorderly transition scenarios, and that the 

opposite occurs for banks. The temporal dynamics of the median CTES is similar to the dynamics of 

CTVaR, with abrupt downward movement in the COVID-19 period. 

All in all, evidence on the impact of different climate transition scenarios for different types of 

financial firms are, not surprisingly, consistent with the degree of exposure of those institution to 

changes in green and brown asset prices. 

Table 7 presents descriptive statistics for the three risk metrics under different scenarios, 

considering the whole set and different categories of financial firms as presented in Figures 4 and 5. 

Descriptive results confirm the above-described graphical evidence. 

[INSERT TABLE 7 HERE] 

4.2.2 Systemic risk effects of climate transition scenarios for individual firms 

Table 8 presents average values over the sample period for the three systemic risk measures in 

the three climate transition scenarios for the four largest institutions within each category. The evidence 
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in Table 8, consistent with the graphical evidence reported in Figure 4, is that financial institutions are 

diverse in terms of the impact of different scenarios. 

Regarding the banking sector, the CTER, CTVaR, and CTES systemic risk metrics point to 

improved performance in a disorderly transition scenario and deteriorated performance in a hothouse 

world scenario for the two largest banks, HSBC and BNP Paribas. In contrast, the systemic risk metrics 

for Santander and Intesa Sanpaolo, more exposed to brown than to green assets, deteriorate more in a 

disorderly transition scenario than in a hothouse world scenario. This empirical evidence confirms that 

banks differ widely in terms of their exposure to climate risk,19 a fact that needs to be borne in mind in 

any regulation regarding that risk. 

For the four largest insurance firms, the evidence indicates that CTER, CTVaR, and CTES average 

values are better for Alliance, Chubb and AXA in a disorderly transition scenario compared to a 

hothouse world scenario, whereas the impact on Zurich of any of the three climate transition scenarios 

is fairly similar. 

Finally, for the largest firms within the financial services and real estate categories, average CTER, 

CTVaR, and CTES values confirm enhanced performance in a disorderly transition scenario compared 

to a hothouse world scenario. This finding, corroborating the evidence for the financial services and real 

estate firms overall, as presented in Figures 4 and 6, suggests that those firms, on the whole, are well 

positioned for transition to a low-carbon economy in which green (brown) firms would be revalued 

upwards (downwards). 

[INSERT TABLE 8 HERE] 

4.2.3 Systemic risk impact of climate transition scenarios for individual countries 

To explore the systemic risk of climate transition scenarios for individual countries, for CTER 

(additive) we compute average values for each financial institution in each country and aggregate those 

values using, as weights, the market value of each firm over the total market value of all financial firms 

in the corresponding country. For CTVaR and CTES (non-additive), we obtain the average value for each 

 
19 For example, the French banking sector holds a higher share of loans to low emitters than Spanish or Italian 

banking sectors (Alogoskoufis et al., 2021). 
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financial firm in each country over the sample period and take the median values of the averages as 

indicative of the VaR and ES. 

Figure 6 depicts the systemic impact of the three climate transition scenarios on the European 

countries included in our sample. In a disorderly transition scenario, the financial systems of Finland, 

France, and Norway benefit, given that their financial firms show higher (lower) exposure to green 

(brown) than to brown (green) assets. More specifically, average CTER values are higher than in other 

countries and CTVaR and CTES values also indicate better tail risk performance. In contrast, the financial 

systems of Ireland, Portugal, Poland and Spain are the countries most exposed to a disorderly transition, 

displaying the poorest performance for CTER, and also for tail risk, which is particularly high for the 

Italian financial system. Overall, most European countries show vulnerability to a disorderly transition 

scenario. 

[INSERT FIGURE 6 HERE] 

Regarding the hothouse world scenario, Figure 6 indicates that the financial systems of Portugal, 

Ireland, Luxembourg, and Spain would benefit, increasing their average CTER and reducing tail risk in 

terms of CTVaR and CTES with respect to the other European countries. In contrast, the financial systems 

of Finland, France, and Norway show a poorer profile in terms of average returns and tail risk metrics. 

It is important to remark that, although the southern European financial sector incurs fewer losses in the 

hothouse scenario, this scenario would trigger harmful physical climate events in the Mediterranean 

countries.20 

Finally, for an orderly transition scenario, the evidence points to the financial systems of Ireland 

and Portugal as the poorest performers in terms of CTER and also in terms of tail risk, while the best 

performers in terms of tail risk are the financial systems of Finland, Switzerland, and Belgium. 

Taken together, the overall picture of climate transition risk across European financial systems is 

very diverse, with countries ranking differently depending on the climate transition scenario. This result 

 
20 Analysis of physical risk is out-of-scope in this study. This remark must be done to highlight that it is necessary 

to take into account a comprehensive set of measures and indicators to capture the overall implication of climate 

risk. See ACPR and Banque de France (2021) and Alogoskoufis et al. (2021). 
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might be a consequence of loan portfolios that are different depending on the country where the financial 

institution is located. 

5.  Capital implications of climate transition risk 

To assess the implication of each climate transition scenario in terms of capital shortfalls for 

financial firms, following Brownlees and Engle (2017), we define the climate transition capital shortfall 

(CTCS) for a financial institution i at time t as: 

 𝐶𝑇𝐶𝑆𝑖,𝑡 = 𝑘𝐷𝑖,𝑡 − (1 − 𝑘)(1 + 𝐿𝑅𝐶𝑇𝐸𝑅𝑖,𝑡)𝑊𝑖,𝑡, (16) 

where 𝐿𝑅𝐶𝑇𝐸𝑅𝑖,𝑡 = exp(52 · 𝐶𝑇𝐸𝑅𝑖,𝑡) − 1 is the one-year-ahead climate transition expected returns, 

representing the expected change in equity under a specific climate transition stress scenario (e.g., 

computed as per Eq. (5) for a disorderly transition scenario), 𝑘 is the fraction of assets that the financial 

firm has to reserve in the case of a crisis (the prudential capital ratio), 𝐷𝑖,𝑡 is the debt book value, and 

𝑊𝑖,𝑡 is the equity market value. The CTCS, given by the difference between the required and available 

capital, is a forward-looking metric, as it relies on expected change in the market value of financial 

institution i. The dynamics of the CTCS is not only influenced by the impact on returns of the climate 

transition scenario, as given by the CTER, but also by the dynamics of market capitalization and debt. 

From the CTCS, we can define the climate transition systemic capital shortfall (CTRISK) for a financial 

institution i as a positive capital shortfall value: 

 𝐶𝑇𝑅𝐼𝑆𝐾𝑖,𝑡  = max{0, 𝐶𝑇𝐶𝑆𝑖,𝑡}. (17) 

Using information on the debt book value, market capitalization for each financial firm (sourced 

from Compustat), and CTER values (as reported in the previous section and expressed on an annual 

basis), we compute CTCS and CTRISK values for the different climate transition scenarios, considering 

a capital ratio of 𝑘 = 5.5%.21 Figure 7 represents the dynamics of the total CTRISK value for the four 

most impacted firms and the remaining firms within each category, showing that capital shortfall differs 

across financial firms and over time. 

 
21 This ratio, also used by Engle et al. (2015) for European financial firms, ensures no capital shortfall for a leverage 

of 18.2. 
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[INSERT FIGURE 7 HERE] 

Banks experience substantial capital shortfalls from a disorderly transition scenario, at average 

values of about 40 billion euros, peaking at 120 billion euros during a high-risk period (such as a 

COVID-19-like pandemic). Substantial differences exist between banks, with the four most impacted 

banks accounting for a small fraction of the total capital shortfall. For those banks, Table 9 presents 

average CTRISK values, indicating that, in a disorderly transition scenario, the most impacted banks, 

excepting Santander, experience average capital shortfalls that represent an important fraction of their 

market capitalization. In contrast, in a hothouse world scenario, and even though average values for total 

CTRISK are quite similar to those for a disorderly transition scenario, there is great dispersion between 

banks, with the most four impacted banks accounting for a large fraction of the total CTRISK value — 

primarily Credit Agricole (average CTRISK value representing 65% of its market capitalization). The 

capital impact of an orderly transition scenario is moderate, with average values of around 5 billion 

euros, and is concentrated in the most affected banks, with capital shortfalls representing a small fraction 

of their market capitalization. Overall, the empirical estimates point to a relatively manageable impact 

on bank capital of climate transition – in comparison with a financial crisis, when capital consumption 

is substantially greater; see, e.g., Engle et al. (2015) who report an average capital shortfall in a financial 

crisis of around 400 billion euros for European banks. The effects of climate transition in terms of 

positive capital shortfalls are concentrated in a small number of entities, and interestingly, as the average 

CTCS value is below zero, those positive capital shortfalls are absorbable by the banking sector.22 

[INSERT TABLE 9 HERE] 

For insurance companies, capital shortfall estimates, depicted in Figure 7, show that these are 

barely affected in the orderly and disorderly transition scenarios, except during the COVID-19 

pandemic, when capital shortfall peaks at 1 billion euros. However, capital shortfall is mostly affected 

in a hothouse world scenario. Table 9 evidences that capital losses for insurance firms are concentrated 

 
22 As the CTCS is negative on average, if the regulator allows for netting within the financial system, i.e. bail-in 

mechanism, the losses in a financial firm could be offset with the profits in the remainder financial institutions. 

This would be equivalent to avoid the use of max(…) function when assessing the CTRISK in Eq. (17). 
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in a small number of firms and are mainly affected by the hothouse world scenario, but overall 

representing a small percentage of their market capitalization. 

Regarding financial services, Figure 7 shows that those firms are particularly affected in a 

hothouse world scenario, with average capital shortfall over the sample period of 15 billion euros; this 

figure is reduced by half in a disorderly transition scenario, and shrinks to less than 1 billion euros in an 

orderly transition scenario. As for insurance firms, Table 9 indicates that capital shortfalls for the most 

impacted financial service firms represent a small fraction of their market capitalization, with the 

exception of Deutsche Bank AG in the disorderly transition scenario. 

Finally, Figure 7 shows that capital shortfalls for real estate firms are negligible in the disorderly 

and orderly transition scenarios, and although capital shortfalls are larger in a hothouse world overall, 

as reported in Table 9, they represent a small fraction of firm capitalization. This evidence is consistent 

with the greater unfavourable impact on real estate firms of a hothouse world scenario. 

7.  Conclusions 

Moving towards a greener economy involves risks for the value of financial assets, with repricing 

effects (Carney, 2016) potentially having an impact on the stability of financial systems. In this paper, 

we address how climate transition risk, through its effects on asset prices, could impact financial 

stability. To that end, we characterize the behaviour of financial firm returns conditional on the dynamics 

of market returns for green, neutral, and brown assets (reflecting low, neutral, and high vulnerability, 

respectively) in the transition to a low-carbon economy. We consider three climate transition scenarios 

aligned with the narrative of main climate transition scenarios suggested by regulators and supervisory 

authorities , namely, disorderly transition, orderly transition, and hothouse world (no transition), 

featured in terms of relative changes in green, neutral, and brown asset prices arising from disrupted 

business models due to changes in the timing and speed of the adjustment towards a low-carbon 

economy. We then assess the systemic risk impact of those scenarios on financial firms in terms of the 

average return (climate transition expected returns), the minimum returns with some confidence level 

(climate transition value-at-risk), and the average return below that minimum threshold (climate 
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transition expected shortfalls), accounting for average and tail effects from transition scenarios for the 

value of financial firms. 

We apply our methodology to European financial firms (banks, insurance companies, financial 

services companies, and real estate firms) over the period 2013-2020. Our main findings are that the 

systemic impact of climate transition scenarios varies widely across financial institutions. Banks 

experience more systemic impacts in the disorderly transition scenario than in the hothouse world 

scenario, while the opposite occurs for the other financial firm types, but especially for real estate firms. 

We also find that the systemic impact of the different climate transition scenarios is widely divergent 

within financial firm types, yielding potential winners and losers. 

We also assess the implications of climate-related systemic risk in terms of capital shortfalls. For 

banks, capital shortfalls are negligible in the orderly transition scenario; however, in the disorderly 

transition and hothouse world scenarios, capital shortfalls are sizeable, although concentrated in a small 

number of entities and absorbable within the banking sector. For the remaining financial firms, we find 

that insurance firms experience small capital shortfalls in any climate transition risk scenario, whereas 

financial services and real estate firms experience modest capital losses in a hothouse world scenario, 

and negligible capital losses in the remaining scenarios. 

The implications of this study go beyond risk management, as it provides a useful methodology 

for generating stress test scenarios for climate risk. Regulatory and supervisory authorities might also 

find in this study a flexible tool for evaluating the performance of financial firms under different distress 

scenarios coherent with the transition to a low-carbon economy, taking into account financial fears in 

the market through nonlinearities and tail dependencies.  
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Figure 1. Systemic climate transition risk metrics: 𝐶𝑇𝐸𝑅𝑖, 𝐶𝑉𝑎𝑅𝑖
𝛾
, and 𝐶𝑇𝐸𝑆𝑖

𝛾
. 
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Figure 2. Dependence structure between market and financial firm returns. 
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Figure 3. Cumulative returns for different asset classes and financial institutions. 
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Figure 4. Exposure of financial firms to green, neutral, and brown asset returns. 

Panel A. Distribution of beta values for green, neutral, and brown asset returns. 

Banks Insurance companies Financial services Real estate 

    

Panel B. Distribution of average return impacts under different climate transition scenarios. 
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Figure 5. Systemic risk of climate transition scenarios for different financial firm types. 
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Panel B. CTVaR 
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Panel C. CTES 
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Figure 6. Systemic risk of climate transition scenarios by country. 
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Figure 7. Capital shortfall from climate transition scenarios for financial institution types. 
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Figure 7. (cont.) 
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Table 1. Systemic climate transition risk metrics under different climate transition scenarios. 

A. 𝐶𝑇𝐸𝑅𝑖 

Hothouse world ∫ 𝑟𝑖

𝑓 (𝑟𝑖 ,  𝑟𝑔 ≤ 𝑞𝑔
𝛽

, 𝑟𝑏 ≥ 𝑞𝑏
𝛼; 𝑟𝑛)

𝑃 ( 𝑟𝑔 ≤ 𝑞𝑔
𝛽

, 𝑟𝑏 ≥ 𝑞𝑏
𝛼; 𝑟𝑛)

 𝑑𝑟𝑖

∞

−∞

 

Disorderly transition ∫ 𝑟𝑖

𝑓 (𝑟𝑖 ,  𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

𝑃 ( 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

 𝑑𝑟𝑖

∞

−∞

 

Orderly transition ∫ 𝑟𝑖

𝑓(𝑟𝑖 ,  𝑞𝑏
𝐿 ≤ 𝑟𝑏 ≤ 𝑞𝑏

𝑈 , 𝑞𝑔
𝐿 ≤ 𝑟𝑔 ≤ 𝑞𝑔

𝑈 , 𝑞𝑛
𝐿 ≤ 𝑟𝑛 ≤ 𝑞𝑛

𝑈)

𝑃( 𝑞𝑏
𝐿 ≤ 𝑟𝑏 ≤ 𝑞𝑏

𝑈 , 𝑞𝑔
𝐿 ≤ 𝑟𝑔 ≤ 𝑞𝑔

𝑈 , 𝑞𝑛
𝐿 ≤ 𝑟𝑛 ≤ 𝑞𝑛

𝑈 , 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅
𝑖
𝛾

)
 𝑑𝑟𝑖

∞

−∞

 

B. 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 

Hothouse world 𝐹
𝑖|𝑟𝑔≤𝑞𝑔

𝛽
,𝑟𝑏 ≥𝑞𝑏

𝛼;𝑟𝑛

−1 (𝛾) 

Disorderly transition 𝐹
𝑖|𝑟𝑔≥𝑞𝑔

𝛽
,𝑟𝑏 ≤𝑞𝑏

𝛼;𝑟𝑛

−1 (𝛾) 

Orderly transition 𝐹
𝑖| 𝑞𝑏

𝐿≤𝑟𝑏 ≤𝑞𝑏
𝑈,𝑞𝑔

𝐿≤𝑟𝑔≤𝑞𝑔
𝑈,𝑞𝑛

𝐿≤𝑟𝑛≤𝑞𝑛
𝑈

−1  (𝛾) 

C. 𝐶𝑇𝐸𝑆𝑖 

Hothouse world ∫ 𝑟𝑖

𝑓 (𝑟𝑖,  𝑟𝑔 ≤ 𝑞𝑔
𝛽

, 𝑟𝑏 ≥ 𝑞𝑏
𝛼; 𝑟𝑛)

𝑃 ( 𝑟𝑔 ≤ 𝑞𝑔
𝛽

, 𝑟𝑏 ≥ 𝑞𝑏
𝛼, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅

𝑖
𝛾

; 𝑟𝑛)
 𝑑𝑟𝑖

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

 

Disorderly transition ∫ 𝑟𝑖  
𝑓 (𝑟𝑖 ,  𝑟𝑔 ≥ 𝑞𝑔

𝛽
, 𝑟𝑏 ≤ 𝑞𝑏

𝛼; 𝑟𝑛)

𝑃 ( 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛)

 𝑑𝑟𝑖

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

 

Orderly transition ∫  𝑟𝑖

𝑓(𝑟𝑖 ,  𝑞𝑏
𝐿 ≤ 𝑟𝑏 ≤ 𝑞𝑏

𝑈 , 𝑞𝑔
𝐿 ≤ 𝑟𝑔 ≤ 𝑞𝑔

𝑈 , 𝑞𝑛
𝐿 ≤ 𝑟𝑛 ≤ 𝑞𝑛

𝑈)

𝑃( 𝑞𝑏
𝐿 ≤ 𝑟𝑏 ≤ 𝑞𝑏

𝑈 , 𝑞𝑔
𝐿 ≤ 𝑟𝑔 ≤ 𝑞𝑔

𝑈 , 𝑞𝑛
𝐿 ≤ 𝑟𝑛 ≤ 𝑞𝑛

𝑈 , 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)
 𝑑𝑟𝑖

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

 

Notes. The semicolon in the density function 𝑓(·; 𝑟𝑛 ) and the probability of the climate scenario 𝑃(·; 𝑟𝑛) indicate that 

density or probability is defined taking into account possible interactions between the variables that could take place 

indirectly through the neutral asset (𝑟𝑛). 

 



42 
 

Table 2. Bivariate copula models.  

Name Copula specification Parameter Tail dependence 

Independent 𝑢1𝑢2 — — 

Gaussian Φ(Φ−1(𝑢1), Φ−1(𝑢2); ρ) 𝜌 No tail dependence: U L
0 =  =  

Student t Tη(Tη
−1(𝑢1), Tη

−1(𝑢2); η, ρ) 𝜌, η Symmetric tail dependence: 𝜆𝐿 = 𝜆𝑈 =

2tη+1(−√(η + 1)(1 − ρ) (1 + ρ)⁄ ) 

Clayton (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)
−

1
𝜃 𝜃 𝜆𝐿 = 2

−
1
𝜃 ,  𝜆𝑈 = 0 

Gumbel exp (− ((−log(𝑢1))
𝜃

+ (−log(𝑢2))
𝜃

) 
1
𝜃) 𝜃 𝜆𝐿 = 0,  𝜆𝑈 = 2 − 2

1
θ 

BB1 
(1 + ((𝑢1

−𝜃 − 1)
𝛿

+ (𝑢2
−𝜃 − 1)

𝛿
)

1
𝛿

)

−
1
𝜃

 𝜃, 𝛿 𝜆𝐿 = 2
−

1
𝜃𝛿 ,  𝜆𝑈 = 2 − 2

1
𝛿 

Notes. 𝜆𝑈  (𝜆𝐿). denotes upper (lower) tail dependence. Time-varying dependence is assumed by allowing parameters to change over time, with dynamics given by an 

ARMA(1,q)-type process (Patton, 2006) for the linear dependence parameter of the Gaussian and student-t copulas, given by 𝜌𝑡 = Λ1 (𝜓0 + 𝜓1𝜌𝑡−1 +

𝜓2
1

𝑞
∑ Φ−1(𝑢𝑡−𝑗)Φ−1(𝑣𝑡−𝑗)𝑞

𝑗=1  ), where Λ1(𝑥) =
1−exp (−𝑥)

1+exp (−𝑥)
 is the modified logistic transformation that keeps the value of 𝜌𝑡 in (-1,1), and where Φ−1(𝑥) is the 

standard normal quantile function (Φ−1(𝑥) is replaced by Tη
−1(x) for the student-t copula). For the parameters of the Clayton, Gumbel, and BB1 copulas, we assume 

that dynamics is given by  𝜃𝑡 = Λ2 (�̅�𝜃 + �̅�𝜃 𝜃𝑡−1 + �̅�𝜃
1

𝑞
∑ |𝑢𝑡−𝑗 − 𝑣𝑡−𝑗|𝑞

𝑗=1  ) (in the same way for 𝛿 in the BB1 copula), where — as in Patton (2006) — q is set to 

26 and Λ2(𝑥) =
100

1+exp (−𝑥)
 for the Clayton copula, Λ2(𝑥) = 1 +

99

1+exp(−𝑥)
 for the Gumbel copula, and Λ2(𝑥) =

1

1+exp(−𝑥)
 for the BB1 copula. We also use 90º rotated 

copulas for the Clayton, Gumbel, and BB1 to allow for negative dependence. The 90º rotated copula is expressed as 𝐶90(𝑢1 , 𝑢2) = 𝑢2 − 𝐶( 1 − 𝑢1 , 𝑢2) where 𝐶(·,·) 

is the corresponding standard copula. 
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Table 3. Summary statistics for returns for different asset classes and financial firms. 

 Market assets  Financial firms 

 

Green Neutral Brown 

 

Banks 

Insurance 

companies 

Financial 

services Real estate 

Return 0.19% 0.12% 0.01%  -0.07% 0.08% 0.12% 0.08% 

Volatility 2.34% 2.51% 3.09%  5.19% 3.81% 4.17% 4.08% 

Skewness -1.821 -2.025 -1.544  -0.613 -0.620 -0.773 -0.650 

Kurtosis 16.393 20.259 17.005  11.299 12.789 12.706 18.605 

Max. downturn -19.27% -22.27% -26.00%  -32.46% -24.49% -26.86% -28.86% 

Max. upturn 10.33% 11.02% 12.73%  23.83% 18.56% 19.44% 22.28% 

1st quartile -0.83% -0.90% -1.45%  -2.69% -1.69% -1.86% -1.69% 

3rd quartile 1.39% 1.36% 1.59%  2.73% 2.05% 2.31% 2.01% 

10% (left) VaR -2.81% -3.09% -3.94%  -6.72% -4.80% -5.22% -5.14% 

10% (left) ES -3.92% -4.28% -5.41%  -9.18% -6.60% -7.20% -7.07% 

10% (right) VaR 3.19% 3.33% 3.97%  6.59% 4.96% 5.47% 5.30% 

10% (right) ES 4.30% 4.51% 5.43%  9.04% 6.76% 7.45% 7.23% 

Notes. This table presents summary statistics for weekly returns in euros for green, neutral, and brown assets and 

for European financial firms over the sample period January 2013 to December 2020. For each asset category, we 

report the average returns, volatility, skewness, kurtosis, maximum downturn and upturn, 10% value-at-risk (VaR), 

and expected shortfall (ES) for the left and right sides of the return distribution. 
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Table 4. Maximum likelihood parameter estimates of marginal models for different asset classes 

and financial firms. 

 Market assets  Financial firms 

 
Green Neutral Brown  Banks 

Insurance 

companies 

Financial 

services Real Estate 

Mean         

𝜙0 0.002* 0.000 -0.001  -0.001 0.001 0.001 0.001 

(0.00) (0.01) (0.00)      

𝜙1  -0.411   0.045 -0.023 -0.054 -0.064 

 (0.92)       

𝜑1  0.111*   -0.085 0.091 -0.102 -0.093 

 (0.03)       

Volatility dynamics        
𝜔 0.000* 0.000* 0.000*  0.000 0.000 0.000 0.000  

(0.00) (0.07) (0.00)      

α1 0.086* 0.012* 0.013*  0.107 0.085 0.089 0.149  
(0.07) (0.01) (0.09)      

β1 0.656* 0.697* 0.795*  0.724 0.668 0.664 0.636 

 (0.32) (0.20) (0.40)      

𝛿1  0.241* 0.229* 0.190*  0.038 0.067 0.052 0.043 

 (0.08) (0.11) (0.13)      

Skewed-t distribution        

𝜆 -0.407* -0.399* -0.315*  -0.091 -0.123 -0.104 -0.064 

 (0.05) (0.05) (0.06)      

𝜗 5.692* 5.607* 7.148*  10.067 6.201 5.356 5.739  
(1.28) (3.23) (2.12)      

Goodness-of-fit        

LogLik -1078.41 -1047.99 -968.76  -713.51 -816.15 -848.26 -854.06 

LJ [0.67] [0.98] [0.71]  [0.65] [0.61] [0.60] [0.62] 

LJ2 [0.78] [0.97] [0.52]  [0.47] [0.58] [0.47] [0.47] 

ARCH-LM [0.98] [0.99] [0.97]  [0.57] [0.67] [0.65] [0.69] 

K-S [0.84] [0.78] [0.89]  [0.89] [0.88] [0.90] [0.88] 

Notes. This table presents parameter estimates of the marginal models for market assets (categorized as green, 

neutral, and brown) and for European financial firms (banks, insurance companies, financial services, and real estate) 

as per Eqs. (14)-(15). For markets assets, the z-statistic for the parameter estimates is reported in brackets. Parameter 

estimates for financial firms are the average of the parameter estimates for each financial firm. For asset markets, an 

asterisk denotes statistical significance at the 5% level. LogLik, LJ, and LJ2 denote the log-likelihood value of the 

marginal model, Ljung-Box statistics for serial correlation in the model residuals and in the squared model residuals, 

respectively, are computed with 20 lags. ARCH effects in the residuals are tested up to the 20th order using Engle’s 

Lagrange multiplier (ARCH-LM) test. KS denotes the Kolmogorov-Smirnov statistic for the null hypothesis of 

correct model specification (p values in square brackets). For financial institutions, goodness-of-fit information is 

the average of that information from all marginal models.  
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Table 5. Parameter estimates of bivariate copula models for green, neutral, and brown market assets. 

 Copula model Parameter estimates AIC 

𝐶𝑔𝑛(𝑢𝑔, 𝑢𝑛) BB1 𝜃 = 1.986∗ (0.21) 

𝛿 = 1.885∗ (0.12) 

-794.82 

𝐶𝑏𝑛(𝑢𝑏, 𝑢𝑛) BB1 �̅�𝜃 = 2.554 (3.58) 

�̅�𝜃 = −9.695 (18.38) 
�̅�𝜃 = 0.294 (0.71) 

�̅�𝛿 = −2.214∗ (0.18) 

�̅�𝛿 = 1.029 (2.29) 

�̅�𝛿 = 4.232∗ (0.22) 

-741.48 

𝐶𝑔𝑏|𝑛(𝑢𝑔|𝑢𝑛, 𝑢𝑏|𝑢𝑛) Independent — 0 

Notes. This table presents parameter estimates of the best copula fit for the copula models in Table 1 for 

pairings of green, neutral, and brown returns as represented in the upper panel of Figure 2. Standard errors 

were computed through simulation. An asterisk indicates significance of the parameter at the 1% level. The 

minimum AIC value adjusted for small-sample bias is reported in the last column. 

 

 

Table 6. Summary of the bivariate copula models for financial firms. 

 Copula model % institutions Summary of parameter estimates 

𝐶𝑔𝑖|𝑛(𝑢𝑔|𝑢𝑛, 𝑢𝑖) Gaussian 35.8 𝜌 = 0.13 [0.10, 0.18] 

 Student-t 2.6 𝜌 = 0.16 [0.08, 0.24] 
�̂� = 26.33 [9.95, 50.93] 

 Clayton 33.7 𝜃 = 0.46 [0.24, 0.68] 
 90-Clayton 0.5 𝜃 = 0.64 [0.64, 0.64] 
 Gumbel 4.7 𝜃 = 1.11 [1.04,1.18] 
 90-Gumbel 0.5 𝜃 = 1.16 [1.16,1.16] 
 Independent 22.2 — 

𝐶𝑏𝑖|𝑛(𝑢𝑏|𝑢𝑛, 𝑢𝑖) Gaussian 39.5 𝜌 = 0.09 [0.01, 0.18] 

 Student-t 0.5 𝜌 = 0.06 [0.06, 0.06] 
�̂� = 8.03 [8.03, 8.03] 

 Clayton 5.3 𝜃 = 0.33 [0.08, 0.61] 
 90-Clayton 8.4 𝜃 = 0.27 [0.04, 0.40] 
 Gumbel 13.2 𝜃 = 1.16 [1.13, 1.20] 
 90-Gumbel 2.1 𝜃 = 1.15 [1.09,1.21] 
 Independent 31.1 — 

𝐶𝑔𝑏|𝑖𝑛(𝑢𝑔|𝑢𝑖 , 𝑢𝑛; 𝑢𝑏|𝑢𝑖, 𝑢𝑛) Gaussian 0.5 𝜌 = −0.02 [−0.02, −0.02] 

 Independent 99.5 — 

Notes. This table presents a summary of the bivariate copula parameter estimates for the best copula fit between 

financial firms and the market as represented in the lower (shaded) panel of Figure 2. The third column indicates the 

percentage of financial firms for which bivariate dependence indicated in the first column is given by the copula 

function indicated in the second column. The last column reports average copula parameter estimates for the 

corresponding copula model, with the numbers in square brackets indicating the interquartile range. 
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Table 7. Summary statistics for climate transition systemic risk measures. 

 Climate transition scenarios 

 Disorderly transition Hothouse world Orderly transition 

Panel A. Banks    

CTER -0.0081 (0.0030) -0.0081 (0.0155) -0.0012 (0.0006) 

CTVaR -0.0722 (0.0189) -0.0485 (0.0144) -0.0532 (0.0145) 

CTES -0.1003 (0.0268) -0.0792 (0.0232) -0.0806 (0.0216) 

Panel B. Insurance companies   

CTER 0.0013 (0.0019) -0.0132 (0.0121) 0.0013 (0.0010) 

CTVaR -0.0357 (0.0126) -0.0555 (0.0188) -0.0371 (0.0120) 

CTES -0.0609 (0.0210) -0.0873 (0.0306) -0.0589 (0.0192) 

Panel C. Financial services   

CTER 0.0053 (0.0039) -0.0265 (0.0130) 0.0012 (0.0016) 

CTVaR -0.0323 (0.0096) -0.0664 (0.0169) -0.0406 (0.0110) 

CTES -0.0596 (0.0176) -0.1058 (0.0261) -0.0645 (0.0173) 

Panel D. Real estate    

CTER 0.0221 (0.0103) -0.0232 (0.0111) 0.0012 (0.0016) 

CTVaR -0.0225 (0.0089) -0.0550 (0.0224) -0.0366 (0.0138) 

CTES -0.0460 (0.0166) -0.0851 (0.0334) -0.0575 (0.0211) 

Notes. This table presents mean and standard deviation values (in parenthesis) for the three climate 

transition systemic risk measures, CTER, CTVaR, and CTES, computed weekly over the sample period 

2013-2020 for the entire sample and for different categories of financial firms under three different 

climate transition scenarios. 
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Table 8. Average values for climate transition systemic risk for individual institutions. 

 Climate transition scenarios 

 Disorderly transition Hothouse world Orderly transition 

 𝐶𝑇𝐸𝑅 𝐶𝑇𝑉𝑎𝑅 𝐶𝑇𝐸𝑆 𝐶𝑇𝐸𝑅 𝐶𝑇𝑉𝑎𝑅 𝐶𝑇𝐸𝑆 𝐶𝑇𝐸𝑅 𝐶𝑇𝑉𝑎𝑅 𝐶𝑇𝐸𝑆 

Panel A. Banks          
HSBC 0.0107 -0.0173 -0.0401 -0.0739 -0.1684 -0.2053 0.0001 -0.0288 -0.0388 
BNP Paribas 0.0161 -0.0226 -0.0538 -0.0916 -0.2099 -0.2488 0.0023 -0.0379 -0.0519 
Santander -0.018 -0.0784 -0.1106 0.0458 -0.033 -0.0637 -0.0038 -0.0589 -0.0902 
Intesa Sanpaolo -0.0013 -0.0604 -0.0914 0.0132 -0.0604 -0.0934 -0.0029 -0.0611 -0.0918 

Panel B. Insurance         
Alliance -0.0037 -0.0404 -0.0659 -0.0157 -0.0827 -0.1516 0.0029 -0.0338 -0.0549 
Chubb 0.0071 -0.023 -0.0408 -0.0273 -0.0819 -0.1207 0.0032 -0.0285 -0.0436 

Zurich 0.0001 -0.0343 -0.0571 0.0174 -0.032 -0.057 0.0000 -0.0331 -0.0552 
Axa -0.0036 -0.0468 -0.072 -0.0026 -0.1122 -0.1696 0.0001 -0.0433 -0.0645 

Panel C. Financial services         
UBS Group -0.0059 -0.0492 -0.077 -0.0204 -0.0942 -0.1612 0.0002 -0.0437 -0.0676 
London Stock 0.0297 -0.0111 -0.0399 -0.026 -0.0802 -0.1309 0.0033 -0.0389 -0.0673 
Deutsche Böerse 0.0188 -0.0168 -0.0399 -0.0161 -0.0601 -0.0899 0.002 -0.0353 -0.0566 
Credit Suisse 0.012 -0.0344 -0.0669 -0.087 -0.1939 -0.2429 0.0009 -0.0502 -0.0724 

Panel D. Real estate         
Deutsche Wohnen 0.0205 -0.0156 -0.0389 -0.0466 -0.1197 -0.1589 0.0043 -0.0328 -0.0508 
Segro 0.0392 -0.0119 -0.0322 -0.0119 -0.0501 -0.0696 0.0012 -0.0341 -0.051 
Gecina 0.012 -0.0235 -0.0436 -0.0109 -0.05 -0.0722 0.001 -0.0343 -0.0521 
LEG Immobilien 0.0207 -0.0128 -0.0312 -0.0154 -0.0515 -0.0721 0.0027 -0.0299 -0.0455 

Notes. This table presents average values for three climate transition systemic risk measures, CTER, CTVaR, and CTES, computed weekly over the 2013-2020 period 

for the four largest individual firms within each category, considering three different climate transition scenarios.  
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Table 9. Average capital shortfall impact of climate transition scenarios on individual firms. 

 Climate transition scenarios 

Disorderly transition Hothouse world Orderly transition 

 CTRISK Market Cap.  CTRISK Market Cap.  CTRISK Market Cap. 

Panel A. Banks         
UniCredit S 8249 27877 Credit Agricole 19274 29675 Commerzbank 1277 10399 

Commerzbank 6072 10399 HSBC 13071 142005 Natixis 778 14932 
RBS 3519 35177 BNP Paribas 7772 62636 UniCredit S. 745 27877 
Santander 2289 70038 Svenska H. AB 525 21385 Unione Banche I.. 687 4053 

Panel B. Insurance        
Swiss Life H. AG 48 8773 Aviva PLC 421 19562 CNP Assurances 3 10818 
CNP Assurances 45 10818 Phoenix Group H. 119 3593 Beazley PLC 1 2543 
Jardine Lloyd TG 6 3375 Legal General G. 93 17019 Zurich Insurance 0 38941 
Beazley PLC 0 2543 Prudential PLC 39 44925 Willis Towers W. 0 13929 

Panel C. Financial services        
Deutsche Bank AG 6141 26307 Credit Suisse 11477 31120 Deutsche Bank AG 334 26307 
Mediobanca 332 6719 UBS Group AG 816 52165 Mediobanca 128 6719 
Grenke AG 6 2565 Mediobanca 458 6719 Aker ASA 0 2558 
Axactor AB 4 182 Investec PLC 445 5513 Schroders PLC 0 9149 

Panel D. Real estate        
Intu Properties 18 3452 Fastighets Balder 205 3473 Fabege AB 6 2796 

Fabege AB 4 2796 Swiss Prime 155 5164 Intu Properties 4 3452 
CPI Property 2 3904 Immofinanz AG 146 2538 I. Colonial 3 2784 
Grand City P. 1 2464 Klovern AB 111 1383 Grand City P. 2 2464 

Notes. This table presents mean values (in millions of euros) for capital shortfall as given by the CTRISK for the four most impacted firms in each group under the three climate 

transition scenarios. Market Cap. denotes average market capitalization over the sample period 2013-2020. 
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Appendix 

A. Proof of Result 1 

Proof of Eq. (1). We can express the joint probability 𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≥ 𝑞𝑔

𝛽
; 𝑟𝑛) from integration of 

the neutral asset as: 

𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≥ 𝑞𝑔

𝛽
; 𝑟𝑛) = ∫ (𝑃(𝑟𝑏 ≤ 𝑞𝑏

𝛼|𝑟𝑛) − 𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
|𝑟𝑛)) 𝑓(𝑟𝑛)𝑑𝑟𝑛,

+∞

−∞

 

where the conditional probabilities can be written using copulas as 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝛼|𝑟𝑛) = 𝐶𝑏|𝑛(𝛼|𝑢𝑛) and 

𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
|𝑟𝑛) = 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝛼|𝑢𝑛), 𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)), where 𝑃 (𝑟𝑔 ≤ 𝑞𝑔

𝛽
|𝑟𝑛) =

𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛) as 𝑃 (𝑟𝑔 ≤  𝑞𝑔
𝛽

) = 1 − 𝛽. Given that that 𝑢𝑛 = 𝐹𝑛(𝑟𝑛), 𝑑𝑢𝑛 = 𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛, it follows 

that the joint probability in term of copulas is: 

𝑃(𝑟𝑏 ≤ 𝑞𝑏, 𝑟𝑔 ≥ 𝑞𝑔; 𝑟𝑛) = ∫ {𝐶𝑏|𝑛(𝛼|𝑢𝑛) − 𝐶𝑏,𝑔|𝑛 (𝐶𝑏|𝑛(𝛼|𝑢𝑛), 𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛))} 𝑑𝑢𝑛

1

0

 

 

Proof of Eq. (2). We compute 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿) for a range of quantiles 

around the median, such that 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿) = 𝛼, 𝑃(𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥ 𝑞𝑔

𝐿) = 𝛽 and 𝑃(𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿) =

𝛿. Hence, 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝑈) = 0.5 +

𝛼

2
, 𝑃(𝑟𝑏 ≤ 𝑞𝑏

𝐿) = 0.5 −
𝛼

2
, 𝑃(𝑟𝑔 ≤ 𝑞𝑔

𝑈) = 0.5 +
𝛽

2
, 𝑃(𝑟𝑔 ≤ 𝑞𝑔

𝐿) =

0.5 −
𝛽

2
, 𝑃(𝑟𝑛 ≤ 𝑞𝑛

𝑈) = 0.5 +
𝛿

2
 , and 𝑃(𝑟𝑛 ≤ 𝑞𝑛

𝐿) = 0.5 −
𝛿

2
.  

We can express the joint probability from integration of the neutral asset in the range of quantiles 

around its median as: 

𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛)𝑓(𝑟𝑛)𝑑𝑟𝑛

𝑞𝑛
𝑈

𝑞𝑛
𝐿

, 

where the joint conditional probability 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 |𝑟𝑛) can be decomposed as: 

𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 |𝑟𝑛)

= 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝑈 , 𝑟𝑔 ≤ 𝑞𝑔

𝑈| 𝑟𝑛) − 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝐿 , 𝑟𝑔 ≤ 𝑞𝑔

𝐿| 𝑟𝑛)

− 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑟𝑔 ≤  𝑞𝑔
𝐿|𝑟𝑛) − 𝑃(𝑟𝑏 ≤ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛). 

The following figure represents the unit square for the joint distribution between conditional green and 

brown returns, illustrating the decomposition of the joint probability. The joint conditional probability 

we are looking for, 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛), is given by box 1, with this box  size 

decomposed as the total size of boxes 1, 2, 3, and 4 (𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝑈 , 𝑟𝑔 ≤ 𝑞𝑔

𝑈| 𝑟𝑛)) minus the size of boxes 

2 (𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝐿 , 𝑞𝑔

𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔
𝐿|𝑟𝑛)), 3 (𝑃(𝑟𝑏 ≤ 𝑞𝑏

𝐿 , 𝑟𝑔 ≤ 𝑞𝑔
𝐿| 𝑟𝑛)), and 4 (𝑃(𝑞𝑏

𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏
𝐿 , 𝑟𝑔 ≤  𝑞𝑔

𝐿|𝑟𝑛)). 
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Each of those four probabilities can be obtained from conditional copulas as: 

a) 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝑈 , 𝑟𝑔 ≤ 𝑞𝑔

𝑈| 𝑟𝑛) = 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛 (0.5 +
𝛼

2
|𝑢𝑛) , 𝐶𝑔|𝑛 (0.5 +

𝛽

2
|𝑢𝑛)) 

b) 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝐿 , 𝑟𝑔 ≤ 𝑞𝑔

𝐿| 𝑟𝑛) = 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛 (0.5 −
𝛼

2
|𝑢𝑛) , 𝐶𝑔|𝑛 (0.5 −

𝛽

2
|𝑢𝑛)) 

c) 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑟𝑔 ≤  𝑞𝑔
𝐿|𝑟𝑛) = 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛 (0.5 +

𝛼

2
|𝑢𝑛) , 𝐶𝑔|𝑛 (0.5 −

𝛽

2
|𝑢𝑛)) −

𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛 (0.5 −
𝛼

2
|𝑢𝑛) , 𝐶𝑔|𝑛 (0.5 −

𝛽

2
|𝑢𝑛)) 

d) 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝐿 , 𝑞𝑔

𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔
𝐿|𝑟𝑛) = 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛 (0.5 −

𝛼

2
|𝑢𝑛) , 𝐶𝑔|𝑛 (0.5 +

𝛽

2
|𝑢𝑛)) −

𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛 (0.5 −
𝛼

2
|𝑢𝑛) , 𝐶𝑔|𝑛 (0.5 −

𝛽

2
|𝑢𝑛)) 

Hence, the joint conditional probability can be obtained from copulas as: 

𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛)

= 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑎|𝑢𝑛), 𝐶𝑔|𝑛(𝑏|𝑢𝑛)) + 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑑|𝑢𝑛), 𝐶𝑔|𝑛(𝑒|𝑢𝑛))

− 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑎|𝑢𝑛), 𝐶𝑔|𝑛(𝑒|𝑢𝑛)) − 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑑|𝑢𝑛), 𝐶𝑔|𝑛(𝑏|𝑢𝑛)), 

where 𝑎 = 0.5 +
𝛼

2
, 𝑏 = 0.5 +

𝛽

2
, 𝑑 = 0.5 −

𝛼

2
 and 𝑒 = 0.5 −

𝛽

2
. 

Plugging the joint conditional probability into the integral and taking into account that 𝑑𝑢𝑛 =

𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛, we can rewrite the joint probability in term of copulas as: 

0

12

3 4
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𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ {𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑎|𝑢𝑛), 𝐶𝑔|𝑛(𝑏|𝑢𝑛))
0.5+

𝛿
2

0.5−
𝛿
2

+ 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑑|𝑢𝑛), 𝐶𝑔|𝑛(𝑒|𝑢𝑛)) − 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑎|𝑢𝑛), 𝐶𝑔|𝑛(𝑒|𝑢𝑛))

− 𝐶𝑏𝑔|𝑛 (𝐶𝑏|𝑛(𝑑|𝑢𝑛), 𝐶𝑔|𝑛(𝑏|𝑢𝑛))} 𝑑𝑢𝑛. 

B. Proof of Result 2 

Proof of Eq. (3). The joint density between returns for financial firm i and the disorderly transition 

scenario can be written as: 

𝑓 (𝑟𝑖, 𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≥ 𝑞𝑔

𝛽
; 𝑟𝑛) = ∫ 𝑓 (𝑟𝑖 , 𝑟𝑏 ≤ 𝑞𝑏

𝛼, 𝑟𝑔 ≥ 𝑞𝑔
𝛽

|𝑟𝑛) 𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛

∞

−∞

= ∫ 𝑓 ( 𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≥ 𝑞𝑔

𝛽
|𝑟𝑖 , 𝑟𝑛) 𝑓(𝑟𝑖|𝑟𝑛)𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛.

∞

−∞

 

Note that, consistent with the dependence structure in Figure 1, 𝑓(𝑟𝑖|𝑟𝑛) = 𝑓𝑖(𝑟𝑖). Moreover, 

𝑓 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≥ 𝑞𝑔

𝛽
|𝑟𝑖 , 𝑟𝑛) = 𝑃(𝑟𝑏 ≤ 𝑞𝑏

𝛼|𝑟𝑖 , 𝑟𝑛) − 𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
|𝑟𝑖 , 𝑟𝑛), where last two 

conditional probabilities can be written in terms of copulas as: 

𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝛼|𝑟𝑖 , 𝑟𝑛) = 𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), and 

𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
|𝑟𝑖 , 𝑟𝑛) = 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖)). 

Since 𝑢𝑛 = 𝐹𝑛(𝑟𝑛), 𝑑𝑢𝑛 = 𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛, the joint density can be expressed in terms of copulas as: 

𝑓 (𝑟𝑖 , 𝑟𝑏 ≤ 𝑞𝑏
𝛼, 𝑟𝑔 ≥ 𝑞𝑔

𝛽
; 𝑟𝑛) =

= ∫ (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖)
1

0

− 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖))) 𝑓𝑖 (𝐹𝑖
−1(𝑢𝑖)) 𝑑𝑢𝑛. 

Proof of Eq. (4). We can express the joint density 𝑓(𝑟𝑖 , 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿) 

as: 

𝑓(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿|𝑟𝑖)𝑓𝑖(𝑟𝑖), 

where, in turn, the first density of this last expression can be decomposed as: 

𝑓(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿|𝑟𝑖)

= ∫ 𝑓(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛, 𝑟𝑖)𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛.
𝑞𝑛

𝑈

𝑞𝑛
𝐿
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Hence, 

𝑓(𝑟𝑖 , 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ 𝑓(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛, 𝑟𝑖)𝑓𝑖(𝑟𝑖)𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛

𝑞𝑛
𝑈

𝑞𝑛
𝐿

. 

Since 𝑓(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛, 𝑟𝑖) = 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛, 𝑟𝑖), the joint 

conditional probability can be expressed in terms of copulas as: 

𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿|𝑟𝑛, 𝑟𝑖)

= 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖}))

+ 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖}))

− 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖}))

− 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖})). 

Using this last expression, and given that 𝑢𝑛 = 𝐹𝑛(𝑟𝑛), 𝑑𝑢𝑛 = 𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛, the joint density of the 

financial firm and the orderly transition scenario can be expressed as:  

𝑓(𝑟𝑖 , 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ {𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖}))
0.5+

𝛿
2

0.5−
𝛿
2

+ 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖}))

− 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖}))

− 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖}))} 𝑓𝑖 (𝐹𝑖
−1(𝑢𝑖)) 𝑑𝑢𝑛. 

C. Proof of Eq. (5) 

𝐶𝑇𝐸𝑅𝑖 = 𝐸 (𝑟𝑖  | 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) = ∫ 𝑟𝑖  

𝑓 (𝑟𝑖 ,  𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

𝑃 ( 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

 𝑑𝑟𝑖

∞

−∞

 

=
1

𝑃 ( 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

∫ 𝑟𝑖  
∞

−∞

∫ [𝐶𝑏|𝑖,𝑛 (𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝐹𝑖(𝑟𝑖))
1

0

− 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛 (𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝐹𝑖(𝑟𝑖)) , 𝐶𝑔|𝑖,𝑛 (𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝐹𝑖(𝑟𝑖)))] 𝑓𝑖(𝑟𝑖)𝑑𝑢𝑛𝑑𝑟𝑖. 

Since 𝑢𝑖 = 𝐹𝑖(𝑟𝑖), 𝑟𝑖 = 𝐹𝑖
−1(𝑢𝑖) and 𝑑𝑢𝑖 = 𝑓𝑖(𝑟𝑖)𝑑𝑟𝑖, we can write the previous expression as: 
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𝐸 (𝑟𝑖  | 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛)

=
1

∫ {𝐶𝑏|𝑛(𝛼|𝑢𝑛) − 𝐶𝑏,𝑔|𝑛 (𝐶𝑏|𝑛(𝛼|𝑢𝑛), 𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛))} 𝑑𝑢𝑛
1

0

∫ 𝐹𝑖
−1(𝑢𝑖) ∫  {𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖)

1

0

1

0

− 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖))} 𝑑𝑢𝑛𝑑𝑢𝑖 . 

D. Proof of Eq. (6) 

For an orderly climate transition scenario we have: 

𝐶𝑇𝐸𝑅𝑖 = 𝐸(𝑟𝑖  | 𝑞𝑏
𝐿 ≤ 𝑟𝑏 ≤ 𝑞𝑏

𝑈 , 𝑞𝑔
𝐿 ≤ 𝑟𝑔 ≤ 𝑞𝑔

𝑈 , 𝑞𝑛
𝐿 ≤ 𝑟𝑛 ≤ 𝑞𝑛

𝑈) =

=
1

𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)
∫ 𝑟𝑖  𝑓(𝑟𝑖 , 𝑞𝑏

𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏
𝐿 , 𝑞𝑔

𝑈
∞

−∞

≥ 𝑟𝑔 ≥  𝑞𝑔
𝐿 , 𝑞𝑛

𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛
𝐿) 𝑑𝑟𝑖, 

where 𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿) is given by Eq. (5). Plugging the value of the 

joint density 𝑓(𝑟𝑖 , 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿) as given by Eq. (7) into 𝐶𝑇𝐸𝑅𝑖, and 

taking into account that 𝑢𝑛 = 𝐹𝑛(𝑟𝑛), 𝑑𝑢𝑛 = 𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛 and 𝑢𝑖 = 𝐹𝑖(𝑟𝑖), 𝑑𝑢𝑖 = 𝑓𝑖(𝑟𝑖)𝑑𝑟𝑖, the expected 

shortfall for an orderly transition can be expressed in terms of copulas as: 

 𝐸(𝑟𝑖|𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

=
1

𝑃(𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)
∫ ∫ 𝐹𝑖

−1(𝑢𝑖)
0.5+

𝛿
2

0.5−
𝛿
2

 
1

0

 

{𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖}))

+ 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖}))

− 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖}))

− 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖}))} 𝑑𝑢𝑛𝑑𝑢𝑖 . 

 

 

 

E. Proof of Result 3 

Proof of Eq. (7). The joint probability 𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≥ 𝑞𝑔

𝛽
, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛) is given by the 

difference between 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝛼, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛) and 𝑃 (𝑟𝑏 ≤ 𝑞𝑏

𝛼 , 𝑟𝑔 ≤ 𝑞𝑔
𝛽

, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

; 𝑟𝑛). The 

first probability is defined as: 
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𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝛼, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛) = ∫ 𝑃(𝑟𝑏 ≤ 𝑞𝑏

𝛼 , 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

|𝑟𝑛 )𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛

∞

−∞

= ∫ 𝐶𝑏𝑖|𝑛 (𝐶𝑏|𝑛(𝛼|𝑢𝑛), 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)) 𝑑𝑢𝑛

1

0

= ∫ ∫ 𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖)𝑑𝑢𝑛𝑑𝑢𝑖

1

0

𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0

, 

where, in the second equality, 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

) = 𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

). Note that 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

) is different 

from 𝛾 as the unconditional distribution of i differs from the distribution of i conditional on a climate 

transition scenario, 𝑖. 𝑒. 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾
 is a quantile of that conditional distribution. The second probability 

can be obtained as: 

𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛)

= ∫ ∫ 𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
|𝑟𝑛, 𝑟𝑖) 𝑓(𝑟𝑖  |𝑟𝑛)𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛𝑑𝑟𝑖

∞

−∞

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

= ∫ ∫ 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖)) 𝑑𝑢𝑛𝑑𝑢𝑖

1

0

𝐹𝑖 (𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0

, 

where 𝑓(𝑟𝑖 |𝑟𝑛) = 𝑓𝑖(𝑟𝑖 ). From the copula representation of those two probabilities, we therefore have: 

𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛)    

=  ∫ ∫ {𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖)
1

0

𝐹𝑖 (𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0

− 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖))} 𝑑𝑢𝑛𝑑𝑢𝑖 . 

Proof of Eq. (8). Using the joint density 𝑓(𝑟𝑖, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿) in Result 

2, we can obtain the joint probability 𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿) 

as: 

𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ 𝑓(𝑟𝑖, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿) 𝑑𝑟𝑖

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

. 

In terms of copulas, this is: 
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𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ {∫ {𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖}))
0.5+

𝛿
2

0.5−
𝛿
2

𝐹𝑖 (𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0

+ 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖}))

− 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑎|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑒|{𝑢𝑛, 𝑢𝑖}))

− 𝐶𝑏𝑔|𝑛,𝑖 (𝐶𝑏|𝑛,𝑖(𝑑|{𝑢𝑛, 𝑢𝑖}), 𝐶𝑔|𝑛,𝑖(𝑏|{𝑢𝑛, 𝑢𝑖}))} 𝑑𝑢𝑛} 𝑑𝑢𝑖 . 

F. Proof of Result 4 

Using Result 2 and taking into account that 𝑟𝑖 ≤ 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

), it follows that: 

𝑓 (𝑟𝑖 ≤ 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

),  𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) = ∫ 𝑓 (𝑟𝑖,  𝑟𝑔 ≥ 𝑞𝑔

𝛽
, 𝑟𝑏 ≤ 𝑞𝑏

𝛼; 𝑟𝑛) 𝑑𝑟𝑖,
𝐶𝑇𝑉𝑎𝑅𝑖

𝛾

−∞

 

and that: 

𝑓(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ 𝑓(𝑟𝑖, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)𝑑𝑟𝑖,
𝐶𝑇𝑉𝑎𝑅𝑖

𝛾

−∞

 

where 𝑓 (𝑟𝑖 ,  𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) and 𝑓(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
, 𝑞𝑏

𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏
𝐿 , 𝑞𝑔

𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔
𝐿 , 𝑞𝑛

𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛
𝐿) 

are given by Result 2. 

G. Proof of Eq. (11) 

𝑃 (𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

|𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) is given by copulas as the ratio between 𝑃 (𝑟𝑖 ≤

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) and the conditioning probability 𝑃 (𝑟𝑔 ≥ 𝑞𝑔

𝛽
, 𝑟𝑏 ≤ 𝑞𝑏

𝛼; 𝑟𝑛), which can 

be expressed in terms of copulas as shown in the proofs of Results 1 and 3. Thus, 

𝑃 (𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

|𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) can be written as: 

∫ ∫ {𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖) − 𝐶𝑏,𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖))}
1

0

𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0
𝑑𝑢𝑛𝑑𝑢𝑖

∫ {𝐶𝑏|𝑛(𝛼|𝑢𝑛) − 𝐶𝑏,𝑔|𝑛 (𝐶𝑏|𝑛(𝛼|𝑢𝑛), 𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛))} 𝑑𝑢𝑛
1

0

. 

The value of this ratio is a function of 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

). We denote the ratio as a function 

𝐺 (𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)). Since 𝐺 (𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)) = 𝛾, then 𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

) = 𝐺−1(𝛾). Hence, 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

=

𝐹𝑖
−1(𝐺−1(𝛾)). 
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H. Proof of Eq. (12) 

In a disorderly transition, 𝐶𝑇𝐸𝑆𝑖
𝛾
 is given by: 

 𝐸 (𝑟𝑖|𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼, 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾
; 𝑟𝑛) = 

=
1

𝑃 (𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅

𝑖
𝛾

; 𝑟𝑛)
∫ 𝑟𝑖 𝑓 (𝑟𝑖 , 𝑟𝑔 ≥ 𝑞𝑔

𝛽
, 𝑟𝑏 ≤ 𝑞𝑏

𝛼; 𝑟𝑛)  𝑑𝑟𝑖

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

. 

 

 

We can rewrite the joint density in the previous expression as: 

𝑓 (𝑟𝑖 , 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼; 𝑟𝑛) = ∫ 𝑓 (𝑟𝑖 , 𝑟𝑏 ≤ 𝑞𝑏

𝛼 , 𝑟𝑔 ≥ 𝑞𝑔
𝛽

|𝑟𝑛) 𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛

∞

−∞

= ∫ 𝑓 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≥ 𝑞𝑔

𝛽
|𝑟𝑖 , 𝑟𝑛) 𝑓(𝑟𝑖|𝑟𝑛)𝑓𝑛(𝑟𝑛)𝑑𝑟𝑛,

∞

−∞

 

where 𝑓(𝑟𝑖|𝑟𝑛) = 𝑓𝑖(𝑟𝑖) and 𝑓(𝑟𝑏 ≤ 𝑞𝑏, 𝑟𝑔 ≥ 𝑞𝑔|𝑟𝑖 , 𝑟𝑛) = 𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝛼|𝑟𝑖 , 𝑟𝑛) −

𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
|𝑟𝑖 , 𝑟𝑛). Those last two conditional probabilities can be written in terms of 

copulas as: 

𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝛼|𝑟𝑖 , 𝑟𝑛) = 𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 

𝑃 (𝑟𝑏 ≤ 𝑞𝑏
𝛼 , 𝑟𝑔 ≤ 𝑞𝑔

𝛽
|𝑟𝑖 , 𝑟𝑛) = 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖)). 

Now, plugging those results into ∫ 𝑟𝑖  𝑓 (𝑟𝑖, 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼, 𝑟𝑖; 𝑟𝑛) 𝑑𝑟𝑖

∞

−∞
, and taking into account 

that 𝑢𝑖 = 𝐹𝑖(𝑟𝑖), 𝑑𝑢𝑖 = 𝑓𝑖(𝑟𝑖)𝑑𝑟𝑖, we can write 

∫ 𝑟𝑖  𝑓 (𝑟𝑖 , 𝑟𝑔 ≥ 𝑞𝑔
𝛽

, 𝑟𝑏 ≤ 𝑞𝑏
𝛼, 𝑟𝑖; 𝑟𝑛) 𝑑𝑟𝑖

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

= ∫ ∫ 𝐹𝑖
−1(𝑢𝑖) {𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖)

1

0

𝐹𝑖(𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0

− 𝐶𝑏𝑔|𝑖,𝑛 (𝐶𝑏|𝑖,𝑛(𝐶𝑏|𝑛(𝛼|𝑢𝑛)|𝑢𝑖), 𝐶𝑔|𝑖,𝑛(𝐶𝑔|𝑛(1 − 𝛽|𝑢𝑛)|𝑢𝑖))} 𝑑𝑢𝑛𝑑𝑢𝑖 . 

I. Proof of Eq. (13) 

𝐸(𝑟𝑖|𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

=
1

𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)
∫ 𝑟𝑖  𝑓(𝑟𝑖, 𝑞𝑏

𝑈 ≥ 𝑟𝑏

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

−∞

≥ 𝑞𝑏
𝐿 , 𝑞𝑔

𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔
𝐿 , 𝑞𝑛

𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛
𝐿) 𝑑𝑟𝑖 . 

According to Result 2, we can rewrite the joint density in the previous expression as: 
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𝑓(𝑟𝑖 , 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

= ∫ 𝐶(𝑑 ≤ 𝑢𝑏 ≤ 𝑎, 𝑒 ≤ 𝑢𝑔 ≤ 𝑏|{𝑢𝑛, 𝑢𝑖})𝑓𝑖(𝐹𝑖
−1(𝑢𝑖)) 

0.5+
𝛿
2

0.5−
𝛿
2

𝑑𝑢𝑛 

Now, taking into account that 𝑢𝑖 = 𝐹𝑖(𝑟𝑖), 𝑑𝑢𝑖 = 𝑓𝑖(𝑟𝑖)𝑑𝑟𝑖, we have: 

𝐸(𝑟𝑖|𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)

=
1

𝑃(𝑟𝑖 ≤ 𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

, 𝑞𝑏
𝑈 ≥ 𝑟𝑏 ≥ 𝑞𝑏

𝐿 , 𝑞𝑔
𝑈 ≥ 𝑟𝑔 ≥  𝑞𝑔

𝐿 , 𝑞𝑛
𝑈 ≥ 𝑟𝑛 ≥ 𝑞𝑛

𝐿)
∫ ∫ 𝐹𝑖

−1(𝑢𝑖)𝐶(𝑑
0.5+

𝛿
2

0.5−
𝛿
2

𝐹𝑖 (𝐶𝑇𝑉𝑎𝑅𝑖
𝛾

)

0

≤ 𝑢𝑏 ≤ 𝑎, 𝑒 ≤ 𝑢𝑔 ≤ 𝑏|{𝑢𝑛, 𝑢𝑖})𝑑𝑢𝑛 𝑑𝑢𝑖 . 


