Do ESG investors care about carbon emissions? Evidence from securitized auto loans

Christian Kontz Stanford GSB

GRASFI Singapore

September 2, 2023

Does ESG investing raise the cost of emitting CO₂?

Does ESG investing raise the cost of emitting CO₂?

1. Measure influence of greenness (CO₂ vs. ESG) on cost of capital of auto ABS

Does ESG investing raise the cost of emitting CO₂?

- 1. Measure influence of greenness (CO₂ vs. ESG) on cost of capital of auto ABS
- 2. Measure pass-through of greenium to consumer rates and credit demand

Preview of Results

- High firm-level ESG scores lower the cost of capital of auto loan securitizations
 - Flows into ESG funds drive differences in cost of capital: $200m \rightarrow -3$ bps
 - ESG convenience yield quadrupled from 0.12% in 2017 to 0.46% in 2022
- Clean measurement of ESG convenience yields using safe assets

Preview of Results

- High firm-level ESG scores lower the cost of capital of auto loan securitizations
 - Flows into ESG funds drive differences in cost of capital: $200m \rightarrow -3$ bps
 - ESG convenience yield quadrupled from 0.12% in 2017 to 0.46% in 2022
- Clean measurement of ESG convenience yields using safe assets
- Consumers financing vehicles with captive lenders benefit from ESG convenience yield
 - Captive lenders pass-through approx. -27 bps to consumers
 - Change in loan demand of approx. \$900
- Measure pass-through to consumer rates and real effects of ESG investing

Preview of Results

- High firm-level ESG scores lower the cost of capital of auto loan securitizations
 - Flows into ESG funds drive differences in cost of capital: $200m \rightarrow -3$ bps
 - ESG convenience yield quadrupled from 0.12% in 2017 to 0.46% in 2022
- Clean measurement of ESG convenience yields using safe assets
- Consumers financing vehicles with captive lenders benefit from ESG convenience yield
 - Captive lenders pass-through approx. -27 bps to consumers
 - Change in loan demand of approx. \$900
- Measure pass-through to consumer rates and real effects of ESG investing
- Market's focus on issuer ESG scores lowers cost of capital for high-emissions vehicles
 - ESG funds invest more in high-emissions deals
 - Positive correlation of CO₂ and ESG leads to CO₂ subsidy
- Test assumption that green premium increases cost of CO₂ emissions

Data Sources

• Auto ABS with detailed loan-level information: new regulatory filings from SEC

- 281 auto ABS deals of 22 originators from 2017 to 2022
- 17.7m vehicle loans originated from 2010 to 2022

Deal Summary Statistics
 Loan Summary Statistics

Data Sources

• Auto ABS with detailed loan-level information: new regulatory filings from SEC

- 281 auto ABS deals of 22 originators from 2017 to 2022
- 17.7m vehicle loans originated from 2010 to 2022
- Vehicle emissions: Environmental Protection Agency
 - Vehicle emissions by make, model, year, engine
 - Survival weighted miles traveled by vehicle type (car, SUV, truck)

Data Sources

• Auto ABS with detailed loan-level information: new regulatory filings from SEC

- 281 auto ABS deals of 22 originators from 2017 to 2022
- 17.7m vehicle loans originated from 2010 to 2022
- Vehicle emissions: Environmental Protection Agency
 - Vehicle emissions by make, model, year, engine
 - Survival weighted miles traveled by vehicle type (car, SUV, truck)

• Firm-level ESG scores of issuers: Refinitiv, Sustainalytics, S&P

- ESG scores are *firm*-level not *security*-level
- Additional data on firm-level CO₂ emissions from TruCost

Large cross-sectional differences in CO₂ content across issuers

Calculation of carbon emissions

tCO2 per vehicle incl. production

▶ tCO2 per USD vehicle incl. production

Do Green assets have a lower cost of capital?

Simple asset pricing framework with green convenience yields

Euler equation with green convenience yield λ_t

$$\mathbb{E}_{t}\left[\boldsymbol{M}_{t+1}\boldsymbol{R}_{t+1}^{i}\right] = \exp\left(-\beta^{i}\lambda_{t}\right)$$

- Asset *i*'s greenness is $\beta^i \in [0, 1]$ where $\beta^{\text{Green}} > \beta^{\text{Brown}}$
- Use Campbell-Shiller approximation and log-normality to express yield as

Yield^{*i*} = $-\beta^i \lambda_t$ + risk premium – cash flow growth

· For green and brown asset with similar risk premium and cash flow growth

$$\mathsf{Yield}^{\mathsf{Green}} - \mathsf{Yield}^{\mathsf{Brown}} = -(\beta^{\mathsf{Green}} - \beta^{\mathsf{Brown}}) \lambda_t$$

Simple asset pricing framework with green convenience yields

• Euler equation with green convenience yield λ_t

$$\mathbb{E}_{t}\left[\boldsymbol{M}_{t+1}\boldsymbol{R}_{t+1}^{i}\right] = \exp\left(-\beta^{i}\lambda_{t}\right)$$

- Asset *i*'s greenness is $\beta^i \in [0, 1]$ where $\beta^{\text{Green}} > \beta^{\text{Brown}}$
- Use Campbell-Shiller approximation and log-normality to express yield as

Yield^{*i*} = $-\beta^i \lambda_t$ + risk premium – cash flow growth

· For green and brown asset with similar risk premium and cash flow growth

$$\mathsf{Yield}^{\mathsf{Green}} - \mathsf{Yield}^{\mathsf{Brown}} = -(\beta^{\mathsf{Green}} - \beta^{\mathsf{Brown}}) \lambda_t$$

• Identification in a nutshell: AAA-rated senior tranches + security design + prepayment

Detailed identification strategy

Test of identification strategy: neither CO₂ nor ESG predict prepayment or default

(in σ units)	Δ Realized to Assumed Prepayment			Realized % Delinquent Loans (30d+)				
Financed tCO2 per USD	0.073 (0.139)				0.025 (0.029)			
Financed tCO2 per Vehicle		-0.023 (0.133)				-0.030 (0.024)		
Refinitiv ESG Score			-0.031 (0.152)				0.077 (0.081)	
S&P ESG Score				0.044 (0.153)				0.127 (0.099)
Subprime FE Adj. R ² Observations	0.005 281	0.001 281	0.001 243	0.002 243	√ 0.899 281	√ 0.899 281	√ 0.902 243	√ 0.905 243

 $Prepayment_i/Default_i = \beta_0 + \beta_1 \times CO2_i/ESG_i + \varepsilon_i$

Issuance Spread = Green + Market Conditions

 $+ \varepsilon$

Issuance Spread = Green + Market Conditions

Issuance Spread = Green + Market Conditions

Issuance Spread = Green + Market Conditions + Security Design + Prepayment + ε

7/17

Issuance Spread = Green + Market Conditions + Security Design + Prepayment + ε

Issuance Spread = Green + Market Conditions + Security Design + Prepayment + ε

Pricing of CO₂ and ESG follow similar time trends

Spread = $CO2 \times Year + \ldots + \varepsilon$

Spread = **ESG** × Year + \ldots + ε

ESG scores win horse race over CO₂ in pricing ABS

	Dependent variable: Issuance Spread							
Financed tCO2 per Vehicle	-0.237** (0.072)				-0.113 (0.069)		-0.0842 (0.093)	
Financed tCO2 per USD		-0.204 ⁺ (0.116)				-0.0843 (0.111)		-0.146 (0.123)
S&P issuer ESG Score			-0.145** (0.048)		-0.118* (0.047)	-0.139** (0.047)		
Refinitiv issuer ESG Score				-0.341** (0.106)			-0.297* (0.128)	-0.350*** (0.101)
Year-month FE, daily market controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Prepayment speed FE, tranche controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ex-ante prepayment controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ex-post prepayment controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	276	276	235	235	235	235	235	235

+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001. Standard errors in parentheses are clustered at issuance year-month level. All variables in logs.

Spread = $CO2 + Issuer ESG + Market Conditions + Sec. Design + Prepayment + <math>\varepsilon$

Firm-level ESG scores positively correlate with CO₂ of auto ABS

	Refinitiv ESG score	S&P ESG score	Financed tCO2/Vehicle	Financed tCO2/USD	Avg. MPG	GHG Rating
Refinitiv ESG Rating	1.00					
S&P ESG Rating	0.85	1.00				
Fin. tCO2/Vehicle	0.50	0.41	1.00			
Fin. tCO2/USD	0.36	0.34	0.55	1.00		
Avg. MPG \times (-1)	0.32	0.25	0.83	0.42	1.00	
EPA GHG Rating $\times(-1)$	0.27	0.15	0.75	0.19	0.86	1.00

MPG and GHG Rating are multiplied by (-1) such that higher values are environmentally worse. N = 235

Firm-level CO2 emissions and ESG scores Under the hood of ESG scores

Flows into ESG funds drive differences in cost of capital

• Flow data from Van der Beck (2023)

Flows into ESG funds drive differences in cost of capital: $200bn \rightarrow -3 bps$

• Flow data from Van der Beck (2023)

	Dependent variable: Issuance Spread				
Average ESG Score	-0.241* (0.101)	-0.043 (0.130)			
ESG Flow (\$100bn) \times Average ESG Score	-0.050* (0.022)				
Cum. ESG Flow (\$100bn) \times Avg. ESG Score		-0.023* (0.009)			
Average Environmental Score			-0.260 (0.185)	-0.135 (0.191)	
ESG Flow (\$100bn) \times Avg. Env. Score			-0.077* (0.033)		
Cum. ESG Flow (\$100bn) × Avg. Env. Score				-0.034** (0.012)	
Year-month FE, daily market controls Prepayment speed FE, tranche controls Ex-ante prepayment controls Ex-post prepayment controls Adj. R ² Observations	√ √ √ 0.956 194	√ √ √ 0.956 194	√ √ √ 0.954 194	√ √ √ 0.955 194	

Spread = ESG × Flows into ESG Fund + . . . + ε

Lower cost of capital for brown auto ABS with high ESG is robust

Magnitudes: moving from 20th to 80th percentile

- ESG subsidy \approx 10 bps (0.31 sd)
- CO_2 subsidy $\,\approx\,$ 6 bps (0.20 sd)

Robustness:

Different samples and measures

- Other measures of Greenness
 Results
- Prime auto ABS only
 Results
- Other senior tranches
 Results

Different estimators

- Propensity score matching
 Results
- Double-Lasso estimator
 Results
- Leave-one-out estimates
 Results

Do ESG funds hold greener assets?

ESG funds do not discriminate between low and high CO₂ auto ABS

ESG funds focus on ESG scores instead of environmental impact

"When **evaluating securitized debt** securities, the Adviser generally considers the **issuer's ESG score** along with ESG factors related to the underlying pool of assets, such as energy efficiency and **environmental impact** of the **underlying assets**"

(in σ units)	Dependent var.: Portfolio Share				
ESG Fund=1 \times Financed tCO2 per vehicle					
ESG Fund=1 \times ESG score of issuer		0.157 ** (0.060)			
Fund FE, ABS Deal FE Issuer × Year-Quarter FE					
Adj. R ² Observations	0.821 10,111	0.821 10,111			

Standard errors in parentheses clustered at fund-level. * p<0.05, ** p<0.01, *** p<0.001.

Portfolio Share = ESG Fund × Green + Fund FE + ABS FE + Issuer × Quarter FE + ε

ESG funds focus on ESG scores instead of environmental impact

"When **evaluating securitized debt** securities, the Adviser generally considers the **issuer's ESG score** along with ESG factors related to the underlying pool of assets, such as energy efficiency and **environmental impact** of the **underlying assets**"

(in σ units)	Dependent var.: Portfolio Share			
ESG Fund=1 × Financed tCO2 per vehicle	0.154* (0.069)		0.107 (0.084)	
ESG Fund=1 \times ESG score of issuer		0.157** (0.060)	0.145** (0.059)	
Fund FE, ABS Deal FE Issuer \times Year-Quarter FE Adj. R ² Observations	√ √ 0.821 10,111	√ √ 0.821 10,111	√ √ 0.821 10,111	

Standard errors in parentheses clustered at fund-level. * p<0.05, ** p<0.01, *** p<0.001.

Portfolio Share = ESG Fund × Green + Fund FE + ABS FE + Issuer × Quarter FE + ε

ESG funds focus on ESG scores instead of environmental impact

"When **evaluating securitized debt** securities, the Adviser generally considers the **issuer's ESG score** along with ESG factors related to the underlying pool of assets, such as energy efficiency and **environmental impact** of the **underlying assets**"

(in σ units)	Dependent var.: Portfolio Share			
ESG Fund=1 \times Financed tCO2 per vehicle	0.154* (0.069)		0.107 (0.084)	
ESG Fund=1 \times ESG score of issuer		0.157** (0.060)	0.145** (0.059)	
Fund FE, ABS Deal FE Issuer \times Year-Quarter FE Adj. R ² Observations	√ √ 0.821 10,111	√ √ 0.821 10,111	√ √ 0.821 10,111	

Standard errors in parentheses clustered at fund-level. * p<0.05, ** p<0.01, *** p<0.001.

Portfolio Share = ESG Fund × Green + Fund FE + ABS FE + Issuer × Quarter FE + ε

Impact of ESG investing on consumer loan demand

Can ESG investing "move the needle" in financing clean vehicles?

Can ESG investing "move the needle" in financing clean vehicles?

Price Elasticity

Pass-thru Elasticity

 $\partial \log Loan \ demand$

 Δ Loan demand in USD

Can ESG investing "move the need	le" in fi	nancing	clean ve	hicles?	
$\partial \log \text{Loan demand} = \underbrace{\frac{\partial \log \text{Loan demand}}{\partial \log \text{Consumer rate}}}_{\text{Price Elasticity}}$	$\times \underbrace{\frac{\partial \log C}{\Delta A}}_{Pass}$	BS spread	$\underbrace{\frac{te}{2}}_{=} \times \underbrace{\Delta A}_{=}$	BS spread	
	pprox -36 bps				
Price Elasticity	-0.18 (Argyle et al. '20)		-0.: (Luka:	-0.34 (Lukas '17)	
Pass-thru Elasticity (captive lenders)	0.80	1.06	0.80	1.06	
$\partial \log$ Loan demand	2.1%	3.3%	2.72%	4.0%	
Δ Loan demand in USD	\$729	\$1,072	\$898	\$1,320	

Conclusion

Conclusion

- Higher issuer ESG lower the cost of capital of auto ABS
 - ESG captial flows drive results: $200bn \rightarrow -3bps$
 - ESG convenience yield quadrupled from 0.12% in 2017 to 0.46% in 2022
- Consumers benefit from ESG convenience yield
 - High pass-thru by captive auto lenders -27 bps
 - Implied change in loan demand of approx. \$900
- ESG scores do not capture large differences in CO₂
 - e.g., Ford ABS 2x CO₂ content of Honda ABS
 - ESG scores positively correlated with CO₂
- Focus on ESG scores of issuers leads to CO₂ subsidy
 - Brown auto ABS deals have lower cost of capital
 - ESG funds invest more in high-emissions deals

Conclusion

- Higher issuer ESG lower the cost of capital of auto ABS
 - ESG captial flows drive results: $200bn \rightarrow -3bps$
 - ESG convenience yield quadrupled from 0.12% in 2017 to 0.46% in 2022
- Consumers benefit from ESG convenience yield
 - High pass-thru by captive auto lenders -27 bps
 - Implied change in loan demand of approx. \$900
- ESG scores do not capture large differences in CO₂
 - e.g., Ford ABS 2x CO₂ content of Honda ABS
 - ESG scores positively correlated with CO2
- Focus on ESG scores of issuers leads to CO₂ subsidy
 - Brown auto ABS deals have lower cost of capital
 - ESG funds invest more in high-emissions deals

Ramp Capital @RampCapitalLLC

ESG investing in 2022

10:14 PM · Jul 9, 2022 · Twitter for iPhone

Appendix

Loan level data allows us to calculate CO₂ emissions of auto ABS

• We know make and model of car loan, *i*, in bond, *b*, and thus amount of CO₂ financed

 $\mathbb{E}_{t} [\text{Financed CO}_{2} \text{ Emissions}]_{b} = \sum_{i \in b} \text{CO}_{2} \text{ Emissions}_{i} \times \mathbb{E}_{t} [\text{Survival Weighted Miles}]_{i}$

 \times LTV_{0,*i*} \times Outstanding Balance Share_{*it*}

- e.g., new 2022 Toyota Camry Hybrid
 - 124 gCO₂/km \times 21000km/year \times 12 years \times 90% \times 90% \approx 25t of CO₂
- e.g., new 2022 Ford F-150 Truck
 - 295 gCO₂/km \times 25000km/year \times 15 years \times 90% \times 90% \approx 90t of CO₂

Summary statistics of A-2 tranches from 2017 to 2022 •••••

	Mean	SD	Median	Min	Max	Ν
Total Deal Size (\$ m)	1,234.93	344.47	1,250.00	367.31	2,663.82	281
Tranche Size	366.71	131.99	362.00	42.40	746.94	281
Weight. Avg. Life	0.98	0.32	1.01	0.37	3.50	281
Spread (bps)	41.68	29.10	32.29	6.13	194.22	281
Coupon (%)	1.91	1.30	1.86	0.14	5.81	281
Subprime ABS	0.28	0.45	0.00	0.00	1.00	281
Captive Lender	0.38	0.49	0.00	0.00	1.00	281
Number of Loans	66,952	25,499	66,011	15,212	180,352	281
Used Vehicles Share	0.42	0.34	0.30	0.02	1.00	281
Mean Credit Score	706.20	74.85	738.43	564.98	788.46	281
Expected tCO2 per \$100,000	292.83	51.42	296.31	161.51	456.16	281
Financed tCO2 per \$100,000	219.58	40.08	211.15	107.10	311.78	281
Average Exp. tCO2 per Vehicle	70.51	15.55	67.61	42.94	125.73	281
Average Financed tCO2 per Vehicle	58.01	12.76	54.49	40.54	101.27	281

Summary statistics of auto loans in ABS pools

	Mean	SD	Median	Min	Max	Obs.
Original Interest Rate	7.84	7.00	5.25	0.00	30.00	17,823,551
Original Loan Amount (\$)	25,822.58	12,251.91	23,650.84	518.03	248,681.95	17,823,552
Original Loan Term (months)	67.65	8.59	72.00	7.00	96.00	17,823,552
Credit Score	708.64	101.70	719.00	250.00	900.00	17,143,023
Payment-to-Income Share	0.08	0.05	0.08	0.00	0.79	17,700,290
Income Verified	0.09	0.29	0.00	0.00	1.00	17,823,552
Loan-to-Value	0.90	0.16	1.00	0.01	1.00	17,822,211
Outstanding Balance Share	0.83	0.24	0.93	0.00	1.00	17,823,548
Vehicle Value Amount (\$)	27,341.46	13,177.32	24,998.00	0.00	1,084,455.00	17,823,549
Vehicle Age (Years)	2.74	2.56	2.00	0.00	35.00	17,823,552
Used Vehicle	0.48	0.50	0.00	0.00	1.00	17,823,552
SVM, Financed	161,660.73	40,008.49	171,346.10	254.15	240,728.61	17,823,552
SVM, Total	202,834.40	16,986.18	207,738.97	189,173.82	240,728.61	17,823,552
tCO2, total Lifetime	78.28	30.61	72.45	0.00	538.75	17,823,552
tCO2, remaining Lifetime	62.12	29.51	56.48	0.00	538.75	17,823,552
tCO2, financed remaining Lifetime	46.57	27.79	44.58	0.00	538.75	17,822,207

Identification strategy for green yield spread •••••

• Identify effects of Green preferences from variation across bond pools

```
Spread = Green + \epsilon
```

• Identifying assumption: assignment of Green uncorr. with ε conditional on risk factors

Identification strategy for green yield spread • back

Identify effects of Green preferences from variation across bond pools

```
Spread = Green + \varepsilon
```

- Identifying assumption: assignment of Green uncorr. with ε conditional on risk factors
 - Credit risk \rightarrow focus only on the safest AAA-rated senior tranches
 - Prepayment risk \rightarrow control for borrower and loan characteristics

Identification strategy for green yield spread • back

Identify effects of Green preferences from variation across bond pools

Spread = Green + Prepayment Risk

 $+\varepsilon$

• Identifying assumption: assignment of Green uncorr. with ε conditional on risk factors

- Credit risk ightarrow focus only on the safest AAA-rated senior tranches
- Prepayment risk \rightarrow control for borrower and loan characteristics

• Prepayment Risk

- Ex-ante predictors: interest rate, credit score, LTV, outstanding balance, warehousing time
- Ex-post realizations: difference to assumed prepayment speed, realized delinquency rate (30d+)

Identification strategy for green yield spread • back

Identify effects of Green preferences from variation across bond pools

Spread = Green + Prepayment Risk + Market Conditions + Security Design + ε

- Identifying assumption: assignment of Green uncorr. with ε conditional on risk factors
 - Credit risk ightarrow focus only on the safest AAA-rated senior tranches
 - Prepayment risk \rightarrow control for borrower and loan characteristics
- Prepayment Risk
 - Ex-ante predictors: interest rate, credit score, LTV, outstanding balance, warehousing time
 - Ex-post realizations: difference to assumed prepayment speed, realized delinquency rate (30d+)

Even within-issuer lower cost of capital for high-ESG issuers

	(1)	(2)	(3)	(4)	(5)	(6)
	Issuance	Issuance	Issuance	Issuance	Issuance	Issuance
	Spread	Spread	Spread	Spread	Spread	Spread
High ESG (score>p50)	-0.0694	-0.0617				
	(0.0429)	(0.0393)				
Refinitiv ESG Score			-0.238	-0.212		
			(0.197)	(0.176)		
S&P ESG Score					-0.0847+	-0.108*
					(0.0500)	(0.0496)
Issuer FE	Yes	Yes	Yes	Yes	Yes	Yes
Year-month FE, daily market controls	Yes	Yes	Yes	Yes	Yes	Yes
Assumed prepayment speed FE	Yes	Yes	Yes	Yes	Yes	Yes
Other tranche characteristics	Yes	Yes	Yes	Yes	Yes	Yes
Ex-ante prepayment controls	Yes	Yes	Yes	Yes	Yes	Yes
Ex-post prepayment controls	No	Yes	No	Yes	No	Yes
Adj. R ²	0.979	0.981	0.979	0.981	0.947	0.949
Within R ²	0.330	0.397	0.316	0.387	0.416	0.429

+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001

Accounting for production does not change ranking

Accounting for production does not change ranking

Average financed CO2 emissions (in t) per 100,000 USD tCO2 per USD: tailpipe only tCO2 per USD: tailpipe + scope 1 + 2 + 3 upstream

Even at firm-level ESG score are at best uninformative about CO₂

• Do ESG scores reflect environmental impact of production?

Issuer ESG score_{*it*} = $\beta \times$ (Issuer Scope 1 + 2 Emissions)_{*it*} + $\varepsilon_{$ *it* $}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	S&P	Refinitiv	S&P	Refinitiv	S&P	Refinitiv	S&P	Refinitiv
	ESG	ESG	Env.	Env.	ESG	ESG	Env.	Env.
Issuer Scope 1+2/Revenue	0.373	0.307	0.391	0.398				
	(0.289)	(0.249)	(0.279)	(0.258)				
Issuer Scope 1+2 in level					0.309 (0.236)	0.370 ⁺ (0.210)	0.377 (0.229)	0.427 ⁺ (0.221)
Adj. R ²	0.138	0.0937	0.152	0.157	0.0957	0.137	0.142	0.182
Observations	99	99	99	99	99	99	99	99

Standard errors are clustered at issuer-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001. Coefficients are standardized to unit variances.

back

- Automobile and auto parts
 - ESG = $0.10 \times$ Emissions + $0.08 \times$ Resource use + $0.16 \times$ Innovation+ $0.42 \times$ S + $0.24 \times$ G
- Banking Services
 - ESG = $0.02 \times$ Emissions + $0.02 \times$ Resource use + $0.10 \times$ Innovation + $0.50 \times$ S + $0.36 \times$ G

- Automobile and auto parts
 - ESG = $0.10 \times \text{Emissions} + 0.08 \times \text{Resource}$ use + $0.16 \times \text{Innovation} + 0.42 \times \text{S} + 0.24 \times \text{G}$
- Banking Services
 - ESG = $0.02 \times \text{Emissions} + 0.02 \times \text{Resource}$ use + $0.10 \times \text{Innovation} + 0.50 \times \text{S} + 0.36 \times \text{G}$
- "The emission reduction score measures a company's commitment and effectiveness towards reducing environmental emissions in its production and operational processes."

- Automobile and auto parts
 - ESG = $0.10 \times \text{Emissions} + 0.08 \times \text{Resource use} + 0.16 \times \text{Innovation} + 0.42 \times \text{S} + 0.24 \times \text{G}$
- Banking Services
 - ESG = $0.02 \times \text{Emissions} + 0.02 \times \text{Resource use} + 0.10 \times \text{Innovation} + 0.50 \times \text{S} + 0.36 \times \text{G}$
- "The resource use score reflects a company's performance and capacity to reduce the use of materials, energy or water, and to find more eco-efficient solutions by improving supply chain management."

- Automobile and auto parts
 - ESG = $0.10 \times \text{Emissions} + 0.08 \times \text{Resource}$ use + $0.16 \times \text{Innovation} + 0.42 \times \text{S} + 0.24 \times \text{G}$

Banking Services

- ESG = $0.02 \times \text{Emissions} + 0.02 \times \text{Resource}$ use + $0.10 \times \text{Innovation} + 0.50 \times \text{S} + 0.36 \times \text{G}$

		Emissio	ns Score		
tCO2 Emissions per USD	0.243 (0.204)				
tCO2 Emissions per vehicle		0.288 (0.170)			
Avg. MPG $\times(-1)$. ,	0.169 (0.273)		
Avg. GHG Rating $\times(-1)$				0.0604 (0.134)	
Manufacturer=1	0.286** (0.0897)	0.238** (0.0760)	0.239* (0.0839)	0.224* (0.0845)	
P-value $\beta < 0$ Adj. R ² Observations	0.125 0.379 243	0.055 0.430 243	0.272 0.347 243	0.329 0.316 215	

- Automobile and auto parts
 - ESG = $0.10 \times \text{Emissions} + 0.08 \times \text{Resource use} + 0.16 \times \text{Innovation} + 0.42 \times \text{S} + 0.24 \times \text{G}$

Banking Services

- ESG = $0.02 \times$ Emissions + $0.02 \times$ Resource use + $0.10 \times$ Innovation + $0.50 \times$ S + $0.36 \times$ G

	Resource use Score						
tCO2 Emissions per USD	0.236						
	(0.215)						
tCO2 Emissions per vehicle		0.391^{+}					
		(0.189)					
Avg. MPG×(-1)			0.424				
			(0.299)				
Avg. GHG Rating \times (-1)				0.292			
				(0.185)			
Manufacturer=1	0.233^{+}	0.188^{+}	0.197^{+}	0.179			
	(0.112)	(0.0896)	(0.0981)	(0.103)			
P-value $\beta < 0$	0.144	0.027	0.088	0.067			
Adj. R ²	0.215	0.330	0.225	0.199			
Observations	243	243	243	215			

Consumer ABS that finance high-emissions vehicles have lower cost of capital

	(1) Issuance Spread	(2) Issuance Spread	(3) Issuance Spread	(4) Issuance Spread	(5) Issuance Spread	(6) Issuance Spread	(7) Issuance Spread	(8) Issuance Spread	(9) Issuance Spread	(10) Issuance Spread
Expected tCO2 per USD	-0.211+ (0.112)	-0.266* (0.110)								
Financed tCO2 per Vehicle			-0.214** (0.0726)	-0.256** (0.0762)						
Avg. MPG \times (-1)					-0.202 (0.128)	-0.280* (0.133)				
Avg. Share of Trucks							-0.215 ⁺ (0.109)	-0.276* (0.128)		
Avg. GHG Rating (KBRA) \times (-1)									-0.131 (0.122)	-0.228 ⁺ (0.134)
Year-month FE, daily market controls	\checkmark	\checkmark	✓	\checkmark	\checkmark	~	\checkmark	\checkmark	✓	\checkmark
Prepayment speed FE, tranche controls	\checkmark	\checkmark	\checkmark	\checkmark						
Ex-ante prepayment controls	\checkmark	\checkmark	\checkmark	\checkmark						
Ex-post prepayment controls		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
Adj. R ²	0.947	0.954	0.949	0.955	0.947	0.953	0.947	0.953	0.938	0.949
Observations	276	276	276	276	276	276	276	276	243	243

Spread = Environmental Impact + Prepayment Risk + Time FE + Deal Features + ε

Propensity Score Matching delivers similar results

back to robustness

Prime auto loans only

	(1) Issuance Spread	(2) Issuance Spread	(3) Issuance Spread	(4) Issuance Spread	(5) Issuance Spread	(6) Issuance Spread	(7) Issuance Spread	(8) Issuance Spread
Financed tCO2 per USD	-0.160 (0.107)	-0.180 (0.111)						
Expected tCO2 per USD			-0.191+ (0.104)	-0.205 ⁺ (0.107)				
Financed tCO2 per Vehicle					-0.164* (0.066)	-0.214** (0.071)		
Financed tCO2 per Vehicle							-0.166* (0.066)	-0.219** (0.071)
Year-month FE, daily market controls	✓	√	✓	✓	√	\checkmark	\checkmark	\checkmark
Prepayment speed FE, tranche controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ex-ante prepayment controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ex-post prepayment controls		\checkmark		\checkmark		\checkmark		\checkmark
Adj. R ²	0.955	0.955	0.956	0.955	0.956	0.956	0.956	0.956
Observations	190	190	190	190	190	190	190	190

▶ back

Other tranches

	(1) Issuance Spread	(2) Issuance Spread	(3) Issuance Spread	(4) Issuance Spread	(5) Issuance Spread	(6) Issuance Spread	(7) Issuance Spread	(8) Issuance Spread	
		<u>A-3 T</u>	ranche		A-4 Tranche				
Financed tCO2 per USD	-0.197* (0.084)	-0.212* (0.087)			-0.255*** (0.070)	-0.267*** (0.070)			
Financed tCO2 per Vehicle			-0.120* (0.054)	-0.179* (0.073)			-0.077 (0.051)	-0.132* (0.061)	
Year-month FE, daily market controls	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	√	\checkmark	
Prepayment speed FE, tranche controls	\checkmark								
Ex-ante prepayment controls	\checkmark								
Ex-post prepayment controls		\checkmark		\checkmark		\checkmark		\checkmark	
Adj. R ²	0.948	0.947	0.948	0.947	0.965	0.965	0.963	0.963	
Observations	272	272	272	272	190	190	190	190	

back

Mutual Funds and Auto ABS

- Mutual Fund holdings data from SEC Form N-PORT
 - Sample from 2019-Q1 to 2022-Q4
 - Observe 266 auto ABS deals
 - on average 24% of total issuance land on MF balance sheets
 - up to 85% for some senior tranches
- Identify ESG funds by their names: 25% ESG-bond funds buy auto ABS
 - Name \in {ESG, Climate, Green, etc.}
 - List of ESG mutual funds from the US Sustainable Investing Forum
 - 35 ESG-bond funds and 787 non-ESG funds

back

Are ESG mutual funds greener than non-ESG funds?

• ESG fund prospectus provide details about their approach to ABS:

"When **evaluating securitized debt** securities, the Adviser generally considers the **issuer's ESG score** along with ESG factors related to the underlying pool of assets, such as **energy efficiency** and **environmental impact** of the **underlying assets**"

Are ESG mutual funds greener than non-ESG funds?

• ESG fund prospectus provide details about their approach to ABS:

"When **evaluating securitized debt** securities, the Adviser generally considers the **issuer's ESG score** along with ESG factors related to the underlying pool of assets, such as **energy efficiency** and **environmental impact** of the **underlying assets**"

Identify preferences from variation in ABS holdings of ESG funds relative to non-ESG

 $\log (\text{Portfolio Share})_{itrb} = \alpha (\text{ESG Fund}_i \times \text{Green}_b) + \gamma_i + \gamma_b + \gamma_r + \zeta' X_t + \varepsilon_{itrb}$

- where Green \in {issuer ESG score, MPG, CO2 per vehicle}
- Fixed effects:
 - γ_i Mutual fund
 - γ_b ABS deal
 - γ_r Reporting year-quarter
- Tranche controls X_t:
 - Yield, size, maturity

Investors earn an convenience yields on ESG assets of 0.28% p.a.

• ESG convenience yield generates seigniorage to issuers of ESG assets

$$\mathsf{ESG} \text{ convenience yield} = \lambda_t = -\frac{y_t^{\mathsf{Green}} - y_t^{\mathsf{Brown}}}{\beta_t^{\mathsf{Green}} - \beta_t^{\mathsf{Brown}}} \approx \overline{0.28\% \text{ p.a.}}$$

- Comparable against other convenience yields
 - \approx 0.50% p.a. for ESG stocks (Avramov et al. '23)
 - \approx 0.78% p.a. for US Treasurys (Krishnamurthy, Vissing-Jorgensen '12)

Investors earn an convenience yields on ESG assets of 0.28% p.a.

ESG convenience yield generates seigniorage to issuers of ESG assets

$$\mathsf{ESG} \text{ convenience yield} = \lambda_t = -\frac{y_t^{\mathsf{Green}} - y_t^{\mathsf{Brown}}}{\beta_t^{\mathsf{Green}} - \beta_t^{\mathsf{Brown}}} \approx \overline{0.28\% \text{ p.a.}}$$

- Comparable against other convenience yields
 - \approx 0.50% p.a. for ESG stocks (Avramov et al. '23)
 - \approx 0.78% p.a. for US Treasurys (Krishnamurthy, Vissing-Jorgensen '12)
- ESG convenience yield nearly tripled from 2017 to 2022

		2017	2018	2019	2020	2021	2022	All
Δ ESG score:	$\beta_t^{\text{Green}} - \beta_t^{\text{Brown}}$	0.29	0.18	0.20	0.15	0.43	0.31	0.32
ESG basis spread (bps):	$y_t^{\text{Green}} - y_t^{\text{Brown}}$	-4	-2	-2	-5	-11	-12	-9
ESG convenience yield (bps):	λ_t	14	11	10	34	26	39	28
Avg. spread of A-2 tranches (bps):		40	38	31	47	22	72	41

Notes: Estimates of ESG spread using Refinitiv and yearly elasticity from risk-adjusted model. Δ ESG scores between 20th and 80th pctile.

Discontinuous pricing rules allows us to back out price elasticity

Probability of "teaser" interest rate depends on the issuance spreads

