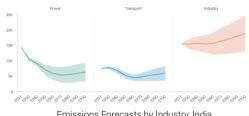
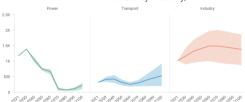
Opening the Brown Box: Production Responses to Environmental Regulation

Rebecca De Simone, ¹ S. Lakshmi Naaraayanan, ¹ Kunal Sachdeva ²

¹London Business School ²Stephen M. Ross School of Business, University of Michigan


September 2024

7th Annual GRASFI Conference, Singapore Management University


Focus on Reducing Industrial Emissions

- Industrial emissions $\approx \frac{1}{3}$ of total in 2022 (25.8% in India)
- Emissions of other sectors projected to decline, industrial emissions to rise
- Challenges are technological and uncertainty how to design regulation
- Robust evidence targeting firm emissions reduces them
 - → Often by shifting emissions and polluting assets elsewhere
 - → Mixed evidence on firm-level and aggregate effects
 - → No evidence on within-firm production responses

Emissions Forecasts by Industry, Global

Emissions Forecasts by Industry, India

Units: Million metric tonnes of CO2e. Source: Rhodium Group Climate Deck Database.

Production Response to Emissions Regulation

We combine:

- Quasi-experiment: Pollution index introduced in 2009 in India targeting industrial cluster emissions; regulations based on pre-defined thresholds
 - → Difference-in-discontinuity around treatment thresholds
 - \rightarrow Fixed effects: Firm and State \times industry \times Year
- Unique data: Inside the "brown box" of production processes and on firm outcomes
 - → Product-level inputs and outputs
 - → Abatement expenditures and action plans

Contributions:

- First to document within-firm production responses, both on the input and output side
- Evidence on which firms respond and which bear the burden
- Focus on industrial clusters and an emerging market

• Improved pollution metrics at the cluster and product levels

- Improved pollution metrics at the cluster and product levels
 - → Hand-collect subsequent evaluations conducted by the CPCB
 - → Satellite emissions readings
 - ightarrow Product energy inputs and imputed CO_2 emissions

- Improved pollution metrics at the cluster and product levels
 - → Hand-collect subsequent evaluations conducted by the CPCB
 - → Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement

- Improved pollution metrics at the cluster and product levels
 - → Hand-collect subsequent evaluations conducted by the CPCB
 - → Satellite emissions readings
 - ightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement
 - → Shift from high-emission and coal-dependent products
 - → Electrify production lower coal use and purchase electricity
 - → Abatement investments

- Improved pollution metrics at the cluster and product levels
 - → Hand-collect subsequent evaluations conducted by the CPCB
 - → Satellite emissions readings
 - ightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement
 - → Shift from high-emission and coal-dependent products
 - → Electrify production lower coal use and purchase electricity
 - → Abatement investments
- Within clusters, firms in high-polluting industries ('hard-to-abate') drive results

- Improved pollution metrics at the cluster and product levels
 - → Hand-collect subsequent evaluations conducted by the CPCB
 - → Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement
 - → Shift from high-emission and coal-dependent products
 - → Electrify production lower coal use and purchase electricity
 - → Abatement investments
- Within clusters, firms in high-polluting industries ('hard-to-abate') drive results
- Across clusters, those with higher regulator reputation, lower corruption, and public-private regulatory cost sharing improve

- Improved pollution metrics at the cluster and product levels
 - → Hand-collect subsequent evaluations conducted by the CPCB
 - → Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement
 - → Shift from high-emission and coal-dependent products
 - → Electrify production lower coal use and purchase electricity
 - → Abatement investments
- Within clusters, firms in high-polluting industries ('hard-to-abate') drive results
- Across clusters, those with higher regulator reputation, lower corruption, and public-private regulatory cost sharing improve
- Firm and regulator actions lower cost, but loss of aggregate dynamism

- Improved pollution metrics at the cluster and product levels
 - → Hand-collect subsequent evaluations conducted by the CPCB
 - → Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement
 - → Shift from high-emission and coal-dependent products
 - → Electrify production lower coal use and purchase electricity
 - → Abatement investments
- Within clusters, firms in high-polluting industries ('hard-to-abate') drive results
- Across clusters, those with higher regulator reputation, lower corruption, and public-private regulatory cost sharing improve
- Firm and regulator actions lower cost, but loss of aggregate dynamism
 - → Decline in new firm entry and product variety
 - → No evidence of leakage production location

Contribution to the Literature

- Quantify impact of environmental regulation on emissions
 - → Command-and-control and cap-and-trade policies can both lower targeted emissions (Fowlie, 2010; Harrison et al., 2019; Bartram et al., 2022; Ivanov et al., 2023, ...)
 - → Evidence for shifting emissions (Aichele and Felbermayr, 2015; Schiller, 2018; Ben-David et al., 2021; Dai et al., 2021a and 2021b; Kim and Xu, 2021, ...)
 - \rightarrow We focus on industrial clusters and use unique data and identification to study mechanisms
- Impact of emissions regulations on firm outcomes
 - → Mixed evidence on impact on productivity (Duflo et al., 2013; Kalmenovitz and Chen, 2021; Kala and Gechter, 2023, ...) and financial performance (Lenox and Eesley, 2009; Servaes and Tamayo, 2013; Fan et al., 2019; Naaraayanan et al., 2021, ...)
 - → We document firm-level and within-firm production response
- Broader literature on how firms impact the environment
 - → Highlighted importance of nature of ownership (Dimson et al., 2015, 2021; Krueger et al., 2020; Naaraayanan et al., 2021; Azar et al., 2021; Atta-Darkua et al., 2023; Berg et al., 2023; Ilhan et al., 2023, ...), disclosures (Jouvenot and Krueger, 2019; Bonetti et al., 2023; Tomar, 2023, ...), financial institutions (Kacperczyk and Peydro, 2022; De Haas, 2023; De Haas and Popov, 2023; Ivanov et al., 2023, ...), and self-commitment (Dahlmann et al., 2019; Comello et al., 2021; Freiberg et al., 2021; Duchin et al., 2022; Bolton and Kacperczyk, 2023, ...), trade (Barrows and Ollivier 2021)
 - ightarrow We demonstrate importance of coordinating emissions policies & cost-sharing

Comprehensive Environmental Pollution Index (CEPI)

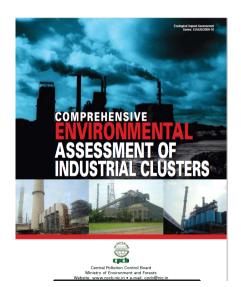
- Central Pollution Control Board (CPCB) develops a composite index in 2009 to capturing the impact of emissions on human health
 - ightarrow Cutoff 1: Clusters with CEPI \geq 60 subject to central monitoring at the national level, rather than the relatively weak local control, and quarterly emissions audits
 - ightarrow Cutoff 2: Clusters with CEPI ≥ 70 additionally must submit a remedial action plan for approval detailing emission reduction actions and timelines at the cluster and firm levels
- Failure to comply with the directives of the action plan:
 - $\to\,$ Lose their Environmental Clearance and Consent to Operate permits that allow firms to function within the formal economy
 - → Consent to Establish permits could not be issued to new operations

Comprehensive Environmental Pollution Index (CEPI)

Methodology and Assessment

Ambient Air Monitoring Station. Sujana Metals Unit-IV

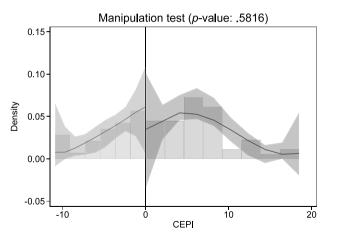
Surface Water Sampling Point. Isukavagu


Ground Water Sample Point. Bollaram Village

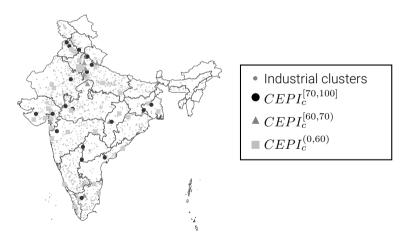
Ground Water Sample Point. Krishnareddypet

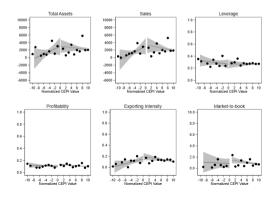
Comprehensive Environmental Pollution Index (CEPI)

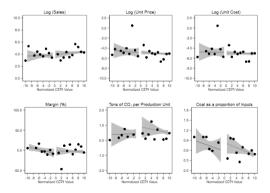
Methodology and Assessment

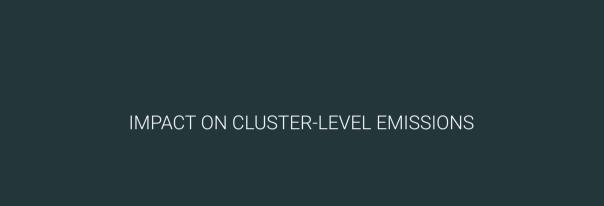


Data and Empirical Strategy


- Combine detailed firm, product input and output data
- Main specification: Difference-in-discontinuity around the CEPI 60 threshold and the 2009 introduction of the pollution index
 - ightarrow Fixed effects: Firm and State imes industry imes Year
 - → Cluster standard errors at cluster level
 - → Estimate within a bandwidth of 10 CEPI ranking
 - → Compare LATE vs. ATE by estimating DiD specification
- Other specifications
 - ightarrow Controlling for effect of crossing the CEPI 70 threshold (Implementation)
 - → Interacted with indicator of highly polluting industry (Heterogeneity)


1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))

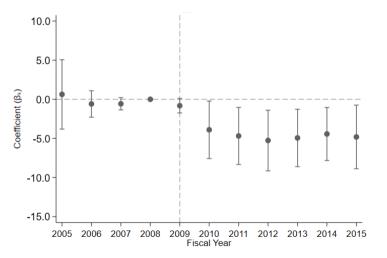

- 1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))
- 2. No geographic clustering Balance: Cluster


- 1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))
- 2. No geographic clustering Balance: Cluster
- 3. No jumps in firm and product characteristics around the threshold Balance: Firm Balance: Product

- 1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))
- 2. No geographic clustering Balance: Cluster
- 3. No jumps in firm and product characteristics around the threshold Balance Firm Balance: Product



- 1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))
- 2. No geographic clustering Balance: Cluster
- 3. No jumps in firm and product characteristics around the threshold Balance: Firm Balance: Product
- 4. Parallel trends Covariates


Cluster-Level Satellite Readings: Industrial Emissions, All Pollutants

Units: mg per month

Cluster-Level Satellite Readings: Particulate Matter $< 2.5 \mu$

Units: mg per month

Product Energy Inputs

Firms reduce energy and coal use while electrifying production

Dependent variable	Ln(Value Energy Input)	1 Coal Use	Proportion Purchased Electricity
Post \times CEPI ^{[60,70)} (β_1)	-1.006***	-0.289*	0.196***
	(0.219)	(0.150)	(0.059)
Ln(Production Quantity)	-0.208	0.033	-0.034
	(0.300)	(0.027)	(0.036)
2008 Dependent Variable Mean (Control) \mathbb{R}^2 Observations	8.906 M INR	0.17	0.46
	0.795	0.496	0.786
	901	565	901
ATE	-0.773	-0.308	0.151
<i>t</i> -statistic	[5.465]	[3.350]	[3.159]

Product-Level Emissions

Product emissions fall, consistent with cluster level evidence

Dependent variable:	Ln(Product CO ₂ Emissions)	Ln(Per Unit ${\sf CO_2}$ Emissions)
Post ×CEPI ^{[60,70)} (β_1)	-1.083*** (0.283)	-0.885*** (0.306)
Ln(Production Quantity)	0.801** (0.334)	
2008 Dependent Variable Mean (Control) \mathbb{R}^2 Observations	162,229.58 0.893 901	2.79 0.774 901
ATE <i>t</i> -statistic	-1.414 [5.460]	-0.755 [3.709]

Product Portfolio Weights

Relative shift away from dirtiest products

Dependent variable:	Product with Highest Coal Weight ₂₀₀₈	Product with Highest Emissions Weight ₂₀₀₈
Post \times CEPI $^{[60,70)}(eta_1)$	-0.309** (0.123)	-0.318** (0.118)
2008 Dependent Variable Mean (Control) R ²	0.78 0.775	0.65 0.758
Observations	705	705
ATE <i>t</i> -statistic	-0.181 [1.438]	-0.218 [1.981]

Abatement Expenditures from Financial Statements

Abatement expenditures increase on extensive and intensive margins

Dependent variable:	1 Abatement	Abatement/Assets
$Post \times CEPI^{[60,70)}(\beta_1)$	0.048	0.039*
	(0.031)	(0.020)
2008 Dependent Variable Mean (Control)	0.06	0.01
R^2	0.725	0.753
Observations	10,752	10,752
ATE	0.072	0.038
t-statistic	[2.419]	[2.385]

Abatement technologies: Evidence From Action Plans

Wet Scrubbers

Scrubbers

Electrostatic Precipitators

Cyclone Separators

Precipitators

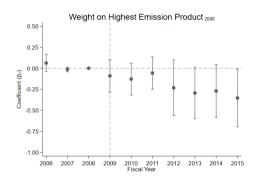
Ory Scrubbers

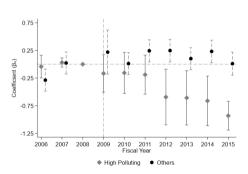
Catalytic Converters

Activated Carbon Adsorption

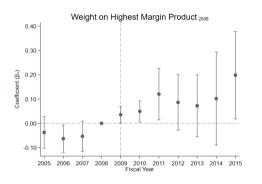
Biofilters

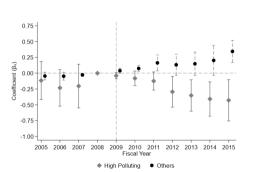
Equalization tank
Reaction tank
Rection tank
Reverse Osmosis
Secondary Settling Tank
Primary Settling Tank
Sludge Drying Bedpressure Sand Filter
Aeration Tank




Intra-cluster dynamics

Who bears the cost?


- Pollution Control Board previously classified some industries as "highly-polluting" (HPI)
- HPI Firms face stricter enforcement and have less scope to abate emissions (Harrison, Hyman, Martin and Nataraj (2019))
 - → Monitoring stations more likely to be placed near HPI plants
 - ightarrow HPI firms in $CEPI^{[70,100]}$ clusters subject to specific emission mandates in action plans
- Complementary evidence in our setting that HPI firms received higher treatment intensity


Changes to Firm Emissions: Portfolio Shifts

Changes to Firm Profitability: Portfolio Shifts

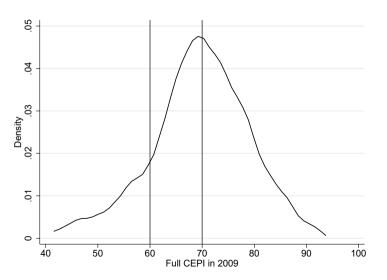
Who complies: Evidence from annual reports

JK Lakshmi Cement Limited Annual Report, Fiscal Year 2011

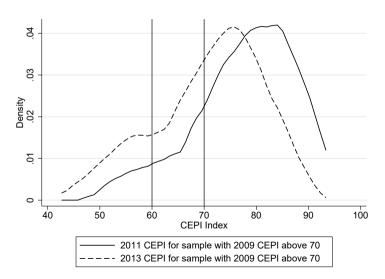
During the year, the Company further improved its operating efficiencies. There was reduction in consumption of both power and fuel per unit of production. In addition, the Company improved usage of alternate fuel of bio-mass from 2% to 6%. These improvements have enabled the Company to also reduce the carbon footprint.

Who complies: Evidence from media

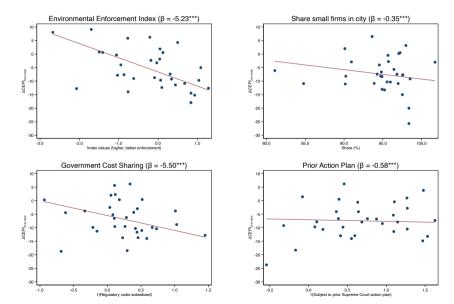
CIL output to fall shoft of target


Statesman News Service | New Delhi | December 23, 2010 5:31 pm

NEW DELHI, 23 DEC: Coal India today said its production would fall short of target by 16 million tons this financial year and might miss the expected output by 39 million tons in fiscal 2011-12 due to extension of tough environmental norms. "Comprehensive Environmental Pollution Index (CEPI) was supposed to be reviewed in October, but it has been extended till March. As a result, we clearly estimate an impact of 16 million tons reduction this year (on production)," Coal India chairman Mr Partha Bhattacharya told reporters here on the sidelines of a Parliamentary Standing Committee meeting. He added: "If it continues in 2012, then it will affect additional 39 million tons, which means it will take away the growth process (of Coal India)". Coal India has set a production target of 260.5 MT in 2010-11 and it has planned to produce 486.5 MT of coal in 2011-12.


Comprehensive Environmental Pollution Index (CEPI)

Subsequent assessments



Comprehensive Environmental Pollution Index (CEPI)

Subsequent assessments

Ex-ante predictors of improvement

Firm Productivity and Profitability

- Highly polluting industries ('hard-to-abate') bear higher costs \(\sum_{\cdots} \)...
 - ightarrow ...but achieve significant emission reductions igwedge
- Productivity and profitability fall in higher intent-to-treat clusters
 PCA using ex-ante predictors of emissions reduction

Aggregate Effect and Other Explanations

- Product variety decreases
- Business dynamism decreases from lower firm entry
 - → All (formal) firms
 - \rightarrow Large firms \bigcirc
- Leakage: No evidence firms shift production
 - → No effect on mergers and acquisitions
 - → No affect on new plant announcements

Open the "Brown Box:" Production Responses to Emissions Regulation

We find:

- Firms lower emissions by (1) shifting away from high-emission energy sources, (2) electrifying production, and (3) investing in abatement
- In aggregate, productivity and profitability maintained but
- Regulated clusters exhibit lower firm entry and product variety
- More highly regulated firms reduce emissions the most and bear the brunt of costs

Implications:

- Important for environmental regulation design when enforcement and monitoring are weak (Greenstone and Jack 2015, Duflo et al. 2018)
- Can cap geographically-tied emissions, but exacts economic cost
- Design of risk and cost-sharing between industry and government
- Need for coordinating decarbonization policies: industrial and electricity generation

THANK YOU!

Empirical Specification Reum

Cluster, firm, and product level specifications

$$Y_{kijcst} = \beta_1 Post_t \times CEPI_c^{[60,70)} + \beta_2 Post_t \times CEPI_c^{[70,100]} + \beta_3 CEPI_c + \beta_4 Post_t + \gamma_i + \kappa_{jst} + \epsilon_{kijcst}$$

- k,i,j,c,s, and t represent a product, firm, industry, city, state, and year, respectively.
- $CEPI_c^{[60,70)}$ is one if the firm's industrial cluster has a **max** CEPI score \geq 60 and below 70, and zero otherwise.
- $CEPI_c^{[70,100]}$ is one if the firm's industrial cluster has a **max** CEPI score \geq 70, and zero otherwise.
- $Post_t$ is one after the regulation was implemented in 2009, and zero otherwise.
- Fixed effects: Firm (γ_i) and State imes industry imes Year (κ_{jst})
- Cluster standard errors at city level
- Estimate within a bandwidth of 10 CEPI ranking
- β_1 : difference in discontinuity effect of crossing the treatment threshold at CEPI = 60

Cluster-Level Satellite Readings

Dependent variable:		Pollution Me	easurement	
Pollutant(s):	All	$PM_{2.5}$	PM ₁₀	NO_x
Post ×CEPI $^{[60,70)}$ (β_1)	-7.232**	-3.686*	-7.113	-10.898*
	(3.597)	(2.054)	(5.653)	(6.536)
Post \times CEPI $^{[70,100]}$ (eta_2)	-7.109**	-3.489*	-7.669	-10.169*
	(3.225)	(1.813)	(4.748)	(5.937)
2008 Dependent Variable Mean (Control) R^2 Observations p -value $[eta_1-eta_2=0]$	23.09	16.86	38.95	13.45
	0.932	0.949	0.946	0.836
	54,648	18,216	18,216	18,216
	0.935	0.843	0.840	0.600
ATE	-7.144	-3.545	-7.512	-10.375
	[2.185]	[1.928]	[1.550]	[1.702]

Cluster-Level Satellite Readings: Van Donkelaar PM_{2.5} Measure

Dependent variable:	Fine PM $_{2.5}~(\mu~{ m g}/m^3)$			
Radii of circle:	5 kilometers	500 meters		
Post \times CEPI $^{[70,100]}$ (β_1)	-2.311*** (0.775)	-1.893** (0.743)		
Post \times CEPI ^{[60,70)} (β_2)	-1.018 (0.756)	-0.560 (0.673)		
2008 Dependent Variable Mean (Control) R^2	84.0 0.963	84.0 0.959		
Observations	17,952	18,216		

Notes. All models estimated within bandwidth of 10 CEPI; include Cluster & State \times year-month FE.

Cluster-Level Satellite Readings: Energy Sector Placebo

No effect on emissions of un-treated sector

Dependent variable:	Pollution Measurement			
Pollutant(s):	All	PM _{2.5}	PM ₁₀	NO_x
Post \times CEPI $^{[60,70)}(\beta_1)$	-0.229 (0.715)	-0.112 (0.274)	-0.170 (0.542)	-0.405 (1.415)
2008 Dependent Variable Mean (Control) \mathbb{R}^2 Observations	8.18 0.756 29,808	1.78 0.795 9,936	3.34 0.823 9,936	19.43 0.734 9,936
ATE <i>t</i> -statistic	-0.186 [0.266]	-0.161 [0.579]	-0.180 [0.357]	-0.217 [0.153]

Firm-level energy input

Dependent variable:	Ln(Value Firm 8	Energy Input)
$Post \times CEPl^{[60,70)}(\beta_1)$	-0.667*** (0.138)	-0.821*** (0.189)
Post $ imes$ CEPI $^{[60,70)}$ $ imes$ High-Polluting (eta_3)		0.392* (0.223)
2008 Dependent Variable Mean (Control)	219.92	0.214
Adjusted-R ²	0.959	0.959
Observations	358	358

Lower Product Variety Return

Adjust product portfolio to lower product variety

Dependent variable:	Ln(Product-level Production	Ln(No. of Products)	$\mathbb{1}$ Add Product	\mathbb{I} Remove Product
Post \times CEPI ^{[60,70)} (β_1)	-0.110	0.013	-0.117***	0.003
	(0.182)	(0.078)	(0.041)	(0.036)
2008 Dependent Variable Mean (Control) \mathbb{R}^2 Observations	29,784	2.71	0.27	0.17
	0.582	0.746	0.263	0.242
	15,521	10,752	10,752	10,752
ATE <i>t</i> -statistic	0.007	0.008	-0.068	0.019
	[0.063]	[0.118]	[2.138]	[0.621]

Cluster business dynamism decreases from lower firm entry em

Full firm registry

Dependent variable:	1 New Firm	Log(No. of firms)) $asinh(No. of firms)$	No. of firms (Poisson)
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.009 (0.011)	-0.011 (0.010)	-0.014 (0.013)	-0.105 (0.138)
2008 Dependent Variable Mean (Control) \mathbb{R}^2	0.08 0.449	0.20 0.570	0.20 0.570	0.20
Observations	33,534	33,534	33,534	19,958
ATE t-statistic	-0.013 [1.360]	-0.010 [1.206]	-0.013 [1.189]	-0.169 [1.582]

Firm Entry: Prowess (Large) Firms

Dependent variable:	1 New Firm	$Log(No. of firms) \ asinh(No. of firms)$		No. of firms (Poisson)
	(1)	(2)	(3)	(4)
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.003 (0.017)	0.001 (0.016)	0.001 (0.021)	-0.289 (0.440)
2008 Dependent Variable Mean (Control) Adjusted-R ²	0.01 0.172	0.01 0.212	0.01 0.213	0.01
Observations	4,416	4,416	4,416	678

No evidence firms shift production location removed the shift production removed the shift productio

No effect on mergers and acquisitions

Dependent variable:	1_{Target}	$^{1\!\!1}$ Acquired
Post \times CEPI $^{[60,70)}(\beta_1)$	0.018 (0.012)	-0.000 (0.008)
	(0.009)	(0.007)
2008 Dependent Variable Mean (Control)	0.00	0.00
Adjusted-R ²	0.193	0.148
Observations	10,752	10,752
ATE	0.007	0.003
t-statistic	[0.740]	[0.534]

No evidence firms shift production location remains

No affect on new plant announcement or plant abandonment

Dependent variable:	1 New Plant	$^{1\!\!1}$ Abandon Plant
Post \times CEPI $^{[60,70)}(\beta_1)$	0.008	0.003
V = 7	(0.013)	(0.011)
2008 Dependent Variable Mean (Control)	0.00	0.00
R^2	0.350	0.284
Observations	10,752	10,752
ATE	-0.007	-0.002
t-statistic	[0.590]	[0.238]

Productivity and Profitability Reum

Dependent variable:	Ln(TFP)	EBITDA/ Sales	Raw Material Expense
Post \times CEPI ^{[60,70)} (β_1)	0.100	0.004	-0.033
	(0.075)	(0.015)	(0.030)
2008 Dependent Variable Mean (Control) R^2	2.77	0.10	0.56
	0.851	0.638	0.641
Observations	10,752	10,752	10,752

Productivity and Profitability Reum

Firms in non-HPI drive productivity gains

Dependent variable:	Ln(TFP)	EBITDA/ Sales	Raw Material Expense
$Post \times CEPI^{[60,70)}\left(\beta_1\right)$	0.131*	0.008	-0.061**
	(0.074)	(0.015)	(0.030)
$\operatorname{Post} \times \operatorname{CEPI}^{[60,70)} \times \operatorname{High-Polluting} (\beta_3)$	-0.114	-0.016	0.095***
	(0.161)	(0.011)	(0.032)

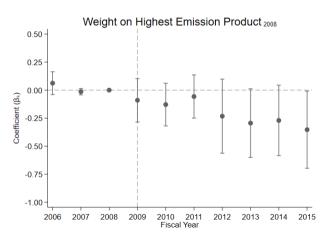
Quantity Productivity Reum

Dependent variable:	Log(Quantity-based Productivity)		
Post \times CEPI $^{[60,70)}$ (β_2)	-0.287 (0.176)	-0.190 (0.302)	
Post \times CEPI $^{[60,70)}$ \times High-Polluting (β_4)		-0.189 (0.376)	
2008 Dependent Variable Mean (Control)	8.6	8.6	
Firm FE	Yes	Yes	
State \times industry \times year FE	Yes	Yes	
Bandwidth	Yes	Yes	
R^2	0.824	0.825	
Observations	1,898	1,898	

Competitive Effect? Return

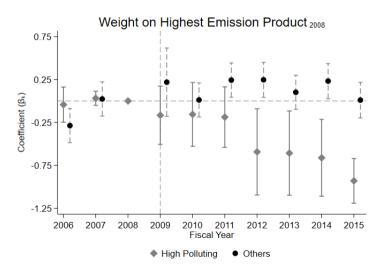
No change in pricing; margins likely driven by portfolio shift

Dependent variable:	Highest Margin Product Weight ₂₀₀₈	Product Margins	Ln(Unit Price)	Ln(Unit Cost)
Post \times CEPI $^{[60,70)}$ (β_1)	0.120**	0.037	-0.059	-0.016
	(0.050)	(0.081)	(0.225)	(0.194)
2008 Dependent Variable Mean (Control) \mathbb{R}^2	0.72	0.00	0.72	0.89
	0.880	0.722	0.592	0.599
Observations	15,984	15,225	15,984	15,225
ATE	0.124	0.126	-0.116	-0.183
t-statistic	[2.731]	[2.179]	[0.538]	[0.966]


Competitive Effect? Return

HPI de-emphasize highest-margin product because it is high emission?

Dependent variable:	Highest Margin Product Weight ₂₀₀₈	Product Margins	Ln(Unit Price)	Ln(Unit Cost)
$Post \times CEPI^{[60,70)}\left(\beta_1\right)$	0.166***	0.018	-0.055	0.024
	(0.053)	(0.096)	(0.218)	(0.193)
$Post \times CEPI^{[60,70)} \times High-Polluting \ (\beta_3)$	-0.122**	0.043	0.003	-0.084
	(0.058)	(0.078)	(0.185)	(0.207)


Product Portfolio: Weight Highest Emission Product Remo

Production changes driven by firms in HPI

Product Portfolio: Weight Highest Emission Product Remo

Production changes driven by firms in HPI

Productivity and Profitability Reum

Dependent variable:	Ln(Revenue	Ln(Quantity	EBITDA/
	Productivity)	Productivity)	Sales
	(1)	(2)	(3)
Post ×CEPI ^[60,100]	0.063	-0.719	0.039
	(0.042)	(1.128)	(0.140)
2008 Dependent Variable Mean (Control)	6.88	8.61	0.10
Adjusted-R ²	0.863	0.926	0.504
Observations	3,546	761	3,546

Notes. All models include Firm and State \times industry \times year FE.

Productivity and Profitability Reum

Treatment Interacted with Regulation Intensity

Dependent variable:	Ln(Revenue	Ln(Quantity	EBITDA/
	Productivity)	Productivity)	Sales
	(1)	(2)	(3)
Post ×CEPI ^[60,100]	0.063	-0.719	0.039
	(0.042)	(1.128)	(0.140)
Post \times CEPI $^{[60,100]}$ \times High-Polluting	-0.059*	-1.817*	-0.159
	(0.035)	(1.046)	(0.116)
Post \times CEPI $^{[60,100]}$ \times High-Polluting \times Regulation	-0.320**	-2.703	-0.545
	(0.136)	(4.174)	(0.453)
Adjusted-R ²	0.909	0.960	0.529
Observations	3,546	761	3,546

Notes. All models include Firm and State \times industry \times year FE.

Summarizing across-cluster heterogeneity em

- Large variation in which clusters reduce emissions ex post
- Ex-ante predictors of success include:
 - → Environmental regulation historical effectiveness index (Kattumuri and Lovo (2018))
 - → Prior environmental action plans (Greenstone and Hanna (2014))
 - → Cost-sharing policies (2009 CEPI action plans) Cost sharing evidence
 - → Proportion of small firms in city (firm registry)
 - → City corruption score, population density, renewable energy capacity and generation, CEPI improvement by 2011, incidence of not completing a prior environmental action plan, number of firms in compliance and number of firms that exited in prior action plan, poverty
- Principal components isolate predictive variation in model-free manner
 - ightarrow First two principal components explain 64% of the variation in predictive variables
 - → 73% correlation with CEPI improvement in clusters with 2009 CEPI of at least 70
 - ightarrow 49% correlation with air emissions reduction from satellite data