Can investors curb greenwashing?

Fanny Cartellier,¹ Peter Tankov,² David Zerbib²

¹Former PhD student at CREST, ENSAE, now at the University of Zurich ²CREST, ENSAE, Institut Polytechnique de Paris

> GRASFI 2024 Annual Conference Singapore, September 2–4, 2024

Greenwashing: a major issue

Greenwashing: The practice by which companies claim they are doing more for the environment than they actually are. (European Commission).

→ Annual screening of company websites (European Commission, 2021): In 42% of cases, the authorities "had reason to believe that the [company's] claim may be false or deceptive."

Why greenwashing?

- At equilibrium, environmentally well-rated companies benefit from lower costs of capital (Pástor et al., 2021; Pedersen et al., 2021; Zerbib, 2022).
- 2. The reliability of environmental scores is questionable (Berg et al., 2022):
 - companies' environmental footprints are challenging to measure accurately,
 - measurement methods are not standardized.
- Companies can benefit from information asymmetry about their true environmental values (Barbalau and Zeni, 2023) and communicate in an ambiguous manner (Fabrizio and Kim, 2019).
- Companies have the ability and the incentive to overstate their environmental value.

Greenwashing: a major issue

For investors: major obstacle to

- (i) environment-related risk assessment;
- (ii) environmental impact of investments.

Questions:

- What are the incentives for companies to greenwash?
- When do companies use environmental communication to greenwash?
- What role can investors play in influencing greenwashing practices?

What we do

- We build a dynamic asset pricing equilibrium model with
 - Information asymmetry about companies' environmental value;
 - Companies which can (i) communicate and (ii) reduce their emissions to influence their environmental score;
 - ► A representative investor (i) with pro-environmental preferences and (ii) who can penalize revealed environmental misrating (through the occurrence of controversies).

What we do

- We build a dynamic asset pricing equilibrium model with
 - Information asymmetry about companies' environmental value;
 - Companies which can (i) communicate and (ii) reduce their emissions to influence their environmental score:
 - A representative investor (i) with pro-environmental preferences and (ii) who can penalize revealed environmental misrating (through the occurrence of controversies).
- 2. We extend the model allowing for **interaction between companies** and solve the resulting game.

What we do

- We build a dynamic asset pricing equilibrium model with
 - Information asymmetry about companies' environmental value;
 - Companies which can (i) communicate and (ii) reduce their emissions to influence their environmental score;
 - A representative investor (i) with pro-environmental preferences and (ii) who can penalize revealed environmental misrating (through the occurrence of controversies).
- 2. We extend the model allowing for **interaction between companies** and solve the resulting game.
- 3. **We validate empirically** the environmental communication dynamics of green companies.

Contributions to the literature

- Greenwashing and environmental disclosure: Duflo et al. (2013); Duchin et al. (2023); Hoepner et al. (2017); Bingler et al. (2022, 2023) and Flammer (2021); Ilhan et al. (2023); Berg et al. (2022, 2021).
 - First theoretical paper linking greenwashing to investment decisions with Chen (2023).
- Sustainable asset pricing: Pástor et al. (2021); Pedersen et al. (2021); Zerbib (2022); Bolton and Kacperczyk (2021); De Angelis et al. (2023); Pástor et al. (2022); Zerbib (2022); Cheng et al. (2023); Avramov et al. (2022); Sauzet and Zerbib (2022); Berk and van Binsbergen (2021); Goldstein et al. (2022); Pástor et al. (2022); Ardia et al. (2023); Van der Beck (2023).
 - Correction for greenwashing in addition to green premium on expected returns.
- Asset pricing and information asymmetry: Grossman and Stiglitz (1980); Admati and Pfleiderer (1986); Hughes (1986); Easley and O'hara (2004); Lambert et al. (2012).
 - Asset pricing model with random revelation times.
- Impact investing: De Angelis et al. (2023); Hartzmark and Shue (2023); Favilukis et al. (2023); Green and Roth (2024); Oehmke and Opp (2024); Green and Roth (2024); Landier and Lovo (2023); Edmans et al. (2023); Barber et al. (2021); Bonnefon et al. (2022); Heeb et al. (2023).
 - Double positive impact of investors: curb greenwashing & foster abatement.

Outline

1 A dynamic equilibrium model with corporate greenwashing

2 Optimal greenwashing and investor's impact

3 Empirical evidence

Table of Contents

1 A dynamic equilibrium model with corporate greenwashing

2 Optimal greenwashing and investor's impact

3 Empirical evidence

Market setting

Probability space $(\Omega, \mathbb{F} = (\mathcal{F}_t)_{t>0}, \mathbb{P})$ with **infinite** time horizon.

Assets:

- 1 risk-free asset with zero interest rate
- n firms issuing stocks at quantity normalized to 1, indexed by i

Price process of the risky assets, $S \in \mathbb{R}^n$:

$$dS_t = \mu_t dt + \sigma dB_t,$$

- $\mu_t \in \mathbb{R}^n$ vector of expected returns, determined at equilibrium
- $\sigma \in \mathbb{R}^{n \times n}$ exogenously specified constant volatility matrix
- $B \in \mathbb{R}^n$ a.s. a Brownian motion

Environmental score

<u>Fundamental environmental value</u> of company *i*:

$$dV_t^i = \underbrace{v_t^i dt}_{\text{Abatement effect}}, \quad V_0^i = p^i,$$

with v^i the emissions reduction (or abatement) effort of company i.

Environmental score

<u>Fundamental environmental value</u> of company *i*:

$$dV_t^i = \underbrace{v_t^i dt}_{ ext{Abatement effect}}, \quad V_0^i = p^i,$$

with v^i the **emissions reduction (or abatement) effort** of company i.

BUT information asymmetry: the environmental value is UNKNOWN by the investor. **Proxy** for this value:

Environmental score

<u>Fundamental environmental value</u> of company *i*:

$$dV_t^i = \underbrace{v_t^i dt}_{\text{Abatement effect}}, \quad V_0^i = p^i,$$

with v^i the emissions reduction (or abatement) effort of company i.

BUT information asymmetry: the environmental value is UNKNOWN by the investor. **Proxy** for this value:

Environmental score of company *i*: $E_0^i = q^i$,

$$dE_t^i = \underbrace{a(V_t^i - E_t^i)dt}_{\text{Rating agency effect}} + \underbrace{(V_{t-}^i - E_{t-}^i)\Theta_t^i dN_t^i}_{\text{Controversy effect}} + \underbrace{c_t^i dt}_{\text{Communication effect}} + \underbrace{zdW_t^i}_{\text{Measurement error}}$$

- cⁱ the **environmental communication effort** of company i
- Nⁱ Poisson process, Wⁱ Brownian motion, independent from each other
- $\Theta_t^i \in [0, 1]$ random fraction of misrating revealed at controversy, $\mathbb{E}[\Theta_t^i] := b$.

Misrating proxy

Communication effort cⁱ

- allows the company to influence its score (c > 0, < 0, or = 0)
- can be deceptive.

Misrating proxy

Communication effort cⁱ

- allows the company to influence its score (c > 0, < 0, or = 0)
- can be deceptive.
- \Rightarrow Aware of this possibility, the investor tries to penalize **misrating** $E_t^i V_t^i$.

BUT Only source of **information**: $(\mathbf{E}_t^i)_t$ (the investor does not observe env. value V_t^i)

Misrating proxy

Communication effort cⁱ

- allows the company to influence its score (c > 0, < 0, or = 0)
- can be deceptive.
- \Rightarrow Aware of this possibility, the investor tries to penalize **misrating** $E_t^i V_t^i$.

BUT Only source of **information**: $(\mathbf{E}_t^i)_t$ (the investor does not observe env. value V_t^i)

 \Rightarrow use of **controversies history** which reveal a random fraction of the ongoing misrating (through jumps of N^i).

Misrating proxy:

$$dM_t^i = \underbrace{-\rho M_t^i dt}_{\text{Forgetting rate}} + \underbrace{(E_t^i - E_{t-}^i)^2 dN_t^i}_{\text{Square of misrating revealed by controversies}}, \qquad M_0^i = u^i$$

Formal definition of greenwashing

Greenwashing

Company *i* is *greenwashing* at time *t* if:

- (i) it is not underrated, that is, $E_t^i \geq V_t^i$,
- (ii) its environmental communication is positive, $c_t^i > 0$,
- (iii) it communicates more than it abates, $c_t^i > v_t^i$.

When the company is greenwashing, its *greenwashing effort* is defined as $c_t^i - v_t^i$.

⇒ Greenwashing is any communication effort that aims at creating or increasing a positive gap between the environmental score and the fundamental environmental value, when the company is accurately rated or already overrated.

Investor's program

Notations: all variables are $\in \mathbb{R}^n$ in this slide.

$$\sup_{\omega \in \mathbb{A}^{\omega}} \mathbb{E} \left[\int_{0}^{\infty} e^{-rt} \left\{ \underbrace{\omega_{t}' dS_{t} - \frac{\gamma}{2} \langle \omega' dS \rangle_{t}}_{\text{Mean-variance criterion}} + \underbrace{\omega_{t}' (\beta E_{t} - \alpha M_{t}) dt}_{\text{Non-pecuniary preferences}} \right\} \right]$$

Mean-variance criterion (Standard, e.g., Bouchard et al., 2018)

Non-pecuniary preferences:

- Pro-environmental preferences, βE_t (e.g., Pástor et al., 2021; Zerbib, 2022)
- Penalty on revealed misrating, $-\alpha M_t$
- \Rightarrow Expected returns $\mu_t \in \mathbb{R}^n$ determined at equilibrium

Company i's program

Notations: the exponent *i* indicates the *i*-th component of a vector.

Objective: Trade-off between reducing its **cost of capital** μ^{i} and the **quadratic costs** of environmental efforts

$$\inf_{(r^i,c^i)\in\mathbb{A}}\mathbb{E}\left[\int_0^\infty e^{-\delta t}\left(\mu^i_t+\frac{\kappa^i_v}{2}(v^i_t)^2+\frac{\kappa^i_c}{2}(c^i_t)^2\right)dt\right],$$

- μ_t^i : expected returns of company *i* determined at equilibrium
- $\frac{\kappa_t^i}{2}(v_t^i)^2$: quadratic costs of abatement effort, v_t^i
- $\frac{\kappa_c^i}{2}(c_t^i)^2$: quadratic costs of communication effort, c_t^i

Equivalent program with asset prices

Table of Contents

1 A dynamic equilibrium model with corporate greenwashing

2 Optimal greenwashing and investor's impact

3 Empirical evidence

Optimal portfolio and equilibrium expected returns

Proposition

The optimal asset allocation of the investor is the pointwise solution

$$\omega_t^* = \frac{1}{\gamma} \Sigma^{-1} (\mu_t + \beta E_t - \alpha M_t),$$

and the equilibrium expected return is

$$\mu_t = \gamma \Sigma \mathbf{1}_n - \boldsymbol{\beta} E_t + \boldsymbol{\alpha} M_t.$$

 βE_t : Green premium on expected returns (Pástor et al., 2021; Zerbib, 2022).

 αM_t : Additional correction for greenwashing companies.

Companies' program with explicit objective

Knowing equilibrium expected returns, companies' program becomes:

$$\inf_{(\boldsymbol{r}^i,\boldsymbol{c}^i)\in\mathbb{A}}\mathbb{E}\left[\int_0^\infty e^{-\delta t}\left(\gamma \boldsymbol{\Sigma} \mathbf{1}_n - \boldsymbol{\beta}\boldsymbol{E}_t^i + \boldsymbol{\alpha}\boldsymbol{M}_t^i + \frac{\kappa_r^i}{2}(\boldsymbol{r}_t^i)^2 + \frac{\kappa_c^i}{2}(\boldsymbol{c}_t^i)^2\right)dt\right].$$

Under the following constraints:

$$\begin{cases} dE_t^i = \textit{a}(V_t^i - E_t^i) \textit{d}t + (V_{t-}^i - E_{t-}^i) \Theta_t^i \textit{d}N_t^i + c_t^i \textit{d}t + \textit{z} \textit{d}W_t^i, & E_0^i = \textit{q}^i, \\ dV_t^i = v_t^i \textit{d}t, & V_0^i = \textit{p}^i, \\ dM_t^i = -\rho M_t^i \textit{d}t + (E_t^i - E_{t-}^i)^2 \textit{d}N_t^i, & M_0^i = \textit{u}^i, \\ \mathbb{A} := \left\{ (\textit{c}, \textit{v}) \in \mathbb{R}^2, \mathbb{F} - \text{prog. meas.} : \mathbb{E}[\int_0^\infty e^{-\delta^i \wedge \delta t} \left(|\textit{c}_t|^2 + |\textit{v}_t|^2 \right) \textit{d}t] < \infty \right\} \end{cases}$$

 \Rightarrow Each company looks for r^i and c^i that maximize its environmental score, E^i , controlling for its misrating proxy, M^{i} , and costs of environmental action (abatement and communication), $\frac{\kappa_r^i}{2} (\mathbf{v}_t^i)^2 + \frac{\kappa_c^i}{2} (\mathbf{c}_t^i)^2$.

Optimal strategies

Proposition (Optimal strategies)

The optimal environmental communication effort, $c^{i,*}$, and abatement effort, $v^{i,*}$, of company i are as follows:

$$\begin{split} \boldsymbol{c}_t^{i,*} &= \frac{1}{\kappa_c^i} \left(\boldsymbol{B}^i - \boldsymbol{A}^i (\boldsymbol{E}_t^{i,*} - \boldsymbol{V}_t^{i,*}) \right), \\ \boldsymbol{v}_t^{i,*} &= \frac{1}{\kappa_v^i} \left(\frac{\beta}{\delta} - \boldsymbol{B}^i + \boldsymbol{A}^i (\boldsymbol{E}_t^{i,*} - \boldsymbol{V}_t^{i,*}) \right), \end{split}$$

where

$$B^{i} = \frac{\beta(1 + \frac{A^{i}}{\delta \kappa_{V}^{i}})}{\delta + a + b\lambda^{i} + \frac{2A^{i}}{\tilde{\kappa}^{I}}}, \qquad A^{i} = \frac{\tilde{\kappa}^{i}}{4} R^{i} \left(\sqrt{1 + \frac{16}{\tilde{\kappa}^{i}}} \frac{T^{i}}{(R^{i})^{2}} - 1\right)$$
$$T^{i} = \frac{2\lambda^{i} b^{2} \alpha}{(1 + b)(\delta + \rho)}, \quad R^{i} = \delta + 2a + \frac{2\lambda^{i} b}{1 + b}, \quad \tilde{\kappa}^{i} = \frac{2}{\frac{1}{\kappa^{I}} + \frac{1}{\kappa^{I}}}$$

with $E^{i,*}, V^{i,*}$ state variables when the optimal strategies $c^{i,*}, v^{i,*}$ are employed, $A^i, B^i \geq 0$ and $\frac{\beta}{\delta} - B^i \geq 0$.

Optimal greenwashing effort when $\beta > 0$, $\alpha > 0$

Proposition (Greenwashing effort)

If the following condition (*) is satisfied,

$$\frac{\kappa_V^i}{\kappa_C^i} > \frac{a + b\lambda^i}{\delta},\tag{*}$$

company i greenwashes if, and only if,

$$0 \leq E_t^{i,*} - V_t^{i,*} < \frac{1}{\frac{2}{\bar{\kappa}^j} A^i} G_{max}^i, \qquad G_{max}^i = \frac{2}{\bar{\kappa}^i} B^i - \frac{\beta}{\delta \kappa_v^i}.$$

When it greenwashes, its greenwashing effort is as follows:

$$c_t^{i,*} - v_t^{i,*} = G_{max}^i - \frac{2}{\bar{\kappa}^i} A^i (E_t^{i,*} - V_t^{i,*})$$

When condition (*) is not satisfied, company i never greenwashes.

NB: $a + b\lambda^i \equiv$ Revelation intensity (inverse: degree of information asymmetry).

⇒ Companies greenwash to maintain their environmental score at a certain level above their environmental value

Impact of investor's preferences and penalty

- β Sensitivity of pro-environmental preferences of the investor
- α Investor's penalty on revealed misrating

Proposition (Investor's impact on greenwashing)

When condition (*) is satisfied, the maximal greenwashing effort, G_{max}^i , increases linearly in β and decreases in a convex way in α .

Proposition (Investor's impact on abatement)

The constant part in the abatement effort, $\frac{1}{\kappa'_i}\left(\frac{\beta}{\delta}-B^i\right)$, increases linearly in β , and, when condition (*) is satisfied, increases in a concave way in α .

 \Rightarrow Adds to the impact investing literature (Landier and Lovo, 2023; Green and Roth, 2024; Pástor et al., 2022; De Angelis et al., 2023; Oehmke and Opp, 2024).

Impact of investors on greenwashing and abatement

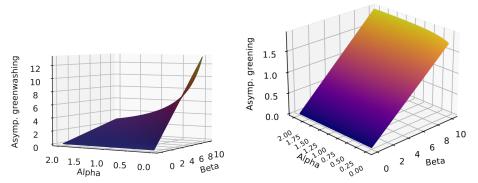


Figure: Average greenwashing and abatement as a function of β and α . Asymptotic expected optimal greenwashing ($\lim_{t\to\infty}\mathbb{E}[c_t^*-v_t^*]$; left) and abatement ($\lim_{t\to\infty}\mathbb{E}[v_t^*]$; right) as a function of the pro-environmental sensitivity, β , and the misrating penalty, α .

- Greenwashing and abatement efforts increase linearly with green preferences β .
 - ullet Penalty ${\color{blue} \alpha}$ strongly deters greenwashing, and encourages abatement.
- Calibration , which verifies condition (*), and $\kappa_V/\kappa_c=50$.

Greenwashing and transparency parameters

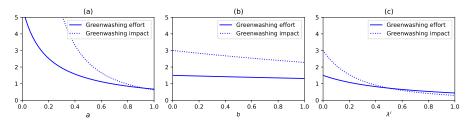


Figure: **Greenwashing and transparency parameters when** $\alpha = 0$. The maximum greenwashing effort, G^i_{max} , (solid lines), and greenwashing impact, $\lim_{t \to \infty} \mathbb{E}[E^{i,*}_t - V^i_t,*]$, (dotted lines), as a function of transparency parameters a, b, λ^i , when the investor's penalty, α , is null.

- 1. Without investor's penalty on misrating ($\alpha = 0$):
 - The rating agency's efficiency, a, strongly deters greenwashing effort & impact.
 - Controversy frequency, λ^i , and portion of misrating revealed, \boldsymbol{b} , are also dissuasive but with a smaller magnitude.

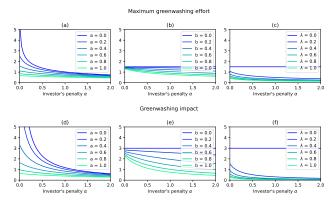


Figure: Greenwashing and penalty α for various transparency parameters. The maximum greenwashing effort, G^i_{max} , and greenwashing impact, $\lim_{t\to\infty} \mathbb{E}[E^i_t, -V^i_t]$, as a function of the investor's penalty, α , for different values of transparency parameters a, b, λ^i .

2. With investor's penalty on misrating ($\alpha > 0$):

- The effect of **a** replaces rather than cumulates with the penalty α .
- The existence of controversies ($\lambda^i > 0$, b > 0) is *necessary* for α to have an impact, and the magnitude of λ^i , b amplify the impact of the penalty α .

Greenwashing and technological change

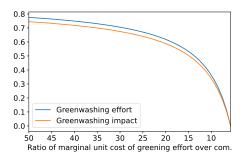


Figure: **Greenwashing and technological change.** Maximum greenwashing effort, G^i_{max} , and impact, $\lim_{t\to\infty}\mathbb{E}[E^{i,*}_t-V^{i,*}_t]$, as function of the ratio of marginal unit costs of abatement and communication κ^i_r/κ^i_c . Consistently with Proposition 3.3, greenwashing is zero when the threshold represented by condition (*) is hit.

 \Rightarrow Curbing greenwashing through green technological change would require a sustained and pronounced R&D effort to bring down κ_r^i before being effective on greenwashing effort and impact.

What if environmental scores were normalized?

Extension of the investor's program:

$$\sup_{\omega \in \mathbb{A}^{\omega}} \mathbb{E} \left[\int_{0}^{\infty} e^{-rt} \left\{ \underbrace{\omega_{t}' dS_{t} - \frac{\gamma}{2} \langle \omega' dS \rangle_{t}}_{\text{Mean-variance criterion}} + \underbrace{\omega_{t}' \left(\beta \frac{E_{t}}{h(\frac{1}{n} \sum_{i} E_{t}^{i})} - \alpha M_{t}\right) dt}_{\text{Non-pecuniary preferences}} \right\} \right],$$

h a regular function approximating identity on \mathbb{R}_+ .

Two interpretations:

- Investors practice a "best-in-class" strategy.
- Rating agencies standardize environmental scores.

Method and results

Resolution approach of the *n*-player game:

- approximate with the mean field limit $(n \to \infty)$,
- show that there exists a unique Nash equilibrium in the equivalent mean field game.

Main results:

- Qualitatively, optimal abatement, communication and greenwashing efforts follow the same pattern as in the baseline case
- 2. However, **all efforts are lower** at the Nash equilibrium, as cross-sectional comparison decreases the incentive to get high environmental ratings.

Table of Contents

1 A dynamic equilibrium model with corporate greenwashing

Optimal greenwashing and investor's impact

3 Empirical evidence

Empirical analysis

Challenge: No robust, exhaustive, and dynamic data on companies' emission abatement. ⇒ Unreliable test for greenwashing

Empirical analysis

Challenge: No robust, exhaustive, and dynamic data on companies' emission abatement. \Rightarrow Unreliable test for greenwashing

However, we build a proxy for environmental communication effort, \hat{c}_t^i , and:

- analyze its strength;
- 2. test the dynamics of the model:

$$oldsymbol{c}_t^{i,*} = rac{1}{\kappa_G^i} \left(oldsymbol{B}^i - oldsymbol{\mathsf{A}}^i (oldsymbol{E}_t^{i,*} - oldsymbol{V}_t^{i,*})
ight)$$

Empirical analysis

Challenge: No robust, exhaustive, and dynamic data on companies' emission abatement. ⇒ Unreliable test for greenwashing

However, we build a proxy for environmental communication effort, \hat{c}_t^i , and:

- 1. analyze its strength;
- 2. test the dynamics of the model:

$$oldsymbol{c}_t^{i,*} = rac{1}{\kappa_G^i} \left(oldsymbol{B}^i - oldsymbol{\mathsf{A}}^i (oldsymbol{E}_t^{i,*} - oldsymbol{V}_t^{i,*})
ight)$$

Monthly data from Covalence:

- an environmental reputation score, Rep ∈ [0, 100];
- an environmental controversy score, Con ∈ [0, 100];
- an environmental performance score, E ∈ [0, 100].

Sample: 3,769 global companies between December 2015 and December 2022: 145,508 firm×month observations.

Empirical Method

We build a two-step method:

- Step 1: Build a proxy for the environmental communication effort, out of Rep and Con
 - \Rightarrow Analyze \hat{c}_t^i

- Step 2: Test the dynamics of environmental communication effort
 - \Rightarrow Test the equilibrium equation based on \hat{c}_t^i

Method: Step 2 (Dynamics of env. comm. effort)

Recall, we want to test:

$$oldsymbol{c}_t^{i,*} = rac{1}{\kappa_c^i} \left(oldsymbol{B}^i - oldsymbol{\mathsf{A}}^i (oldsymbol{\mathcal{E}}_t^{i,*} - oldsymbol{V}_t^{i,*})
ight)$$

Challenge: V_t^i is unobservable and probably correlated with E_t^i .

Method: Step 2 (Dynamics of env. comm. effort)

Recall, we want to test:

$$oldsymbol{c}_t^{i,*} = rac{1}{\kappa_c^i} \left(oldsymbol{B}^i - oldsymbol{\mathsf{A}}^i (oldsymbol{E}_t^{i,*} - oldsymbol{V}_t^{i,*})
ight)$$

Challenge: V_t^i is unobservable and probably correlated with E_t^i .

Idea: we can test the **time derivative** (first diff.) of c_t^i by making the reasonable assumption that the V_t^i is highly inert from one month to the next.

Method: Step 2 (Dynamics of env. comm. effort)

Recall, we want to test:

$$c_t^{i,*} = \frac{1}{\kappa_c^i} \left(B^i - A^i (E_t^{i,*} - V_t^{i,*}) \right)$$

Challenge: V_t^i is unobservable and probably correlated with E_t^i .

Idea: we can test the **time derivative** (first diff.) of c_t^i by making the reasonable assumption that the V_t^i is highly inert from one month to the next.

To address simultaneity issues, we estimate:

$$\Delta \hat{\mathbf{c}}_t^i = \alpha_3^i + \iota_{3,t} + \beta_3 \Delta \mathbf{E}_t^{i,*} + \varepsilon_{3,t}^i,$$

where $\Delta E_t^{i,*}$ is the prediction of the following regression:

$$\Delta E_t^i = \alpha_4^i + \beta_4 E_{t-2}^i + \varepsilon_{4,t}^i.$$

Summary of results from the empirics

Conclusions about environmental communication:

- Companies have implemented a quasi-structural positive envir. com. policy
- 2. Counter-cyclical dynamic of the envir. com., as highlighted by the model
- ⇒ Supported by the low marginal unit cost of communication and the asymmetry of information (Barbalau and Zeni, 2023), the **greenwashing** option, at least part of the time, is the most likely.

Conclusion

- Investors' pro-environmental preferences incentivize companies to greenwash
 - Impeding further abatement efforts
- Investors can curb greenwashing practices by penalizing misrating revealed by controversies
 - ► This, in turn, encourages abatement
- · Policymakers can also curb greenwashing and increase abatement:
 - (i) regulations strengthening transparency
 - (ii) support for environmental technological innovation
- These results are qualitatively robust to the introduction of an interaction between companies; however, standardization of environmental ratings seems detrimental to abatement efforts.
- Empirical results suggest that companies tend to greenwash significantly.

Thank you!

peter.tankov@ensae.fr

Bibliography I

- Admati, A. R. and Pfleiderer, P. (1986). A monopolistic market for information. *Journal of Economic Theory*, 39(2):400–438.
- Ardia, D., Bluteau, K., Boudt, K., and Inghelbrecht, K. (2023). Climate change concerns and the performance of green vs. brown stocks. *Management Science*, 69(12):7607–7632.
- Avramov, D., Cheng, S., Lioui, A., and Tarelli, A. (2022). Sustainable investing with ESG rating uncertainty. *Journal of Financial Economics*, 145(2):642–664.
- Barbalau, A. and Zeni, F. (2023). The optimal design of green securities. Working, Paper.
- Barber, B. M., Morse, A., and Yasuda, A. (2021). Impact investing. *Journal of Financial Economics*, 139(1):162–185.
- Berg, F., Fabisik, C., and Sautner, Z. (2021). Is history repeating itself? The (un)predictable past of ESG ratings. Working, Paper.
- Berg, F., Koelbel, J. F., and Rigobon, R. (2022). Aggregate confusion: The divergence of ESG ratings. Review of Finance, 26(6):1315–1344.
- Berk, J. B. and van Binsbergen, J. H. (2021). The impact of impact investing. Working, Paper.
- Bingler, J., Kraus, M., Leippold, M., and Webersinke, N. (2022). Cheap talk in corporate climate commitments: The effectiveness of climate initiatives. *Swiss Finance Institute Research Paper*, (22-54).
- Bingler, J., Kraus, M., Leippold, M., and Webersinke, N. (2023). How cheap talk in climate disclosures relates to climate initiatives, corporate emissions, and reputation risk. *Working*, Paper.

Bibliography II

- Bolton, P. and Kacperczyk, M. T. (2021). Do investors care about carbon risk? *Journal of Financial Economics*, 142(2):517–549.
- Bonnefon, J.-F., Landier, A., Sastry, P. R., and Thesmar, D. (2022). The moral preferences of investors: Experimental evidence. *Working*, Paper.
- Bouchard, B., Fukasawa, M., Herdegen, M., and Muhle-Karbe, J. (2018). Equilibrium returns with transaction costs. *Finance and Stochastics*, 22:569–601.
- Chen, H. (2023). Talk or walk the talk? the real impact of ESG investing. The Real Impact of ESG Investing (May 19, 2023).
- Cheng, G., Jondeau, E., Mojon, B., and Vayanos, D. (2023). The impact of green investors on stock prices. Working, Paper.
- De Angelis, T., Tankov, P., and Zerbib, O. D. (2023). Climate impact investing. *Management Science*, 69(12):7669–7692.
- Duchin, R., Gao, J., and Xu, Q. (2023). Sustainability or greenwashing: Evidence from the asset market for industrial pollution. Working, Paper.
- Duflo, E., Greenstone, M., and Ryan, N. (2013). Truth-telling by third-party auditors and the response of polluting firms: Experimental evidence from India. The Quarterly Journal of Economics, 128(4):1499–1545.
- Easley, D. and O'hara, M. (2004). Information and the cost of capital. The Journal of Finance, 59(4):1553-1583.

Bibliography III

- Edmans, A., Levit, D., and Schneemeier, J. (2023). Socially responsible divesmtent. Working, Paper.
- Fabrizio, K. R. and Kim, E.-H. (2019). Reluctant disclosure and transparency: Evidence from environmental disclosures. Organization Science, 30(6):1207–1231.
- Favilukis, J., Garlappi, L., and Uppal, R. (2023). Evaluating the impact of portfolio mandates. Working, Paper.
- Flammer, C. (2021). Corporate green bonds. Journal of Financial Economics, 142(2):499-516.
- Goldstein, I., Kopytov, A., Shen, L., and Xiang, H. (2022). On ESG investing: Heterogeneous preferences, information, and asset prices. Working, Paper.
- Green, D. and Roth, B. (2024). The allocation of socially responsible capital. Working, Paper.
- Grossman, S. J. and Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. *American Economic Review*, 70(3):393–408.
- Hartzmark, S. and Shue, K. (2023). Counterproductive sustainable investing: The impact elasticity of brown and green firms. Working, Paper.
- Heeb, F., Kölbel, J. F., Paetzold, F., and Zeisberger, S. (2023). Do investors care about impact? *Review of Financial Studies*, 36(5):1737–1787.
- Hoepner, A. G. F., Dimatteo, S., Schauld, J., Yi, P.-S., and Musolesi, M. (2017). Tweeting About Sustainability: Can Emotional Nowcasting Discourage Greenwashing? ICMA Centre Discussion Papers in Finance icma-dp2017-02, Henley Business School, University of Reading.

Bibliography IV

- Hughes, P. J. (1986). Signalling by direct disclosure under asymmetric information. *Journal of Accounting and Economics*, 8(2):119–142.
- Ilhan, E., Krueger, P., Sautner, Z., and Starks, L. T. (2023). Climate risk disclosure and institutional investors. Review of Financial Studies, 36(7):2617–2650.
- Lambert, R. A., Leuz, C., and Verrecchia, R. E. (2012). Information asymmetry, information precision, and the cost of capital. *Review of Finance*, 16(1):1–29.
- Landier, A. and Lovo, S. (2023). ESG investing: How to optimize impact? Working, Paper.
- Oehmke, M. and Opp, M. M. (2024). A theory of socially responsible investment. *Review of Economic Studies*,, forthcoming.
- Pástor, L., Stambaugh, R. F., and Taylor, L. A. (2021). Sustainable investing in equilibrium. *Journal of Financial Economics*, 142(2):550–571.
- Pedersen, L. H., Fitzgibbons, S., and Pomorski, L. (2021). Responsible investing: The ESG-efficient frontier. *Journal of Financial Economics*, 142(2):572–597.
- Pástor, L., Stambaugh, R. F., and Taylor, L. A. (2021). Sustainable investing in equilibrium. *Journal of Financial Economics*, 142(2):550–571.
- Pástor, L., Stambaugh, R. F., and Taylor, L. A. (2022). Dissecting green returns. *Journal of Financial Economics*, 146(2):403–424.

Bibliography V

Sauzet, M. and Zerbib, O. D. (2022). When green investors are green consumers. Working, Paper.

Van der Beck, P. (2023). Flow-driven ESG returns. Working, Paper.

Zerbib, O. D. (2022). A sustainable capital asset pricing model (S-CAPM): Evidence from environmental integration and sin stock exclusion. *Review of Finance*, 26(6):1345–1388.

Companies' program in terms of asset prices

Company i's program is equivalent to the following:

$$\sup_{(r^i,c^i)\in\mathbb{A}}\mathbb{E}\left[\int_0^\infty e^{-\delta t}\left(\delta(S_0^i-S_t^i)-\frac{\kappa_r^i}{2}(r_t^i)^2-\frac{\kappa_c^i}{2}(c_t^i)^2\right)dt\right],$$

with S_0^i the initial price of the asset issued by company *i*.

Equilibrium expected returns: Sketch of the proof

Definition (Equilibrium expected returns)

μ so that:

- the investor implements her optimal investing strategy ω^* ,
- market clears: $\forall i, \ \forall t, \ \omega_t^{*,i} = 1$.

Proof.

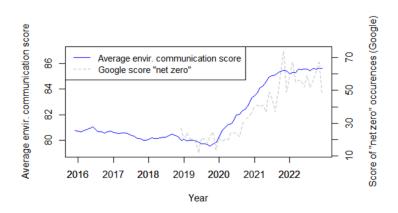
- Define the candidate optimal strategy $\omega_t^* := \frac{1}{\gamma} \Sigma^{-1} (\mu_t + \beta E_t \alpha M_t)$.
- The investor's program can be rewritten as

$$\sup_{\omega \in \mathbb{A}^{\omega}} \mathbb{E} \left[\int_0^{\infty} e^{-\delta' t} \left\{ -\frac{\gamma}{2} (\omega_t - \omega_t^*)' \Sigma(\omega_t - \omega_t^*) + \frac{\gamma}{2} \omega_t^{*'} \Sigma \omega_t^* \right\} dt \right].$$

- \Rightarrow The optimal portfolio choice of the investor is thus the pointwise solution ω_t^* .
- In addition, writing $\mathbf{1}_n$ a vector of ones of size n, market clearing condition writes: $\forall t, \ \omega_t^* = \mathbf{1}_n$.
- Equilibrium expected returns are therefore $\mu_t = \gamma \Sigma \mathbf{1}_n \beta E_t + \alpha M_t$.

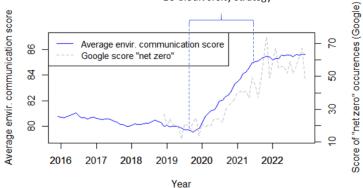
- 1. Show that, at optimum, optimal strategies verify the following: $\kappa_c^i c_t^{i*} + \kappa_r^i r_t^{i*} = \frac{\beta}{\delta}$.
- 2. Reduce the dimension of the problem by a change of variable:
 - ▶ State variables: $(E, V, M) \Rightarrow (X, M), X := E V$ (overrating)
 - Controls: $(c, r) \Rightarrow \xi, \quad \xi := c r$ (greenwashing effort)
 - Equivalent program:

$$\sup_{\substack{\xi=c-r,\\(r,c)\in\mathbb{A}}}\mathbb{E}\left[\int_0^\infty e^{-\delta t}\left(\beta X_t^{\mathsf{X}}-\alpha M_t^{\mathsf{u}}-\frac{\bar{\kappa}}{4}\left(\xi_t+\frac{\beta}{\delta\kappa_r}\right)^2\right)dt\right].$$


3. Solve the equivalent program with **one-dimensional** control variable. HJB equation:

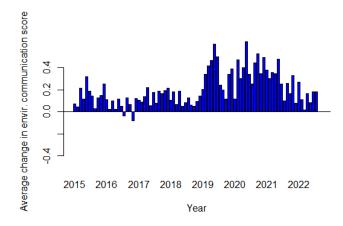
$$\max_{\xi \in \mathbb{R}} \left\{ \beta x - \alpha u - \frac{\bar{\kappa}}{4} \left(\xi + \frac{\beta}{\delta \kappa_r} \right)^2 - \delta v + \frac{\partial v}{\partial x} (-ax + \xi) - \frac{\partial v}{\partial u} \rho u + \frac{z^2}{2} \frac{\partial^2 v}{\partial x^2} + \lambda \left[v(x(1-b), u + b^2 x^2) - v(x, u) \right] \right\} = 0.$$

4. Deduce optimal strategies in the optimal problem using equality stated in 1.



Estimation: Step 1 (Environmental communication)

Key environmental regulations worldwide. E.g., EU:


- EU Green Deal, regulations on binding annual emission reductions,
- circular economy,
- sustainable finance,
- EU biodiversity strategy

Estimation: Step 1 (Environmental communication)

Estimation: Step 1 (Environmental comm effort, \hat{c}_t^i)

 \Rightarrow 98.8% of the average monthly environmental communication over the period is positive.

Dependent variable: $\Delta \hat{c}^i$

Estimation: Step 2 ($\Delta \hat{c}_t^i = \alpha_3^i + \iota_{3,t} + \beta_3 \Delta E_t^{i,*} + \varepsilon_{3,t}^i$)

	Dependent variable. Δe_t							
	Top brownest companies:							
	10%	20%	30%	40%	50%			
$\Delta E_t^{i,*}$	-0.071	-0.164**	-0.244***	-0.221***	-0.271***			
·	(0.051)	(0.065)	(0.073)	(0.067)	(0.060)			
Firm FE	Yes	Yes	Yes	Yes	Yes			
Month FE	Yes	Yes	Yes	Yes	Yes			
Observations	18,760	30,711	44,116	56,785	68,276			
\mathbb{R}^2	0.005	0.006	0.008	0.010	0.013			
Adjusted R ²	$1 R^2 -0.061 -0.0$		-0.041	-0.035	-0.029			
F Statistic	0.985	3.525*	5.460**	3.608*	4.949**			
	Dependent variable: $\Delta \hat{c}_t^i$							
		Top	brownest cor	npanies:				
	60%	70%	80%	90%	Whole sample			
$\Delta E_{t}^{i,*}$	-0.237***	-0.176***	-0.188***	-0.158***	-0.119***			
·	(0.053)	(0.049)	(0.046)	(0.040)	(0.033)			
Firm FE	Yes	Yes	Yes	Yes	Yes			
Month FE	Yes	Yes	Yes	Yes	Yes			
Observations	83,309	97,324	110,206	123,864	145,508			
\mathbb{R}^2	0.015	0.016	0.017	0.017	0.017			
Adjusted R ²	-0.023	-0.019	-0.015	-0.012	-0.008			
F Statistic	3.476*	1.756	1.875	1.195	0.661			

Note:

Dependent variable: $\Lambda \hat{c}^i$

Estimation: Step 2 ($\Delta \hat{c}_t^i = \alpha_3^i + \iota_{3,t} + \beta_3 \Delta E_t^{i,*} + \varepsilon_{3,t}^i$)

	Dependent variable: Δc_t							
	Top greenest companies:							
	10%	20%	30%	40%	50%			
$\Delta E_t^{i,*}$	-0.255***	-0.342***	-0.446***	-0.405***	-0.415***			
	(0.079)	(0.069)	(0.072)	(0.061)	(0.057)			
Firm FE	Yes	Yes	Yes	Yes	Yes			
Month FE	Yes	Yes	Yes	Yes	Yes			
Observations	21,644	35,302	48,184	62,199	77,232			
\mathbb{R}^2	0.018	0.019	0.021	0.020	0.020			
Adjusted R ²	-0.018	-0.018 -0.013 -0.01		-0.010	-0.009			
F Statistic	4.284**	8.542***	14.584***	11.377***	10.606***			
	Dependent variable: $\Delta \hat{c}_t^i$							
	Top greenest companies:							
	60%	70%	80%	90%	Whole sample			
$\Delta E_{t}^{i,*}$	-0.404***	-0.380***	-0.294***	-0.237***	-0.119***			
ι	(0.052)	(0.054)	(0.052)	(0.044)	(0.033)			
Firm FE	Yes	Yes	Yes	Yes	Yes			
Month FE	Yes	Yes	Yes	Yes	Yes			
Observations	88,723	101,392	114,797	126,748	145,508			
\mathbb{R}^2	0.022	0.022	0.022	0.021	0.017			
Adjusted R ²	-0.007	-0.006	-0.006	-0.006	-0.008			
F Statistic	8.727***	6.709***	3.513*	2.169	0.661			

Note:

Testing the equation of optimal communication

⇒ Companies, **especially the greenest ones**, use **environmental communication** in a **counter-cyclical way** with respect to the evolution of their environmental score, in line with the results of the model.

The results are **robust** to:

- Controling for systematic risks and returns.
- Repeating the estimation starting at different dates: December 2012, December 2017, December 2019, and December 2021.
- Using 3 environmental subscores related to (i) the environmental impacts of the products sold, (ii) the resources used, and (iii) the emissions, effluents, and waste.

What about greenwashing?

Conclusions about environmental communication:

- 1. Companies have implemented a quasi-structural positive envir. com. policy
- 2. Counter-cyclical dynamic of the envir. com., as highlighted by the model

Three possible interpretations:

- 1. Companies are structurally underrated.
 - \rightarrow But no evidence of underrating; in addition evidence that rating agencies tend to be biased in favor of borrowers (Manso, 2013)
- 2. Companies use communication to support their continuous abatement effort.
 - ightarrow But monthly communication is very likely to be more volatile than environmental value.
- 3. Companies **greenwash** at least part of the time.
 - \rightarrow Supported by the low MUC of communication and the asymmetry of information (Barbalau and Zeni, 2023).
- ⇒ The **greenwashing** option, at least part of the time, is the most likely.

Robustness: Controls

10% -0.205 (0.182) -0.335 (0.287) 0.005 (0.015) Yes Yes	Top 20% -0.380** (0.178) -0.222 (0.245) 0.008 (0.014) Yes	9 greenest com 30% -0.261* (0.142) -0.002 (0.217) -0.013 (0.027)	40% -0.243** (0.096) 0.348 (0.241) 0.008 (0.013)	50% -0.280*** (0.093) 0.480** (0.232) -0.009		
-0.205 (0.182) -0.335 (0.287) 0.005 (0.015) Yes Yes	-0.380** (0.178) -0.222 (0.245) 0.008 (0.014)	-0.261* (0.142) -0.002 (0.217) -0.013	-0.243** (0.096) 0.348 (0.241) 0.008	-0.280*** (0.093) 0.480** (0.232)		
(0.182) -0.335 (0.287) 0.005 (0.015) Yes Yes	(0.178) -0.222 (0.245) 0.008 (0.014)	(0.142) -0.002 (0.217) -0.013	(0.096) 0.348 (0.241) 0.008	(0.093) 0.480** (0.232)		
-0.335 (0.287) 0.005 (0.015) Yes Yes	-0.222 (0.245) 0.008 (0.014)	-0.002 (0.217) -0.013	0.348 (0.241) 0.008	0.480** (0.232)		
(0.287) 0.005 (0.015) Yes Yes	(0.245) 0.008 (0.014)	(0.217) -0.013	(0.241) 0.008	(0.232)		
0.005 (0.015) Yes Yes	0.008 (0.014)	-0.013	0.008			
(0.015) Yes Yes	(0.014)			-0.009		
Yes Yes		(0.027)	(0.012)			
Yes	N.		(0.013)	(0.014)		
		Yes	Yes	Yes		
	Yes	Yes	Yes	Yes		
8,084	12,272	16,003	19,503	23,219		
0.016	0.021	0.023	0.022	0.020		
-0.023	-0.012	-0.008	-0.009	-0.009		
1.504	3.582	1.748	3.120	5.449		
Dependent variable: $\Delta \hat{c}_t^i$						
	Top	greenest con	panies:			
60%	70%	80%	90%	Whole sample		
-0.385****	-0.284***	-0.251***	-0.193***	-0.083*		
(0.093)	(0.086)	(0.093)	(0.067)	(0.050)		
0.375*	0.185	0.316*	0.255*	0.252**		
(0.220)	(0.170)	(0.171)	(0.153)	(0.124)		
0.005	0.008	-0.011	-0.0002	0.010		
(0.011)	(0.011)	(0.012)	(0.010)	(0.007)		
Yes	Yes	Yes	Yes	Yes		
Yes	Yes	Yes	Yes	Yes		
25,745	28,779	32,062	35,208	41,252		
0.023	0.022	0.023	0.022	0.016		
-0.007	-0.007	-0.006	-0.006	-0.012		
	2.722	4.029	2.754	3.014		
	-0.385*** (0.093) 0.375* (0.220) 0.005 (0.011) Yes Yes 25,745 0.023	Top 70% 70% 70% 70% 70% 70% 70% 70% 70% 70%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Robustness: Period

		Dependent	variable: $\Delta \hat{c}_t^i$			
		50% browne	st companies			
	Since 2012	Since 2017	Since 2019	Since 2021		
$\Delta E_t^{i,*}$	-0.271^{***} (0.060)	-0.226^{***} (0.057)	-0.220^{***} (0.072)	-0.237*** (0.087)		
Firm FE Time FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
Observations R ² Adjusted R ² F Statistic	68,276 0.013 -0.029 $4.949**$	$57,626$ 0.014 -0.034 3.497^*	$43,107$ 0.019 -0.042 3.420^*	19,098 0.022 -0.093 4.817**		
	Dependent variable: $\Delta \hat{c}_t^i$					
	Since 2012	50% greenes Since 2017	st companies Since 2019	Since 2021		
$\Delta E_t^{i,*}$	-0.415*** (0.057)	-0.457^{***} (0.061)	-0.449*** (0.065)	-0.353*** (0.069)		
Firm FE Time FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
Observations R ² Adjusted R ² F Statistic	77,232 0.020 -0.009 10.606***	64,719 0.022 -0.012 13.629***	48,000 0.026 -0.020 18.549***	20,768 0.029 -0.075 9.557***		

Note:

*p<0.1; **p<0.05; ***p<0.01

Robustness: Subscores

	Depe	ndent variable	$\Delta \hat{c}_t^i$		Deper	ndent variable	$\Delta \hat{c}_t^i$
	50% brownest companies		-	50% greenest companies			
	(1)	(2)	(3)		(1)	(2)	(3)
$\Delta E_t^{Imp,i,*}$	-0.142*** (0.046)			$\Delta E_t^{Imp,i,*}$	-0.269*** (0.042)		
$\Delta E_t^{Res,i,*}$		-0.180^{***} (0.047)		$\Delta E_t^{Res,i,*}$		-0.252*** (0.038)	
$\Delta E_t^{Emi,i,*}$			-0.204^{***} (0.051)	$\Delta E_t^{Emi,i,*}$			-0.225*** (0.036)
Firm FE	Yes	Yes	Yes	Firm FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Time FE	Yes	Yes	Yes
Observations	68,276	68,276	68,276	Observations	77,232	77,232	77,232
\mathbb{R}^2	0.006	0.005	0.015	\mathbb{R}^2	0.013	0.009	0.014
Adjusted R ²	-0.036	-0.037	-0.027	Adjusted R ²	-0.016	-0.020	-0.016
F Statistic	2.087	3.580*	3.978**	F Statistic	5.953** 72	8.354***	8.135***
				Note:	*p<	<0.1; **p<0.05	5; ***p<0.01

Directional marginal benefits

Let $\epsilon > 0$. For a pair of communication and abatement strategies $c, r \in \mathbb{A}$ and a pair of test functions $\delta c, \delta r \in \mathbb{A}$, let us define the associated pair of modified strategies:

$$c_s^{\epsilon} := c_s + \epsilon \delta c_s, \qquad r_s^{\epsilon} := r_s + \epsilon \delta r.$$

Define the functional J(c, r) as the expected discounted integral of the cost of capital:

$$J(c,r) := \mathbb{E}\left[\int_0^\infty e^{-\delta t} \left\{-\gamma \Sigma \mathbf{1}_n + \beta E_t^{c,r} - \frac{\alpha}{\alpha} M_t^{c,r}\right\} dt\right],$$

Then, the expected marginal benefits of communication and abatement along directions δc and δr are defined respectively as the directional (Gateaux) derivatives of J in these two directions:

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(J(c + \epsilon \delta c, r) - J(c, r) \right), \qquad \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(J(c, r + \epsilon \delta r) - J(c, r) \right).$$

Marginal benefits of emissions reduction and communication

The directional marginal benefits (Gâteaux derivatives) are linear, and can be expressed through Frechet derivatives D_t^c and D_t^r :

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(J(c + \epsilon \delta c, r) - J(c, r) \right) = \mathbb{E} \left[\int_0^\infty e^{-\delta t} D_t^c J(c, r) \, \delta c_t \, dt \right],$$

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(J(c, r + \epsilon \delta r) - J(c, r) \right) = \mathbb{E} \left[\int_0^\infty e^{-\delta t} D_t^r J(c, r) \, \delta r_t \, dt \right].$$

The derivatives D_t^c and D_t^r shall be called marginal benefits of increasing communication or abatement at a given time t.

Reference calibration

Table: Calibration.

Parameter	Value
а	0.4
b	1
λ	8.5%
$\kappa_{m{c}}$	1
κ_r	50
$oldsymbol{eta}$	1
α	1
ho	0.1
δ	0.1
Z	0.2

