

Weitzman Meets Taylor:

ETS Futures Drivers and Carbon Cap Rules

Ghassane Benmir¹ Josselin Roman² Luca Taschini³

¹IE University and Business School

²European Commission - Joint Research Centre

³University of Edinburgh Business School; Grantham Research Institute (LSE)

GRASFI 2-4 Spetember 2024

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
•00000	00	000	00	0000	000	0000	000	000000000000000000000000000000000000

Motivation

□ ▶ < ☐ ▶ < ∃ ▶ < ∃ ▶ ∃
 > ○ < ○ 2/42

Carbon pricing 1.0: 'single order' policies

• Most existing cap-and-trade systems (aka ETSs) are 'single order' policies

• fixed cap & rigid permits allocation schedule

Features to respond to temporary shocks:

- banking and borrowing (temporal flexibility)
- cost and price containment mechanism
- auction reserve price

In this paper

Motivation

00000

Adaptive cap

Emission demand and supply shocks

- Emission permits price should reflect stringency of the system (*supply*) and the market fundamentals associated with the demand of permits
- Large and/or persistent shocks can affect the policy outcome:
- economic activity

In this paper

Motivation

000000

- technological innovation and progress Tech
- changes in regulations (allocation & companion policies)

Adaptive cap

Carbon prices are extremely volatile

Standard Deviation in Agri and Metal Commodities and Currencies

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 ○ 3/42</p>

Enter carbon pricing 2.0: contingent policy design

Ideal instrument \rightarrow contingency message whose instructions depend on which state of the world is revealed (economic shock, technology advancement, changes in policies, etc.).

• Knew for long: Weitzman (1974) and Roberts and Spence (1976).

Motivation

000000

In this paper

 Indexed regulation on (more or less) observable indicators: Ellerman and Wing (2003), Newell and Pizer (2008), Heutel (2012), Golosov et al (2014), Karp and Traeger (2023).

Adaptive cap

Enter carbon pricing 2.0: contingent policy design

Ideal instrument \rightarrow contingency message whose instructions depend on which state of the world is revealed (economic shock, technology advancement, changes in policies, etc.).

• Knew for long: Weitzman (1974) and Roberts and Spence (1976).

Motivation

000000

In this paper

 Indexed regulation on (more or less) observable indicators: Ellerman and Wing (2003), Newell and Pizer (2008), Heutel (2012), Golosov et al (2014), Karp and Traeger (2023).

Adaptive cap

Contingent policy design: supply and demand shocks

• Respond to what really drives the price of emission allowances

Blue bars indicate demand shocks and correspond to COVID-19 onset (February 2020), Ukraine invasion (February 2022), and ECB interest rate hike over a decade (August 2022).

DQ @ 7/42

Red bars indicate supply shocks and correspond to EU ETS Phase 4 approval (Feb. 2018) and Phase 4 start (Jan. 2021)

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	●○	000	00	0000	000	0000	000	000000000000000000000000000000000000

In this paper

◆□▶ < @▶ < ミ▶ < ミ▶ ミ シ へ マ の へ ?? 8/42</p>

- Empirical: identify key determinants of EU ETS price
 - General equilibrium model that account for key demand and supply shocks
 - Novel estimation of less-frequently observable factors
 - Primary price drivers: energy prices, transition sentiment, abatement, and policy (supply) shocks.
- Theoretical: propose carbon cap rule (CCR) counterpart of Taylor rule
 - CCR function: cap management (responsive cap)
 - CCR responds to deviation in both emission and abatement costs.
 - \rightarrow CCR reduces overall price uncertainty over the business cycle

		lotivation 00000	In this paper 00		Estimation 00	Results 0000	Comparison 000	Adaptive cap 0000	Conclusion 000	Appendix 000000000000000000000000000000000000
--	--	---------------------	---------------------	--	------------------	-----------------	-------------------	----------------------	-------------------	--

Model

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • • ○ へ ○ 10/42

Model elements: a quick overview

Demand and supply uncertainty

Model

000

- Climate change and emissions dynamics: •• more
 - Carbon intensity shock
- Energy Firms: •• more

In this paper

• Energy productivity shock; energy prices shocks; abatement shock

Adaptive cap

Appendix

- Non-energy Firms: •• more
 - Total factor productivity shock; energy prices shocks
- Households: •• more
 - Consumption shock
- Government: •• more
- Environmental Authority: •• more
 - Policy (supply) shock

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	●○	0000	000	0000	000	0000000000000

Estimation

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Data and estimation strategy

In this paper

- Data and estimation strategy:
 - Eurostat: productivity and consumption patterns;
 - OECD and Bloomberg: energy supply and prices;
 - EDGAR¹ (CO₂ emissions): policy/supply shock;
 - ICE (EUA futures prices): abatement shock;

Estimation

- Bua et al (2022): carbon transition (sentiment) shock.
- Time frame: January 2013 December 2019.

Adaptive cap

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	00	•000	000	0000	000	00000000000000

Results

EUA futures price decomposition

De-trended EUA futures price (black line) broken down into different drivers over the estimated period 2013-2019.

EUA futures price variance decomposition

EUA futures price variance decomposition over different horizons.

Estimated abatement costs and abatement investment

Results

000

Adaptive cap

In this paper

<u>Notes:</u> The figure displays the estimated abatement costs as a deviation of their steady state, alongside the actual data on climate mitigation investment for the EU in detrended log million euros.

◆□ ▶ < 圕 ▶ < Ξ ▶ < Ξ ▶ Ξ · の Q ○ 18/42</p>

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	00	0000	•00	0000	000	00000000000000

Comparison

Motivation In this paper Model Estimation Results Comparison Adaptive cap Conclusion Appendix EU ETS and optimal policy (SCC): how much 'excess' volatility

Deviations of estimated EUA price and SCC in percentage from their respective steady states.

Motivation In this paper Model Estimation Results Comparison Adaptive cap Conclusion Appendix EU ETS carbon price vs. SCC: a less volatile carbon price

	ETS Cap Policy	Social Cost of Carbon
	Estimated	Optimal
	Column (1)	Column (2)
Emissions (Std. Dev.)	0.9 %	2.44 %
Abatement Cost (Std. Dev.)	18.33 %	9.33 %
Carbon Price (Std. Dev.)	19.17 %	0.31 %

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	00	0000	000	•000	000	000000000000000000000000000000000000

Adaptive cap

Adaptive cap and rule for a central carbon bank

In this paper

• Fear of making costly mistakes due to volatile prices deter businesses from investing in capital-intensive projects or adopting new technologies.

Adaptive cap

• Adaptive cap adjusts the quantity of emission permits (Q_t) in the market:

$$\mathsf{Q}_t = \overline{\mathsf{Q}} + \phi_e \frac{(e_t^E - \overline{e}^E)}{\overline{e}^E} + \phi_z \frac{(z_t - \overline{z})}{\overline{z}},$$

 \bar{e}^{E} and \bar{z} are the de-trended steady-state emissions and abatement cost.

• Carbon cap rule counterpart of Taylor rule: respond to deviations in both emissions and abatement costs.

Carbon Cap Rules that minimize std. carbon price

Model

In this paper

	ETS Cap Policy	Social Cost of Carbon	Carbon Cap Rule
	Estimated	Optimal	$\phi_{z}=0.1853$ and $\phi_{e}=-0.0027$
	Column (1)	Column (2)	Column (3)
Consumption (Std. Dev.)	1.74 %	1.78 %	1.73 %
Output - Industrial Prod (Std. Dev.)	1.11 %	1.11 %	1.11 %
Emissions (Std. Dev.)	0.9 %	2.44 %	2.46 %
Abatement Cost (Std. Dev.)	18.33 %	9.33 %	8.29 %
Carbon Price (Std. Dev.)	19.17 %	0.31 %	3.51 %

Adaptive cap

0000

Appendix

Table: Policy Scenarios Estimated Second Moments

• CCR prioritizes control of abatement costs over strictly adhering to per-period emission level.

EUA, SCC, and CCR variation

In this paper

Model

Motivation 000000

Results

Comparison

Adaptive cap

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	00	0000	000	0000	●○○	0000000000000000

Conclusion

- Novel strategy to estimate and decompose the drivers of the EU ETS.
 - Key driving factors: Energy fundamentals, transition demand, abatement, and policy (supply).
- Compared to the SCC, the EU ETS price is 80 times more volatile
 - Volatility in EU ETS prices generates yearly losses of 0.006 percent in consumption-equivalent terms compared to the SCC case.
- Carbon cap rule can significantly reduce price volatility and welfare losses (close to SCC)
 - Possible rule to operate a Central Carbon Bank

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	00	0000	000		○○●	00000000000000

THANK YOU!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • ○ Q ○ 28/42</p>

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	00	0000	000	0000	000	●000000000000000000000000000000000000

Appendix

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 29/42</p>

Rio Tinto and Alcoa announce world's first carbon-free aluminium smelting process

This Carbon-Neutral Cement Is the Future of Infrastructure

It could eliminate the a gigatons of carbon dioxide annually pumped into the atmosphere through traditional cement production.

D SAVE ANTICLE

- Cement, a key ingredient in <u>concrete</u>, requires mined limestone. Now, researchers are replacing the kinestone with microelase.
- Adding in this biogenic limestone can make concrete <u>carbon neutral</u>, and potentially carbon negative, by palling carbon disside from the atmosphere.
- By growing calcium carbonate through <u>photosynthesis</u>, the biogenic limestone can replace quarried limestone.

Image: A matrix

MONTREAL, May 10, 2018 – Rio Tinto and Alcoa Corporation today announced a revolutionary process to make aluminium that produces oxygen and eliminates all direct greenhouse gas emissions from the traditional smelting process.

< 這 Return 這 の Q (~ 30/42)

Drivers: policy and regulatory changes

• Koch et al. (2016) and Deeney et al. (2016)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • つへで 31/42

• Global temperature:

$$\mathcal{T}_{t+1}^o = \zeta_1^o(\zeta_2^o X_t - \mathcal{T}_t^o) + \mathcal{T}_t^o,$$

• Cumulative CO₂ emissions:

$$X_{t+1} = \eta X_t + (E_t^E + E_t^{NE}) + E_t^*,$$

- E_t^E from energy production (Y_t^E) and E_t^{NE} non-energy sector
- E_t^* non-anthropogenic emissions and $0 < \eta < 1$ persistence of emissions

Climate change and emissions dynamics 2/2

• Flow of emission (abated for energy sector):

$$E_t^{\mathcal{E}} = (1 - \mu_t) \varphi_{\mathsf{E}} \epsilon_t^{\varphi_{\mathsf{E}}} Y_t^{\mathcal{E}} \Gamma_t^{\mathcal{X}}, \text{ and } E_t^{\mathcal{N} \mathcal{E}} = \varphi_{\mathsf{N} \mathsf{E}} Y_t^{\mathcal{N} \mathcal{E}} \Gamma_t^{\mathcal{X}}$$

Adaptive cap

- Γ_t^X exogenous carbon transition trend (decoupling emissions and production)
- $\varphi_{\mathsf{E}} \geq 0$ carbon-intensity and $0 \leq \mu_t \leq 1$ fraction of abated emissions
- Carbon intensity shock of energy production:

$$\log\left(\varepsilon_{t}^{\varphi_{\mathsf{E}}}\right) = \rho_{\varphi_{\mathsf{E}}}\log\left(\varepsilon_{t-1}^{\varphi_{\mathsf{E}}}\right) + \eta_{t}^{\varphi_{\mathsf{E}}},$$

with $\eta_t^{\varphi_{\mathsf{E}}} \sim N(0, \sigma_{\varphi_{\mathsf{E}}}^2)$.

In this paper

Appendix

Energy Firms: Production

Model

• Production:

In this paper

$$\tilde{Y}_t^E = \varepsilon_t^{A_E} A_t^E (K_t^E)^{\alpha_E} (\Gamma_t^Y I_t^E)^{1-\alpha_E} \Gamma_t^{Y^E},$$

Adaptive cap

Appendix

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで 34/42

Results

• Energy productivity shock:

$$\log\left(\varepsilon_{t}^{A^{\mathcal{E}}}\right) = \rho_{A^{\mathcal{E}}}\log\left(\varepsilon_{t-1}^{A^{\mathcal{E}}}\right) + \eta_{t}^{A^{\mathcal{E}}}$$

with $\eta_t^{A^E} \sim N(0, \sigma_{A^E}^2)$.

Energy Firms: Profits and abatement

• Profits:

In this paper

$$\Pi_t^{\mathcal{E}} = \varepsilon_t^{\rho} p_t^{\mathcal{E}} Y_t^{\mathcal{E}} - w_t^{\mathcal{E}} I_t^{\mathcal{E}} - I_t^{\mathcal{E}} - (f(\mu_t) Y_t^{\mathcal{E}}) - \tau_t E_t^{\mathcal{E}}.$$

Adaptive cap

• Energy price shock:

$$\log\left(\varepsilon_{t}^{p}\right) = \rho_{p}\log\left(\varepsilon_{t-1}^{p}\right) + \eta_{t}^{p},$$

with $\eta_t^p \sim N(0, \sigma_p^2)$.

• Abatement cost function per unit of production and abatement shock:

$$f\left(\mu_{t}
ight)= heta_{1}\mu_{t}^{ heta_{2}}arepsilon_{t}^{z} \;\; ext{and} \;\; \log\left(arepsilon_{t}^{z}
ight)=
ho_{z}\log\left(arepsilon_{t-1}^{z}
ight)+\eta_{t}^{z}$$

with $\eta_t^z \sim N(0, \sigma_z^2)$.

Appendix

Final good firms: Production

Model

• Production:

In this paper

$$Y_t^{\mathsf{NE}} = \varepsilon_t^{\mathcal{A}^{\mathsf{NE}}} \mathcal{A}_t^{\mathsf{NE}} (\mathcal{K}_t^{\mathsf{NE}})^{\alpha_{\mathsf{NE}}} (\Gamma_t^{Y} I_t^{\mathsf{NE}})^{1-\alpha_{\mathsf{NE}}}$$

Adaptive cap

Appendix

Results

• Total factor productivity (TFP) shock:

$$\log\left(\varepsilon_{t}^{\mathcal{A}^{\mathsf{NE}}}\right) = \rho_{\mathcal{A}^{\mathsf{NE}}}\log\left(\varepsilon_{t-1}^{\mathcal{A}^{\mathsf{NE}}}\right) + \eta_{t}^{\mathcal{A}^{\mathsf{NE}}}$$

with $\eta_t^{A^{\rm NE}} \sim N(0, \sigma_{A^{\rm NE}}^2)$

• Households' consumption:

$$\mathbb{E}_t \sum_{t=0}^{\infty} \beta^t \varepsilon_t^B u \left(C_t - H_{t-1} - D_u(T_t^o) \right)$$

• Preference shock

$$\log \varepsilon_t^B = \rho_B \log \varepsilon_{t-1}^B + \eta_t^B$$

- with $\eta_t^B \sim N(0, \sigma_B^2)$
- Budget constraint:

$$w_t^{\mathsf{NE}} I_t^{\mathsf{NE}} + w_t^{\mathsf{E}} I_t^{\mathsf{E}} + r_t B_t + \Pi_t^{\mathsf{E}} + \Pi_t^{\mathsf{F}} - T_t = C_t + B_{t+1}$$

Government's budget

$$G_t = T_t + \tau_t E_t.$$

• The resource constraint of the economy

$$Y_t = C_t + I_t^{\mathsf{NE}} + I_t^{\mathsf{E}} + G_t + Z_t.$$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ≫ ○ < ○ 38/42

Motivation In this paper Model Estimation Results Comparison Adaptive cap Conclusion Appendix Constrained authorities

• Environmental regulation

$$E_t^E = Q_t \epsilon_t^S$$

where Q_t is allowance emissions allocation

• Supply shock

$$\log \varepsilon_t^{S} = \rho_S \log \varepsilon_{t-1}^{S} + \eta_t^{S}$$

with $\eta_t^S \sim N(0, \sigma_S^2)$

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	00	0000	000		000	○○○○○○○○○●○○
Param	neters Va	alue						

Parameter	Value	Definition
σ^{U}	1.5	Risk Aversion
β	0.9986	Discount Factor
α^{E}	0.33	Elasticity to Capital Input in Energy Production
α^{NE}	0.33	Elasticity to Capital Input in Non-Energy Production
χ	0.02	Share of Energy in the CES
σ	0.20	Substitution Parameter in the CES
δ	0.0083	Depreciation of Energy and Non-Energy Capital
φ^{E}	0.0055	Emission Intensity in Energy Production
φ^{P}_{φ} NE	0.0002	Emission Intensity in Non-Energy Production
Θ^{T}	26.29	Dis-utility Sensitivity to Temperature
η	0.0004	Decay Rate of Emissions in the Atmosphere
ζ_1^o	0.50	Climate Transient Parameter
ζ_2^o	0.00125	Climate Transient Parameter
θ_1	0.239	Level of the Abatement Cost Function
θ_2	2.7	Curvature of the Abatement Cost Function
θ_2 $\frac{\bar{g}}{\bar{y}}$	0.22	Government Spending to Output Ratio

Motivation	In this paper	Model	Estimation	Results	Comparison	Adaptive cap	Conclusion	Appendix
000000	00	000	00	0000	000	0000	000	00000000000●0
Mome	ents mat	ching						

Variable	Label	Target	Source
ETS Mean Carbon Price (euros)	au	7.54	ICE
Cumulative Emission (World, GtC)	X	800	Copernicus (EC)
Monthly Emission Flow (World, GtCO2)	$E^{T} + E^{*}$	4.51	Ourworldindata
Share of EU27 in World Emissions (%)	$E^T/(E^T+E^*)$	6.73	Ourworldindata
Share of Emissions from Energy Generation in the EU (%)	E^E/E^T	33.56	OECD
Emission intensity in the EU (kCO2 / euros)	E^{T}/Y	0.20	OECD
Emission intensity from Energy Generation in the EU (kCO2 / euros)	E^{E}/Y	0.07	OECD
Abatement level (percentage of energy emissions)	μ	0.20	EDGAR (EC)
Temperature	T°	1.00	NOAA

Notes: All the values reported in this table are perfectly matched by the model at the steady state.

Model

Results

Comparison

Adaptive cap

Appendix 0000000000000

Estimated Parameters

		Prior Distributions				Posterior Distributions		
Shock processes:		Distribution	Mean	Std. Dev.	Mean	[0.05 ; 0.95]		
Std. Dev. Goods Productivity	σ_A	\mathcal{IG}_2	0.10	0.05	0.02	[0.01 ; 0.02]		
Std. Dev. Energy Productivity	σ_{A_n}	\mathcal{IG}_2	0.10	0.05	0.01	[0.01 ; 0.02]		
Std. Dev. Energy Price	σ_{p}	\mathcal{IG}_2	0.10	0.05	0.09	[0.07 ; 0.11]		
Std. Dev. Climate Sentiment	σ_{φ_E}	\mathcal{IG}_2	0.10	0.05	0.02	[0.01 ; 0.02]		
Std. Dev. Consumption	σ_B	\mathcal{IG}_2	0.10	0.05	0.10	[0.09 ; 0.13]		
Std. Dev. Abatement Cost	σ_Z	\mathcal{IG}_2	0.10	0.05	0.06	[0.05 ; 0.07]		
Std. Dev. Allowances Supply	σ_{S}	\mathcal{IG}_2	0.10	0.05	0.02	[0.01; 0.02]		
AR(1) Goods Productivity	ρ_A	\mathcal{B}	0.30	0.10	0.49	[0.32; 0.68]		
AR(1) Energy Productivity	ρ_{A_n}	\mathcal{B}	0.30	0.10	0.35	[0.018 ; 0.54]		
AR(1) Energy Price	ρ_p	\mathcal{B}	0.30	0.10	0.36	[0.22; 0.49]		
AR(1) Climate Sentiment	ρ_{φ_E}	\mathcal{B}	0.30	0.10	0.34	[0.21; 0.50]		
AR(1) Consumption	ρς	\mathcal{B}	0.30	0.10	0.21	[0.09; 0.30]		
AR(1) Abatement Cost	Pz	\mathcal{B}	0.30	0.10	0.86	[0.83; 0.89]		
AR(1) Allowances Supply	ρ_{S}	\mathcal{B}	0.30	0.10	0.31	[0.15 ; 0.50]		
Measurements errors:								
Consumption Survey		U	0.0001	0.003	0.010	[0.009 ; 0.010]		
Industrial Production		U	0.0001	0.003	0.010	[0.009; 0.010]		
Emissions		U	0.0001	0.007	0.025	[0.024 ; 0.025]		
Structural Parameters:								
TFP Trend	$(\gamma^y - 1) \times 100$	U	0.00	0.29	0.17	[0.05; 0.27]		
Emissions Trend	$(\gamma^{x}-1) \times 100$	U	0.00	0.29	-0.28	[-0.50 ; -0.07]		