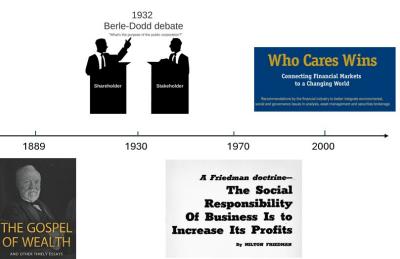
One Hundred and Thirty Years of Corporate Responsibility


Joel F. Houston Sehoon Kim Boyuan Li

University of Florida

September 4, 2024

Motivation

Introduction 00000

ANDREW CARNEGIE

1889

Motivation

Introduction

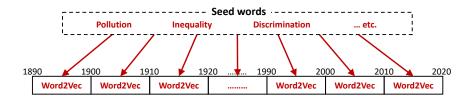
- ► Corporate responsibility is **not** a new concept
- ▶ But most studies in the literature confined to recent time periods (Bolton and Kacperczyk, 2021; 2023; Pastor, Stambaugh, and Taylor, 2022; Dyck, Lins, Roth, and Wagner, 2019; Liang and Renneboog, 2017; etc.)
- We do not understand which aspects of ESG become more pertinent issues to stakeholders at different points of time, why, and how that affects firms

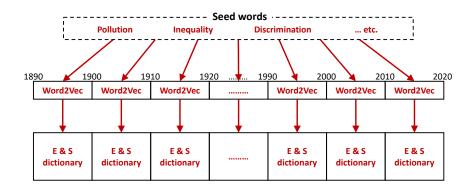
This Paper

Introduction

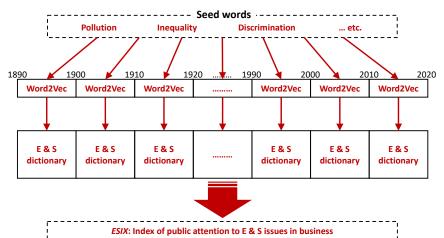
- Natural Language Processing (NLP) to measure public attention to E&S issues throughout U.S. history in the last 130 years
- How has this measure evolved over time, and how is it correlated with socio/macroeconomic variables?
- ► How does exposure to this measure affect stock returns?
- ► How does public attention to E&S issues affect the level and efficiency of corporate investments in the short- and long-run?

Preview of Results


Introduction 00000


- Corporate responsibility exists throughout history; varies in interesting patterns
 - Public attention to social issues increases at times of economic and social instability
 - Public attention to environmental issues increases at times of relative prosperity
- Limited ability of markets to price long-run real implications of the emphasis on corporate responsibility
- Public attention to corporate responsibility dampens corporate investment in the short-run, but benefits in the long-run

Data


- Historical news articles
 - ProQuest TDM Studio
 - WSJ and NYT, 1890 to 2023
 - 4 million business news articles
- Historical macroeconomic variables
 - Real GDP growth rates and unemployment rates: the Jordá, Schularick, and Taylor (2016) Macrohistory database
 - NBFR recession indicators: St. Louis Fed.
 - Wealth inequality: Piketty, Saez, and Zucman (2018)
 - Political frictions: Poole and Rosenthal (1984); Azzimonti (2018)
 - Climate policy uncertainty: Gavriilidis (2021)
- Stock returns: CRSP, from 1926 onward
- Firm fundamentals: Compustat, from 1960 onward

18	90 19	00 19	10 19	20	19	90 20	00 20	10 20	20
	Word2Vec	Word2Vec	Word2Vec			Word2Vec	Word2Vec	Word2Vec	

Article-level fraction of n-grams that belong to E & S dictionary, averaged monthly

Evolving Dictionaries

Evolution of keywords related to "Pollution"

1920

1970

2020

pollution pollution pollution pollution pollution airpollution

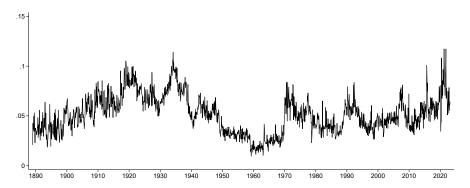
climatechange
environmentalprotectionagency
climatechange
environmentalprotectionagency
climatechange
environmentalprotectionagency
roommentalprotectionagency
roommentalprotectionagency
roommentalprotection
airpollution emission meneral
corporationagency
corporati

Evolution of keywords related to "Inequality" and "Discrimination"

1920

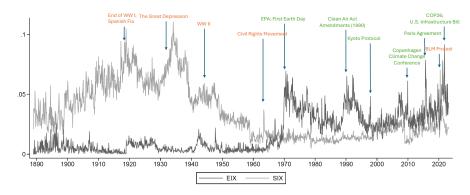
1970

2020

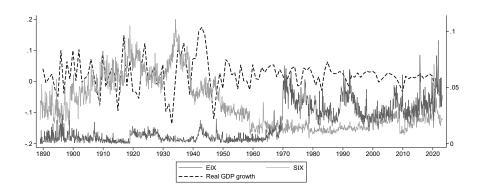


ES-Index (ESIX)

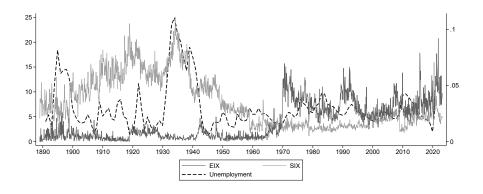
Article-level share of n-grams belonging to E&S dictionary, averaged monthly

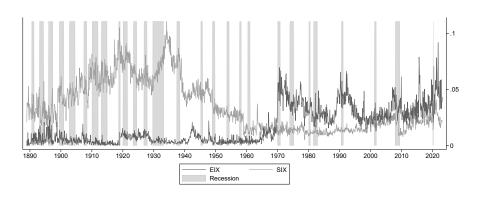

$$ESIX_t = \frac{1}{J} \sum_{j=1}^{J} \frac{\text{\# E\&S n-grams}_{j,t}}{\text{\# n-grams}_{j,t}}$$

computed using articles related to "business", "economy", or "corporation"

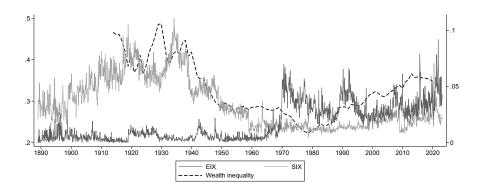


Environmental (EIX) and Social (SIX) Components


Peaks around notable historical events


GDP Growth

Unemployment



Recessions

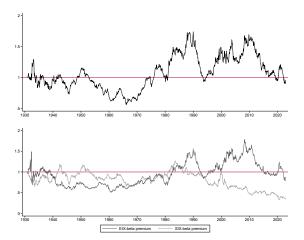
Income Inequality

Exposure to ESIX and Future Stock Returns

Stocks that have tended to do well amid high ESIX do not earn higher returns

Five-year rolling-window factor regressions ($\tau = t-60$ to t-1)

$$r_{i,\tau} - rf_{\tau} = \alpha_i + \beta_i \cdot \Delta ESIX_{\tau} + \gamma_i \cdot [rm_{\tau} - rf_{\tau}] + \delta_i \cdot SMB_{\tau} + \eta_i \cdot HML_{\tau} + \epsilon_{i,\tau}$$


 \triangleright β_i : ESIX exposure for firm i

$$r_{i,t} = \beta \cdot ESIX \ exposure_{i,t-1} + \gamma' \cdot \mathbf{X}_{i,t-1} + \eta_i + \theta_t + \epsilon_{i,t}$$

	Dependent variable: Monthly stock return $_{i,t}$							
	Full sample period		Pre	-1970	Post-1970			
$ESIX$ exposure $_{i,t-1}$	(1) -0.002 (0.002)	(2)	(3) -0.001 (0.003)	(4)	(5) -0.002 (0.003)	(6)		
EIX exposure $_{i,t-1}$		-0.000 (0.003)	, ,	-0.063*** (0.018)		0.001 (0.003)		
SIX exposure $_{i,t-1}$		-0.007*** (0.002)		0.001 (0.003)		-0.009*** (0.002)		
Observations	1,817,883	1,817,883	246,322	246,322	1,571,559	1,571,559		
Stock FE	Y	Y	Υ	Υ	Y	Y		
Year-by-month FE	Y	Υ	Υ	Y	Y	Υ		
Stock controls	Υ	Υ	Υ	Υ	Υ	Υ		
Adj R ²	0.136	0.136	0.390	0.390	0.109	0.109		

Exposure to ESIX and Future Stock Returns

Cumulative return on high-low ESIX exposure portfolio rebalanced each month

ESIX and Corporate Investments

Do public concerns about environmental and social externalities have real effects on corporate investments?

$$\frac{Capex_{i,t}}{Assets_{i,t-1}} = \beta_1 \cdot ESIX_{t-1} + \beta_2 \cdot \Delta ESIX_{t-1} + \gamma' \cdot \mathbf{X}_{i,t-1} + \eta_i + \theta_{j,[t-10 \to t-1]} + \epsilon_{i,t}$$

$$\tag{1}$$

- X: Tobin's q, ROA, long-term debt, firm size
- \triangleright η_i : firm fixed effects
- $\theta_{j,[t-10\to t-1]}$: industry-by-decade fixed effects

ESIX and Corporate Investments

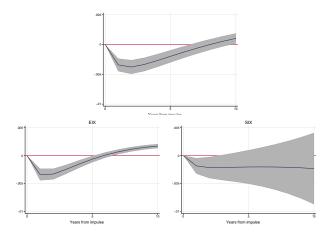
	Dependent variable: Capital expenditures $_t/Assets_{t-1}$					
ESIX	(1) -0.085*** (0.025)	(2)	(3)	(4)	(5) -0.081*** (0.025)	(6)
$\Delta \textit{ESIX}$	()	-0.027* (0.017)			-0.018 (0.017)	
EIX		()	-0.098*** (0.029)		(,	-0.096*** (0.030)
SIX			-0.015 (0.084)			-0.004 (0.090)
$\Delta \textit{EIX}$			(0.004)	-0.028*		-0.015
ΔSIX				(0.017) -0.026 (0.033)		(0.017) -0.033 (0.036)
Observations Controls	202,664 Y	202,664 Y	202,664 Y	202,664 Y	202,664 Y	202,664 Y
Firm FE	Ý	Ý	Ý	Ý	Ϋ́	Ý
Industry-by-decade FE	Y	Ý	Y	Ý	Ý	Y
Adj R ²	0.420	0.420	0.420	0.420	0.420	0.420

Economic magnitude: one standard deviation increase in ESIX (0.02) is associated with 0.17 percentage point decrease in firm investment

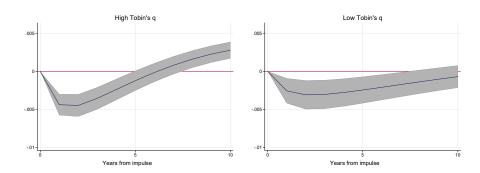
ESIX and Investment Efficiency

Is higher ESIX associated with changes in investment efficiency?

$$\frac{Capex_{i,t}}{Assets_{i,t-1}} = \beta_1 \cdot ESIX_{t-1} \times Tobin's \ q_{i,t-1}
+ \beta_2 \cdot \Delta ESIX_{t-1} \times Tobin's \ q_{i,t-1}
+ \gamma' \cdot \mathbf{X}_{i,t-1} + \eta_i + \theta_{j,t} + \epsilon_{i,t},$$
(2)

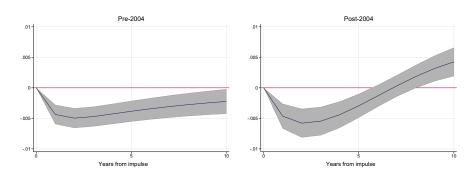

- **X**: Tobin's q, ROA, long-term debt, firm size
- η_i: firm fixed effects
- \bullet $\theta_{i,t}$: industry-by-year fixed effects

ESIX and Investment Efficiency

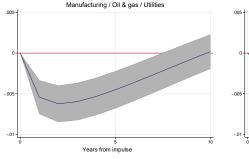

	Dependent variable: Capital expenditures $_t/Assets_{t-1}$						
$ESIX \times Tobin's q$	(1) -0.085*** (0.018)	(2)	(3)	(4)	(5) -0.070*** (0.018)	(6)	
$\Delta \textit{ESIX} \times Tobin's \ q$, ,	-0.073*** (0.027)			-0.058** (0.027)		
$EIX \times Tobin's q$			0.072** (0.030)			0.094*** (0.032)	
$SIX \times Tobin's q$			-0.517*** (0.057)			-0.543*** (0.077)	
$\Delta \textit{EIX} imes ext{Tobin's } q$			(* ***)	-0.066** (0.026)		-0.057** (0.026)	
$\Delta \mathit{SIX} imes Tobin's \ \mathit{q}$				-0.096** (0.040)		0.056	
Tobin's q	0.018*** (0.001)	0.014*** (0.001)	0.021*** (0.001)	0.014*** (0.001)	0.017*** (0.001)	0.021*** (0.001)	
Observations Controls	202,657 Y	202,657 Y	202,657 Y	202,657 Y	202,657 Y	202,657 Y	
Firm FE	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Ϋ́	
Industry-by-year FE	Υ	Υ	Υ	Υ	Υ	Υ	
Adj R ²	0.437	0.437	0.437	0.437	0.437	0.437	

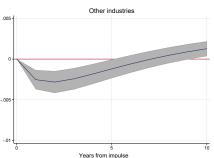
Level of investment initially declines, but ultimately recovers/improves long-run

▶ Impulse responses from panel VARs estimated via GMM



Efficiency of investment initially declines, but ultimately recovers/improves long-run (i.e., faster and sharper recoveries in investments by high-q firms)




ESIX and Short/Long-Term Investment Dynamics

Faster and sharper recoveries in investments after 2004 (i.e., post-ESG era)

Initial decline stronger and recovery slower for firms in emission-intensive sectors

Conclusion

- Create long-run historical ESIX (1890 to present) to capture public attention to environmental and social issues related to business
 - SIX: arise during times of internal economic and social instability
 - EIX: increase during times of relative prosperity
- - Heightened public attention dampens investment in the short-run, but

Conclusion

- Create long-run historical ESIX (1890 to present) to capture public attention to environmental and social issues related to business
 - ▶ SIX: arise during times of internal economic and social instability
 - EIX: increase during times of relative prosperity
- Demonstrate how we can apply ESIX in asset pricing
 - Limited ability of markets to price long-run real implications of the emphasis on corporate responsibility
- ► Relate ESIX to corporate investment
 - ► Heightened public attention dampens investment in the short-run, but enhances it in the long-run

- Create long-run historical ESIX (1890 to present) to capture public attention to environmental and social issues related to business
 - SIX: arise during times of internal economic and social instability
 - EIX: increase during times of relative prosperity
- Demonstrate how we can apply ESIX in asset pricing
 - Limited ability of markets to price long-run real implications of the emphasis on corporate responsibility
- Relate ESIX to corporate investment
 - Heightened public attention dampens investment in the short-run, but enhances it in the long-run