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Abstract
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sacrificing absolute risk-adjusted returns. While adding a biodiversity objective to a portfolio
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‡ Eric Bouyé (ebouye@worldbank.org), Romain Deguest (rdeguest@worldbank.org), and Jérôme Teiletche
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Climate change is a primary driver of biodiversity loss. And climate

change depends on biodiversity as part of the solution. So clearly the

two are linked, and cannot be separated.

Elizabeth Mrema, Executive Secretary, United Nations Convention on Biological Diversity

1 Introduction

Like policymakers and businesses, environmental damage and its economic consequences have be-

come a priority concern for investors. While the focus was initially put on the implications of

climate change, investors’ interest has more recently evolved towards an additional type of sus-

tainability risk. Biodiversity1 matters to humans and the planet for their well-being and the many

services provided, including crop pollination, water purification, nutrient cycling, soil formation,

flood protection, and carbon sequestration. The critical importance of nature for economies is

increasingly recognized and quantified (Dasgupta, 2021; World Bank, 2021). Accordingly, any

damage to nature implying biodiversity loss has a substantial economic impact and is of increasing

concern to investors. For instance, biodiversity loss was ranked in 2024 as the third risk by the

World Economic Forum, while it was not mentioned five years before, contrary to climate change,

already listed as a critical risk by then.

Despite this need, academic studies of biodiversity finance have remained scarce, as empha-

sized by the call for more research in Starks (2023). Most studies focus on corporate issuers, either

through biodiversity finance deals (Flammer et al., 2023), credit instruments (Cherief et al., 2022;

Hoepner et al., 2023), or public equities (Giglio et al., 2023; Garel et al., 2024; Coqueret et al.,

2023). These empirical analyses are based on companies’ biodiversity footprint measures or tex-

1The Convention on Biological Diversity signed by 150 government leaders at the Rio Earth Summit in 1992

defines biodiversity as “the variability among living organisms from all sources including, among other things,

terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are part; this includes

diversity within species, between species, and of ecosystems”.



tual analysis of newspapers and firms’ official documents2. In particular, the authors show that

biodiversity risks are significantly priced.

Our paper contributes to the literature in two ways. Our first contribution is methodological.

We present an analytical framework that allows for incorporating more than one sustainability di-

mension into optimal portfolios, deriving closed-form solutions for portfolio composition, risk level,

and risk contributions for an investor seeking to minimize tracking error risk under two sustainable

objectives. This constitutes a relevant approach for investors who want to consider biodiversity

in addition to climate and allows them to study the associated trade-offs with this joint objective

when building investment portfolios. As the introductory quote reflects, biodiversity and climate

cannot be considered entirely independently. While biodiversity plays a role in climate change

through carbon sequestration3, climate change affects biodiversity by altering marine, terrestrial,

and freshwater ecosystems. We offer a tractable solution to this problem, expanding the previ-

ous literature on tri-criterion portfolio selection including Environmental, Social, and Governance

(ESG) criteria in addition to return and risk (Jessen, 2012; Utz et al., 2014; Pedersen et al., 2021),

or the one on tracking error portfolio optimization in the presence of a sustainable investment

objective (Blitz et al., 2024; Soupe and Kovarcik, 2024).

Secondly, we are among the first two, along with Giglio et al. (2024), to study the importance

of biodiversity risks for sovereign bond portfolios. With more than USD 60 trillion, sovereign

bonds are one of the most important asset classes for investors. However, there is a relatively

limited number of studies investigating the integration of sustainability objectives into sovereign

bond portfolios, as most of the literature has focused on equity and corporate bond investments

(Andersson et al., 2016; Bolton et al., 2022; Roncalli et al., 2021; Bajo and Rodŕıguez, 2023). The

only exceptions are the recent studies on low-carbon and net-zero investing strategies for sovereign

bond portfolios (Barahhou et al., 2023; Cheng et al., 2022; Schwaiger et al., 2023), or the recent

study of Giglio et al. (2024) on the impact of biodiversity on the spreads of countries’ credit default

swaps. This text expands the literature by considering jointly the integration of biodiversity and

2Newspapers textual analyses have previously been shown to be useful for climate risks modeling (Engle et al.,

2020; De Nard et al., 2024).
3The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) estimates that

investment in nature-based solutions could contribute to nearly 37% of the climate change mitigation needed by

2030.
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climate risks4.

Our empirical application, summarized in Figure 1, draws valuable conclusions. Investors

can jointly improve their portfolios’ biodiversity and climate exposures without compromising

on absolute risk-adjusted returns (Sharpe ratio), showing that biodiversity and climate behave

like friends in optimal allocations. Conversely, when one looks at returns relative to a market

capitalization benchmark, results point to a foes interpretation: adding a biodiversity objective

in addition to climate slightly deteriorates its relative risk-adjusted returns (Information ratio).

Nonetheless, this deterioration tends to decrease for portfolios with more ambitious biodiversity

and climate improvements. We further show that those results, obtained for 21 countries over 21

years, using both forest area and CO2 emissions per capita as the sustainability targets, are robust

to alternative biodiversity and climate measures or portfolio construction set-ups. In particular,

when we remove long-only constraints from the optimal construction framework, the trade-off

between biodiversity and climate goals dissipates, and both sustainable goals can be considered as

friends.

2 Analytical Framework

We start by presenting an analytical framework to characterize the trade-offs faced by investors

when building a portfolio with two sustainable objectives. Because practical implementations of

sustainability strategies within a given asset class are generally performed in a relative framework,

i.e., by overweighting or underweighting portfolio components versus a benchmark (Andersson

et al., 2016; Bolton et al., 2022; Bajo and Rodŕıguez, 2023; Barahhou et al., 2023; Blitz et al.,

2024; Cheng et al., 2022), we focus on the tracking error as the risk measure used for portfolio

construction.

4This way, we attempt to provide an answer to the development suggested by Giglio et al. (2024) who wrote:

“We intentionally focus this paper on the economic effects of biodiversity loss, which we view as a conceptually

distinct challenge to climate change. However, the two clearly interact in important ways that could be explored

more explicitly in future work.” (p. 6).
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2.1 Relative risk minimization with two sustainable investment objec-

tives

The optimal portfolio construction problem that minimizes the tracking error variance has been

analyzed in the relative return-risk space by Roll (1992) and Jorion (2003), and in the augmented

relative return-risk-sustainability space by Blitz et al. (2024) or Soupe and Kovarcik (2024). We

expand on this literature by considering a program that aims at minimizing the tracking error

variance under two sustainable investment objectives:

∆w∗ = argmin
∆w

1

2
∆wTΩ∆w s.t. sT1∆w = ∆s∗1, sT2∆w = ∆s∗2, 1T∆w = 0. (1)

w is the N × 1 vector of portfolio weights and ∆w is the N × 1 vector of active weights relative

to a given benchmark portfolio, with ∆w = w−wb for wb the vector of benchmark weights. Ω is

the N ×N variance-covariance matrix of asset returns, where N is the number of assets. sk is the

vector of values for the k-th sustainable investment characteristic, with ∆s∗k the associated target

change relative to the benchmark. This target change can be positive or negative depending on

whether the investor seeks to increase the sustainability characteristic of the portfolio (e.g., in the

case of forest area in our empirical application) or decrease it (e.g., in the case of carbon footprint

in our empirical application). The last constraint expresses the fact that the active weights are

summing to zero, i.e., the portfolio is fully invested and not leveraged.

We show in Appendix A that the optimal portfolio solving Program (1) is given by:

∆w∗ = θ1wSCM1 + θ2wSCM2 − (θ1 + θ2)wGMV. (2)

Hence, the optimal portfolio can be described as a three-fund portfolio. Each of them corresponds

to a specific element in the optimization program (1). The first two sub-portfolios, obtained as

wSCMk
= Ω−1 sk

1T Ω−1 sk
, have expressions similar to the ones of factor-mimicking portfolios, i.e., port-

folios that maximizes the correlation to a specific risk factor (Fama, 1996). In this case, the

SCM portfolios maximize their respective sustainability characteristic-to-risk ratio, reflecting the

sustainability constraints in (1). The last portfolio is the traditional global minimum variance

(GMV) portfolio, wGMV = Ω−11
1TΩ−11

, which is defined as the portfolio with the lowest achievable

risk (variance). Altogether, any point on the efficient frontier can be reached by a specific com-

bination of these three sub-portfolios, reflecting the investor’s relative preferences for both types
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of sustainability characteristics and risk. The (scaled) implied preferences for sustainability goals

are expressed by the scalars θk = (1T Ω−1 sk)λk, with k = (1, 2), for λk the Lagrangian multipliers

associated to the constraints in (1). We provide their expression in the next subsection.

2.2 Decomposition of the active risk for the optimal portfolio with two

sustainability objectives

To analyze the impact of the sustainable targets on the portfolio’s active risk level and its decom-

position, we first establish the closed-form formulas for the sustainability objectives preferences,

θk for k = 1, 2, as (see Appendix A):

θ1 = (1T Ω−1 s1) [π11∆s∗1 + π12∆s∗2] , θ2 = (1T Ω−1 s2) [π12∆s∗1 + π22∆s∗2] . (3)

Hence, the sustainability preferences are linear functions of the target changes in the sustainable

characteristics ∆s∗k. π11 and π22 are positive scalars5 expressing the individual preferences for

both sustainability objectives and depend only on these individual characteristics. By contrast,

π12 depends on both sustainable characteristics and can be positive or negative, reflecting the

trade-off between both sustainability objectives as we discuss below.

The trade-off naturally appears through the active risk of the optimal portfolio. More specifi-

cally, we show in Appendix A that the optimal tracking error volatility is given by:

TEV∗ =
[
π11 (∆s∗1)

2 + π22 (∆s∗2)
2 + 2 π12∆s∗1∆s∗2

]1/2
. (4)

Expression (4) gives the minimum tracking error volatility achievable for target changes in sustain-

ability metrics. We infer from (4) that the sensitivities of the tracking error to the sustainability

target changes are given by:

∂TEV∗

∂∆s∗1
=

π11∆s∗1 + π12∆s∗2
TEV∗ ,

∂TEV∗

∂∆s∗2
=

π22∆s∗2 + π12∆s∗1
TEV∗ . (5)

We retrieve the known result on the linearity of the sensitivity of the risk measure to changes in

sustainability targets (see Jessen (2012) for variance, and Soupe and Kovarcik (2024) for tracking

error variance), but here expand it to the two dimensions case. A core difference with the single

sustainability case is that any non-zero target change in the kth sustainable investment portfolio

5Analytic values of these parameters are provided in Appendix A.
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characteristic, ∆s∗k, will generate tracking error directly through πkk and indirectly through the

cross-term π12. Suppose we imagine a similar targeted change in both sustainability characteristics

of the portfolio, ∆s∗1 = ∆s∗2. We immediately see that the reaction of the tracking error will depend

on π11+2π12+π22. As π11 and π22 are both positive (see Appendix A), we see that π12, whose sign

is undetermined (also see Appendix A), ultimately reflects the trade-off between both sustainable

objectives. Indeed, the tracking-error reaction will be higher (respectively, smaller) if π12 is positive

(respectively, negative). As shown in Appendix A, π12 primarily depends on the covariance of

sustainability metrics across all assets through the cross-product term ϕs1s2 ≡ sT1 Ω−1 s2. In

particular, π12 will be positive if both metrics are consistent and negative otherwise.

Considered jointly, Equations (4) and (5) finally reveal another interesting aspect. It is straight-

forward to see that they lead to:

TEV∗ = ∆s∗1
∂TEV∗

∂∆s∗1
+∆s∗2

∂TEV∗

∂∆s∗2
. (6)

Readers familiar with risk budgeting principles will recognize Equation (6) as a tracking error

decomposition. Indeed, the first term (resp., second term) of the right-hand side of the equation

can be interpreted as the contribution to the tracking error coming from the first (resp., second)

sustainability objective.

We can expand this idea further by looking at the asset dimension as well. Using standard risk

decomposition principles and the optimal portfolio weights from (2), we infer that the tracking

error volatility can be decomposed as (see Appendix A)6:

TEV∗ =

 λ1

N∑
i=1

∆w∗
i s1i︸ ︷︷ ︸

Contribution of SCM1

+ λ2

N∑
i=1

∆w∗
i s2i︸ ︷︷ ︸

Contribution of SCM2

 /TEV∗. (7)

Thanks to the decomposition of the optimal portfolio in a three-fund portfolio, we accordingly can

decompose the portfolio active risk across two dimensions: (i) individual assets and (ii) sustain-

ability characteristics sk. In the case study subsection 4.2, we illustrate this decomposition for a

specific date. We first introduce the data that we use for this.

6In practice, we can note that the last term (“Contribution of GMV”) vanishes due to the target associated to

the third objective in the optimization program (3), i.e.,
∑N

i=1 ∆w∗
i = 0.
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3 Data

We use two different types of data for our analysis: (i) sovereign bond indices and (ii) sustainability

biodiversity and climate country characteristics.

3.1 Sovereign bond indices

The sovereign bond data are obtained from the ICE BofAML Indices, which are widely used by

investors. Based on data availability for the bond indices and the sustainability country metrics

(as described below), we select a universe of 21 developed market countries: Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, Netherlands,

New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and the United

States of America. For each country, we retrieve every month between January 2003 and December

2023, the market capitalization in USD and the total returns hedged to USD. We compute the

sovereign benchmark weights from the market capitalization observed at each end of the month7.

Table 1 presents the main descriptive statistics of the bond indices for the sample countries.

The index composition is highly concentrated, as the six countries with an average market value

exceeding 1 trillion USD over the entire sample period (namely the US, Japan, UK, France, Italy,

and Germany) account for 86% of the total market value. When hedged back to USD, the annual-

ized return averages 3.78% across all countries, ranging from 2.31% for Australia and New Zealand

to 8.70% for Greece. These return levels are indicative of the prevailing conditions in developed

sovereign debt markets during the period of analysis.

3.2 Sustainability country characteristics

We consider two main sustainability characteristics for each country: biodiversity and climate. We

use different data sources. In the baseline case, we rely on data available from the World Bank

Sovereign ESG Data portal 8. This portal is widely used by policy-makers and investors, serving

7The correlation of the monthly returns of this reconstructed benchmark with the ones of the original benchmark

from which the countries are selected (ICE BofA Developed Markets Sovereign Bond Index, whose Bloomberg code

is WSAV Index) is larger than 99.9%.
8See https://esgdata.worldbank.org/.
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as a central, free reference database for assessing sovereign sustainable risks and characteristics.

While the database covers various dimensions, including governance and social issues, we restrict

here to indicators related to environmental issues, specifically biodiversity and climate. As we

discuss below, both dimensions can be measured in many different ways. However, for our baseline

case, we select indicators that are straightforward to understand, commonly used by policy-makers

or investors, and, crucially for our empirical analysis, can be measured consistently across countries

over a long historical period. Accordingly, for biodiversity, we use the forest area expressed as a

percentage of the total country area. For climate, we use CO2 emissions per capita, measured

in metric tons per capita. Both indicators are available on an annual basis, and we use them

from 2000 to 2020 for the empirical study. The rationale for this lag between bond indices and

sustainability data is to account for the typical delay in the publication of biodiversity and climate

data, which averages between 2 and 3 years.

Table 1 presents the average values for the biodiversity (forest area) and climate (CO2) indi-

cators across the different countries in the full sample. For the biodiversity indicator, we observe

that, on average, approximately one-third of the total land area is covered by forests. For the

climate indicator, the average carbon emissions amount to 8.9 tons per capita. To illustrate the

evolution over time of these indicators, Figure 2 presents their weighted-average values across all

countries, calculated using either market capitalization weights or equal weights. For the biodi-

versity indicator, we find that it has remained stable for the largest countries in the index (solid

line), whereas it has shown a steady increase for the typical country (dashed line). By contrast,

the climate indicator has improved over time (i.e., CO2 emissions have decreased, for both the

countries with the highest market values (solid line) and the typical country (dashed line). Beyond

these trends, we observe a consistent difference between the two sustainability indicators: weight-

ing more heavily toward the largest issuers (based on market capitalization; solid line) results in

a better sustainability outcome for biodiversity (larger forest area) but a worse one for climate

(higher emissions per capita). This suggests a potential trade-off between the two sustainabil-

ity indicators, implying that investors might face a choice between prioritizing one over the other.

However, Figure 3 shows that, on average, over the full sample across all developed countries, there

is a modest but negative correlation (-0.13), indicating that better biodiversity outcomes (higher

forest area) can be associated with better climate outcomes (lower CO2 emissions). This suggests
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that it may be possible for investors to enhance both dimensions simultaneously. We investigate

this question of potential sustainable investment trade-offs in more detail in the empirical section,

and particularly in subsection 4.2.

Before this, we discuss our choice of biodiversity and climate indicators. As stated before,

for our baseline results, we have voluntarily selected indicators that have the advantage of mea-

suring the sustainability outcomes in easy-to-understand units, and consistently across time and

geographies. However, they might be perceived as too simplistic to fully capture the diversity and

complexity of sustainability issues. For climate indicators, properly scaled carbon emissions have

become the standard approach, for policy-makers, investors, and academics alike. Recently, some

criticisms have arisen in the context of net-zero transition, suggesting replacing these indicators

with more forward-looking ones, such as the NDC (Nationally Determined Contributions) net-zero

commitments under the Paris Agreement, or more specialized ones such as green energy spending

or green bond issuance. Some authors suggest combining these different indicators, a recent exam-

ple being Barahhou et al. (2023) analysis of potential net-zero trajectories for sovereign issuers. A

key limitation of such measures is that they are only available for short samples and/or without

significant variation over time. This makes them less relevant for historical analysis on the incor-

poration of sustainable investment characteristics in actively managed investment portfolios, such

as the ones we perform below.

The problem is more acute for biodiversity indicators. There is no single measure perceived

as core in the same consensual way as carbon emissions are for climate. The IPBES9 framework

refers to a combination of different drivers for biodiversity loss: land and sea use, natural resource

exploitation, pollution, invasive species, and climate change. Studies that rely on measures based

on textual sentiment analysis (Giglio et al., 2023; Cherief et al., 2022) use a large set of key-

words such as “biodiversity, ecosystem(s), ecology (ecological), habitat(s), species, (rain)forest(s),

deforestation, fauna, flora, marine, tropical, freshwater, wetland, wildlife, coral, aquatic, deser-

tification, carbon sink(s), ecosphere, or biosphere.”. Hoepner et al. (2023) uses a data provider

9The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is an inter-

governmental organization that aims to provide a scientific basis for governments and decision-makers to develop

effective policy instruments to protect biodiversity. It is the biodiversity equivalent of the Intergovernmental Panel

on Climate Change (IPCC).
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EU-regulation-compliant KPI measures related to “biodiversity, water preservation, and pollution

prevention”. Recent research quantifies the biodiversity loss by using estimates of “Mean Species

Abundance” (Garel et al., 2024; Coqueret et al., 2023). This concept reflects the relative abun-

dance of native species in ecosystems, compared to their abundance in undisturbed ecosystems.

These measures can be retrieved through data providers, who also propose more specific indicators

such as prime areas for conservation, or deforestation risk metrics.

In this paper, as an alternative to the simple and direct sustainability indicators used in our

baseline, we rely on the Environmental Performance Index (EPI) co-developed by Yale University

and Columbia University10, also used by Giglio et al. (2024). The freely available EPI is an

interesting alternative to our basic sustainability measures as it offers biodiversity and climate

scores for a large number of countries (180 in 2022) and over a longer history than alternative

databases. More specifically, in the alternative analysis below, we replace the forest area with

EPI’s “ecosystem vitality” score and the CO2 emissions per capita with EPI’s “climate change”.

As of 2022, the selected EPI’s biodiversity (“ecosystem vitality”) indicator combines terrestrial

biome protection, marine protected areas, species habitat and protection indices, tree cover loss,

grassland loss, wetland loss, fish stock status, marine trophic index, fish caught by trawling,

acid rain, SO2 (sulfur dioxide) and NOx (nitrogen oxides) growth rates, sustainable nitrogen and

pesticides use, and wastewater treatment. At the same date, the EPI’s climate change indicator

combines projected GHG emissions in 2050, GHG emissions per capita, growth rates in CO2, CH4

(methane), fluorinated gases, black carbon, and N2O (nitrous oxide), CO2 from land cover, and

GHG intensity trend.

In Figure 4, we display scatter-plot charts comparing the baseline indicators (forest area and

CO2) coming from the World Bank ESG portal (WB) with the Yale Environmental Performance

Index (EPI). This confirms the expected lower consistency for biodiversity data than for climate

data. In the next section, we investigate whether these differences in indicators translate into

different investment portfolio results.

10See https://epi.yale.edu/ and Wolf et al. (2022).
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4 Empirical Results

We next turn to the results of an empirical study investigating the inclusion of both biodiversity

and climate objectives in sovereign bond portfolio optimization.

4.1 Methodology

Following the sustainability investing analytical framework described in Section 2, the portfolio

construction methodology consists of minimizing the tracking error variance relative to the market

capitalization benchmark for different levels of biodiversity and climate characteristic improve-

ments.

More specifically, every month, we run a portfolio optimization program similar to optimization

program (1). ∆s∗1 and ∆s∗2 represent variations in biodiversity and climate targets, expressed as

percentage changes versus the corresponding sustainability level of the benchmark. Since the

original data is annual, the sustainability characteristics are unchanged during the year. For

biodiversity, the improvements are evaluated by examining positive changes in the portfolio’s forest

area by steps of 10% compared to the benchmark level: 0% (equal to the benchmark level), +10%,

+20%, +30%. For climate, the improvements are assessed by examining negative changes in

the portfolio’s CO2 emissions also in increments of 10% compared to the benchmark level: 0%

(equal to the benchmark level), -10%, -20%, -30%. These levels are calibrated based on achievable

changes in the sustainability targets, considering the cross-country dispersion and the market

capitalization weights of the benchmark. Overall, these different sustainability target changes

result in 16 different portfolio strategy backtests, including one for the benchmark (retrieved as a

special case with zero-change in climate and biodiversity targets).

At each optimization date, we estimate the covariance matrix Ω̂ using monthly total returns

over the previous five years (60 observations). In addition to the three constraints of Program

(1), we add a long-only constraint on the optimal portfolio weights, namely w∗ = ∆w∗ +wb ≥ 0.

This implies that the ex-ante optimized tracking error variances, i.e., ∆w∗T Ω̂∆w∗, will be larger

than those obtained without the long-only constraint. This approach allows to comply with more

realistic investor implementations. In Section 4.3.2, we will discuss the implications of allowing

negative portfolio weights.
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The optimized portfolio weights and the benchmark weights are held over the following month.

We store the realized bond allocations and the associated total currency-hedged returns. For

both the optimized and benchmark portfolios, we compute a set of absolute portfolio statistics:

compound annualized geometric returns (CAGR), annualized volatility, Sharpe ratio with risk-free

rate based on one-month USD interest rate over the sample, maximum drawdown, Calmar ratio

(ratio between return over risk-free rate and maximum drawdown) and turnover, measured as the

annualized average changes (in absolute terms) between new optimal country portfolio weights and

drifted weights from the previous rebalancing date. We also compute a set of relative statistics

based on the annualized excess returns of the optimized portfolio over the benchmark: alpha

measured as the average excess return, tracking error measured as the standard deviation of excess

returns, and information ratio measured as the ratio of alpha to tracking error.

4.2 An illustration of biodiversity and climate trade-offs

Before moving to the full sample empirical backtests in Section 4.3, we first investigate empirically

the optimal trade-off between biodiversity and climate in the sovereign bond allocation. For this,

we focus on the latest date of the backtesting exercise, i.e., the sovereign bond portfolios deter-

mined at the end of November 2023 for holding during December 2023. We first represent several

two-dimensional projections of the efficient frontier obtained from our sovereign bond portfolio

optimization under biodiversity and climate objectives. Then, we analyze the trade-off between

biodiversity and climate, both with and without long-only constraints.

To investigate the decomposition of the ex-ante tracking error volatility between its biodiversity

and climate components, Figure 5 provides the results for 9 cases, using the combination of +10%,

+20%, +30% increase in forest area and -10%, -20%, -30% decrease in carbon emissions (versus

the benchmark level). As expected, the higher the objectives’ absolute value, the higher the

tracking error volatility necessary to reach them. Moreover, the climate objective contributes

more significantly to the tracking error volatility than the biodiversity one. The combination

(+10% biodiversity, -10% climate) exhibits an eight times higher contribution from the climate

objective: the total tracking error is 0.106% allocated with 0.012% for biodiversity and 0.094% for

climate. The only case where the two sustainability objectives have similar contributions is the

combination (+30% biodiversity, -10% climate) in which the biodiversity contribution represents
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0.065%, while the climate one is equal to 0.077%, for a total tracking error volatility of 0.142%.

In Figures 6 and Figure 7, we show two-dimensional representations of the risk-biodiversity-

climate efficient frontier. The top panel of Figure 6 represents the forest area (% of land) and the

tracking error volatility for different levels of CO2 emissions (metric tons per capita), from 0%

to -30% relative to the benchmark. Each point corresponds to the long-short bond portfolio that

minimizes the ex-ante tracking error volatility for given levels of forest area and CO2 emissions.

The black dot corresponds to the benchmark. The curves exhibit a positive relationship between

the forest area and the tracking error volatility. We also observe that the higher the reduction

in CO2 emissions (curve moving to the right), the higher the tracking error levels. Also, the

linearity of the left curve is due to the absence of change in the CO2 emissions with respect to the

benchmark. The bottom panel of Figure 6 exhibits the CO2 emissions (metric tons per capita,

inverted scale) and the tracking error volatility for different levels of forest area (as % of land), from

0% to +30% relative to the benchmark. Each point corresponds to the long-short sovereign bond

portfolio that minimizes the ex-ante tracking error volatility for given levels of CO2 emissions and

forest area. The black dot corresponds to the benchmark. The curves exhibit a positive relationship

between the CO2 emissions and the tracking error volatility. One can notice that the curve slopes

are flatter than those obtained in the upper panel (i.e., forest area versus TE volatility), which

means that improving the biodiversity measure is less costly than improving the climate one, in

terms of tracking error. This is consistent with the previous results on tracking error volatility

decomposition. We also observe that the higher the increase in forest area (curve moving to the

right), the higher the tracking error volatility levels, however, the impact of imposing higher levels

of forest area on the tracking error volatility is lower for higher levels of CO2 emissions. Also,

similarly to the top figure, the linearity of the left curve is due to the absence of change in the

forest area with respect to the benchmark.

To better understand the relation between biodiversity and climate in the active portfolio,

we search for the set of portfolios that minimize the level of CO2 emissions for a given level of

tracking error volatility and a given level of forest area. To do so, we study an optimization

program equivalent to Program (1), but instead of minimizing the ex-ante tracking error volatility

for a target level of CO2 emissions per emission, we minimize the CO2 emissions for a target level

of ex-ante tracking error, all other constraints remaining the same. The top panel of Figure 7
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represents the results of this optimization for different levels of tracking error volatility. We run

the optimization program, with different levels of forest area (from 85% to 130% of the percentage

of land of the benchmark) and four levels of tracking error volatility (0.3%, 0.5%, 0.7%, 0.9%).

The black dot represents the (market capitalization) benchmark. Two main results are observed.

First, all the efficient portfolios appear to have lower CO2 emissions per capita compared to the

benchmark. In other words, the allowance for tracking error tolerance through active weights

achieves a reduction in the level of CO2 emissions compared to the benchmark. The higher the

tracking error tolerance, the higher the reduction in CO2 emissions. Second, moving up along the

frontier to improve biodiversity can be made at a very low cost in terms of CO2 emissions, and

this stays valid for different levels of tracking error volatility. This result is consistent with the

estimated parameter in Equation (4). Its value, π̂12 = −9.672 × 10−6, reflects a limited trade-off

between both sustainability objectives. Therefore, in this example, biodiversity and climate are

not significant foes as biodiversity can be improved at almost no cost in terms of climate risk.

To further explore the trade-off, we introduce long-only constraints in the bottom panel of

Figure 7. First, we notice that the reduction in CO2 emissions is less significant than for the long-

short case for the same levels of tracking error volatility. The introduction of long-only constraints

leads to higher minimum CO2 emission levels. For example, at 0.5% tracking error volatility level,

the CO2 emissions per capita stand around 8 metric tons for long-only portfolios while reaching

levels below 5 metric tons for long-short portfolios. Similarly, at 0.9% tracking error volatility level,

the CO2 emissions per capita stand around 6.5-7 metric tons for long-only portfolios, while being

lower than one metric ton for long-short portfolios. These lower levels were obtained through short

positions. Second, all iso-tracking error volatility frontiers exhibit a convex profile. A consequence

is that all portfolios that lie on the lower part of each curve, i.e., in areas 1 or 2 , are inefficient.

It means that for a given level of tracking error volatility and a given level of CO2 emissions,

one can always find a portfolio on the upper part of the curve, i.e., in area 3 , that is associated

with a higher forest area. One can also notice that the minimum levels of CO2 emissions for

each level of tracking error volatility are slightly above 40% of forest area for a level of tracking

error volatility of 0.3% (blue line), up to about 45% for a level of tracking error volatility of 0.9%

(red line). Consequently, for forest area values between the benchmark level and the minimum

point level, i.e., in area 2 , one can simultaneously increase the forest area and decrease the CO2
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emissions compared to those of the benchmark. However, for forest area values above minimum

point levels, in area 1 , the investor faces a trade-off between climate and biodiversity impacts,

i.e., an additional increase in the forest area leads to increased CO2 emissions: biodiversity and

climate appear to be foes. Moreover, the lower the tracking error volatility, the higher the trade-

off (or, equivalently, the higher the curvature). These results show that the trade-off observed in

long-only sovereign bond portfolios is mainly due to long-only constraints that limit the amplitude

of the possible active bond weights.

4.3 Backtesting for sovereign bond portfolios

4.3.1 Baseline sample results

The baseline sample uses simple sustainability indicators (CO2 emissions per capita and forest

area) and assumes long-only constraints. We later investigate other data sources and set-ups. Due

to data constraints, the sample is available over the period from January 2003 to December 2023,

which represents 21 years of backtesting. We analyze 16 different implementations of the active

fixed-income strategies, as we investigate four types of percentage changes (0%; ±10%; ±20%;

±30%) versus the benchmark for each of the sustainable metrics. For the easiness of reading, the

results are presented by subgroups where we fix the change in CO2 emissions (climate) and let

the change in forest area (biodiversity) vary. The benchmark can be retrieved as a special case for

no change in CO2 emissions and forest area and is specifically identified as such in the tables and

figures11.

For every month of the sample, Figure 8 displays the minimal ex-ante tracking error volatility

relative to the benchmark that is necessary to at least reach specific sustainability improvements.

We observe that for each objective of CO2 emissions reduction (corresponding to each quadrant),

the tracking error volatility increases with forest area (i.e., better biodiversity content). Natu-

rally, the higher the targeted reduction in CO2 emissions, the higher the increase in tracking error

volatility necessary to reach a specific forest area increase. This is expected as higher sustain-

able improvement targets naturally require larger active weights and, hence, larger tracking error

volatility. Required ex-ante tracking error budgets vary over time and are notably larger when

11By analogy to other cases, “Benchmark” corresponds to “Forest +0% & CO2 -0%”.
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underlying volatility in sovereign bond markets increases, as observed in the aftermaths of shocks

such as the Great Financial Crisis or the post-COVID inflation jump.

How do these ex-ante active risks translate ex-post? Figure 9 displays the realized (or ex-

post) tracking error volatility for different levels of sustainable targets relative to the benchmark.

In the top panel, we represent the tracking error volatility versus the forest area for different

improvements in the climate objective by steps of 10% (CO2 decreases), while in the bottom panel,

we represent the tracking error volatility versus the CO2 emissions for different improvements in

the biodiversity objective (forest area increases). The increase in ex-post tracking error volatility

as the investor seeks to improve the sustainability characteristics of his sovereign bond portfolio

follows a well-ordered hierarchy, consistently with the ex-ante results shown in Figure 8 for a

specific date. Increasing sustainability content always implies higher realized active risk. However,

we observe that, for a given sustainable characteristic, the tracking error volatility increase is

more pronounced for low improvements of the other sustainable characteristic. In the top panel,

reducing the C02 emissions by 30% vs the benchmark requires an additional 0.8% tracking error

volatility when one targets no improvement in biodiversity, but only an additional 0.5% tracking

error volatility when one targets a 30% improvement in biodiversity. This difference is even greater

when one focuses on improvements in the biodiversity (bottom panel): improving the sovereign

bond portfolio biodiversity content by 30% only creates around +0.1% of additional active risk

when one targets to jointly improve climate by +30% while it requires close to +0.4% of additional

active risk when we target a similar climate content than the benchmark. We notice the striking

similarity between the frontiers drawn in Figures 6 and 9, although the former ones are established

ex-ante for a specific date while the latter are established ex-post over the full sample and with

long-only constraints. All in all, we observe that improvement in biodiversity measures is easy to

implement for investors with already a significant active position in climate metrics, as can be seen

for the near-vertical curve obtained in the top panel for a 30% in CO2 emissions, which states that

the improvement in forest area is seamless from an active risk perspective. This confirms ex-ante

results according to which biodiversity and climate tend to be more friends for more ambitious

sustainable (active) portfolios.

To analyze more broadly the implications of sustainability improvement on sovereign bond

portfolios, Table 2 presents the associated absolute portfolio statistics for each of the 16 alternative
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fixed-income portfolios, including the benchmark (obtained as the special case of no change in both

sustainability characteristics). In terms of performance, we initially remark that improvements in

climate (CO2 decrease) lead to higher returns. For instance, assuming no change in terms of

biodiversity versus the benchmark, the average annualized return increases from 3.08% to 3.29%

when one moves from the benchmark to a 30% reduction in CO2 emissions. This increase in average

return for better climate outcomes remains true, regardless of the fixed increase in biodiversity we

select. We observe similar patterns when one corrects for the risk level, as shown by increasing

Sharpe or Calmar ratios for lower CO2 emissions. This outperformance of climate-tilted portfolios

confirms previous results in the literature (Cheng et al., 2022; Schwaiger et al., 2023), over a

longer time horizon. Compared to these studies, our portfolio construction framework enables

us to analyze what happens when one adds another sustainable dimension, namely, biodiversity.

For any given level of targeted improvement in climate (CO2 emissions reduction), improvements

in biodiversity (increase in forest area) lead to slightly lower returns. However, we observe that

the risk tends to decrease as well, as it is always the case for volatility and, in most instances,

for the maximum drawdown. Altogether, Sharpe ratios or Calmar ratios remain stable, meaning

that one can significantly improve the biodiversity content of the sovereign bond portfolio without

deteriorating the risk-adjusted returns, for any climate improvement. It is interesting to notice

that the highest Sharpe and Calmar ratios are achieved by the most demanding portfolio regarding

forest area increase and CO2 emission reduction (i.e., forest+30%, & CO2-30%). Finally, higher

biodiversity improvement targets naturally lead to a higher turnover, but which become negligible

for portfolios that jointly seek to significantly improve the climate dimension.

In Table 3, we look at the performance of the 16 fixed-income portfolio strategies relative to the

benchmark. Tracking error volatility metrics vary between 0 and 1%, which shows that significant

improvement in both the biodiversity and climate dimensions can be achieved without deviating

too much from the benchmark. Although we do not necessarily expect the sustainable active risk

to generate alpha, we observe that only two fixed-income strategies lead to negative excess returns.

Overall, the strategies tend to outperform the benchmark, and we notice that the excess return

increases primarily come from improvements in climate, while adding biodiversity leads to reducing

them. Altogether, higher information ratios are obtained for lower biodiversity objectives, but we

notice that targeting biodiversity improvement is less costly (in terms of absolute or risk-adjusted
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excess returns) for sovereign bond portfolios that jointly target stronger climate improvement.

This suggests that biodiversity and climate objectives behave like foes when analyzing risk and

return performance statistics relative to the benchmark, but this trade-off tends to decrease for

more ambitious (sustainable active) portfolios.

Summing up these initial results, investors can improve the biodiversity and climate character-

istics of their sovereign bond portfolios without deteriorating their absolute risk-adjusted return

(both Sharpe and Calmar ratios), making the two sustainability objectives act more as friends than

foes. However, when the investor focuses on the relative risk with respect to the market capital-

ization benchmark, adding biodiversity to a sovereign bond portfolio with existing CO2 emissions

targets will always increase the relative risk and deteriorate the alpha. Nonetheless, it appears

easier to do it for fixed-income portfolios with ambitious climate targets (e.g., reducing the CO2

emissions by 30%), as the additional active risk and cost (directly through the realized historical

excess returns or indirectly through the trading costs associated with the additional turnover) are

limited, making both sustainable objective more friends for ambitious sustainable active portfolios.

We now turn to test whether these results are robust to variations in the data sources or the model

set-ups12.

4.3.2 Robustness results

As discussed in Section 3, we first look at alternative sustainability indicators, by replacing the

simple biodiversity and climate indicators with their EPI equivalents. Results over the full sample

(January 2003 to December 2023) are displayed in Tables 4 and 5, respectively. As the cross-

sectional dispersion of country-level EPI scores is smaller than for the original sustainability in-

dicators, which is expected due to their higher diversification, we reduce the range of variation

of the sustainable sovereign portfolio characteristic improvements. Even though the sustainability

country indicators are different from the baseline case, as discussed in Section 3.2, the results point

to similar conclusions favorable to the inclusion of sustainable objectives, albeit slightly different.

With these more diversified sustainability metrics, average returns tend to increase with higher

content for both climate and biodiversity. This time, however, the risk increases as well, for both

12We have also performed additional robustness checks using a sovereign bond universe of emerging countries and

observed similar patterns for the absolute and relative portfolio statistics. Results are available upon request.
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volatility and maximum drawdown. All in all, we retrieve the result of stable risk-adjusted returns

when one seeks to improve the sustainability content of the fixed-income portfolio. Furthermore,

this is achieved with a modest increase in turnover. Looking at relative returns with respect to the

benchmark, we observe that they are all positive over the period and that higher information ratios

are obtained for more sustainability-constrained portfolios. These results indicate that improving

the sustainability of sovereign bond portfolios without deteriorating performance is robust across

alternative measures of biodiversity and climate13.

As an additional robustness test, we investigate the impact of portfolio constraints, by removing

the long-only constraint. While shorting bonds will not be achievable by all investors, this consti-

tutes a relevant exercise to measure this impact. The results are presented in Tables 6 and 7. While

displaying similar patterns, we notice some subtle differences versus the baseline results. Notably,

the portfolio profiles become much more stable across specifications. Here again, investors can

significantly improve the sustainability content, but the change in the risk-return profile versus the

benchmark is more limited. This is observed for both absolute returns and excess returns versus

the benchmark. As noticeable evidence, realized tracking error volatility figures are significantly

smaller. The cost, though, is that the long-short implementation involves a significantly higher

turnover.

5 Conclusion

Sustainability goals have become a crucial component of fixed-income investment strategies. In ad-

dition to global ESG considerations, investors are increasingly prioritizing biodiversity and climate

risks. Our paper contributes to the emerging literature on biodiversity finance by introducing a

construction framework that enables investors to simultaneously integrate biodiversity and climate

risks. This approach allows investors to optimally address both biodiversity and climate objectives

while also considering other portfolio dimensions, such as relative risk and portfolio constraints.

Our empirical analysis of 21 developed countries over more than 20 years demonstrates that it

13To further elaborate on those ideas, we have tested the sensitivity of the results to climate measures by replacing

CO2 emissions per capita with CO2 emissions per GDP as the climate indicator, which is a popular indicator; see

e.g. Cheng et al. (2022). The results, not reproduced to save space but available upon request, further confirm the

robustness of alternative ways to normalize countries’ carbon emissions.
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is possible to design enhanced biodiversity and climate sovereign portfolios without compromising

absolute risk-adjusted returns. Introducing a biodiversity objective to a sovereign portfolio that

already has a climate objective slightly worsens its relative performance; however, this deterioration

diminishes for more ambitious sustainable portfolios. We find that this trade-off is primarily due

to the presence of long-only constraints in portfolio construction. Specifically, an increase in

forest area often leads to an increase in CO2 emissions. Furthermore, the trade-off becomes more

pronounced as the tracking error variance decreases. Our findings remain robust across different

choices of sustainability country measures and modeling approaches.

Reflecting on the introductory quote, our research demonstrates that investors should seize

the opportunity to enhance both biodiversity and climate dimensions simultaneously. Such joint

objectives will become increasingly important for investors, policymakers, and academics alike.

Currently, the literature on the trade-offs generated by sustainability considerations is limited.

Amenc et al. (2023) investigates the trade-offs between ESG and climate within global equity

universes, showing some “green dilution” when investors use ESG ratings. Van Zanten and Huij

(2022) show that companies’ ESG and Sustainable Development Goals (SDG) ratings cannot be

used interchangeably. In the biodiversity literature, Garel et al. (2024) and Giglio et al. (2023) show

that biodiversity and climate risks have different pricing implications. Thanks to its flexibility, our

sustainable portfolio construction framework can be used to investigate such sustainability trade-

offs across different investment universes or with additional practical portfolio constraints.
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A Detailed Analytical Results

This Appendix details the analytical results of Section 2. To derive the solution to the optimization

program (1), we start from general results on portfolio optimization (Best and Grauer, 1990). We

consider the case of an investor seeking to solve the following optimization program:

w∗ = argmin
w

1

2
wT Ωw s.t. CT w = c∗. (A1)

w is the N × 1 vector of portfolio weights, where N is the number of assets, and Ω is the N ×N

variance-covariance matrix of asset returns. C is an N × K matrix collecting the individual

characteristics associated with the objectives, where K is the number of objectives. It can be

written as C = (c1, . . . , ck, . . . , cK) where each ck is an N ×1 vector containing the characteristics

associated to the kth objective. Finally, c∗ is a K×1 vector containing the targets associated with

the objectives. Solving for Program (A1) yields:

w∗ = Ω−1Cλ, (A2)

where the Lagrangian multipliers are identified as:

λ =
(
CT Ω−1C

)−1
c∗ ≡ Φ−1 c∗. (A3)

Φ is the K ×K matrix collecting the portfolio characteristics associated to the K objectives, for

portfolio weights w∗. It is, in general, invertible because Ω is a properly defined covariance matrix

and the K constraints are linearly independent. Φ can be rewritten as:

Φ =


cT1 Ω−1 c1 · · · cT1 Ω−1 cK

...
. . .

...

cTK Ω−1 c1 · · · cTK Ω−1 cK

 =


ϕc1c1 · · · ϕc1cK

...
. . .

...

ϕc1cK · · · ϕcKcK

 , (A4)

where we use the notation ϕckcl to denote the scalars cTk Ω−1 cl ∈ R for any vectors ck, cl ∈ RN ,

and where we use the symmetry ϕckcl = ϕclck due to the symmetry of Ω which is a covariance

matrix. Plugging (A3) into (A2) yields the optimal portfolio solution as:

w∗ = Ω−1CΦ−1 c∗, (A5)

and the risk associated with the optimal portfolio as:

w∗T Ωw∗ = c∗T Φ−1 c∗. (A6)
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From the vectorial expressions of C and λ, Equation (A2) can also be expressed as:

w∗ =
K∑
k=1

λk Ω
−1 ck. (A7)

Introducing the following specific portfolios wck = Ω−1 ck
1T Ω−1 ck

for k = 1, ..., K, the solution (A7) can

be rewritten as:

w∗ =
K∑
k=1

αi wck , (A8)

where αk = λk (1
T Ω−1 ck) is the scaled preference for objective k. Hence, the solution is a linear

combination of K specific portfolios corresponding to each objective k. In particular, the kth

specific portfolio is derived by finding the solution to the following optimization problem:

wck = argmax
w

wT ck√
wT Ωw

s.t. 1T w = 1, (A9)

which shows that wck is designed to achieve the highest kth characteristic level per unit of portfolio

volatility. When the characteristic vector ck contains exposures to a well-defined risk factor,

typically under the form of betas, then the maximum characteristic-to-risk portfolios, wck , can be

interpreted as a factor-mimicking portfolio to the kth risk factor (Fama, 1996). In this case, one

can show that this portfolio maximizes the correlation to this specific risk factor.

This analytical framework encompasses major canonical portfolio construction methodologies

such as the standard mean-variance-optimization (MVO) problem with no risk-free asset from

Markowitz (1952) or the multifactor optimization problem from Fama (1996) underlying the In-

tertemporal Capital Asset Pricing Model. Solution (A8) shows that the optimal portfolio extends

the two-fund combination associated with Markowitz’s original program to a K-fund combination

(Fama, 1996).

We next use these results in order to determine the optimal portfolio construction when the

investor aims at minimizing the portfolio tracking error while considering two sustainable invest-

ment objectives, such as biodiversity and climate, i.e., the optimization program (1). We use the

general solution (A8) with K = 3, c1 = s1, c
∗
1 = ∆s∗1, c2 = s2, c

∗
2 = ∆s∗2, c3 = 1, and c∗3 = 0. In-

troducing the three specific portfolios wSCM1 =
Ω−1 s1

1T Ω−1 s1
, wSCM2 =

Ω−1 s2
1T Ω−1 s2

, and wGMV = Ω−1 1
1T Ω−1 1

,

the solution of the optimization program (1) becomes:

∆w∗ = θ1wSCM1 + θ2wSCM2 − (θ1 + θ2)wGMV, (A10)
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where θk = (1T Ω−1 sk)λk is the scaled preference for sustainability characteristic k.

We next denote by Π the 3× 3 inverse of matrix Φ−1, with typical element πij for i, j = 1, 2, 3.

Using the fact that the target objective vector c∗ is equal to (∆s∗1 ∆s∗2 0)T , we can compute the

Lagrangian multipliers in (A3) as:

λ = Φ−1 c∗ = Π (∆s∗1 ∆s∗2 0)T =


π11∆s∗1 + π12∆s∗2

π12∆s∗1 + π22∆s∗2

π13∆s∗1 + π23∆s∗2

 (A10)

This expression, combined with θk = (1T Ω−1 sk)λk, easily leads to the result given in Equation

(3). To get a better understanding of the parameters of the inverse matrix Π that are used in the

solution (A10), i.e., π11, π22 and π12, we use Cramer’s rule for the inverse of a matrix and obtain:

π11 =

(
ϕ11 ϕs2s2 − ϕ2

s21

)
|Φ|

, π22 =

(
ϕ11 ϕs1s1 − ϕ2

s11

)
|Φ|

, π12 =
(ϕs11 ϕs21 − ϕ11ϕs1s2)

|Φ|
, (A11)

where the determinant is given by |Φ| = ϕs1s1ϕs2s2ϕ11 + 2ϕs11ϕs21ϕs1s2 − ϕ2
s11

ϕs2s2 − ϕ11ϕ
2
s1s2

−

ϕs1s1ϕ
2
s21

> 0 by positive definiteness of Φ.

To obtain the minimal tracking error volatility of the active portfolio, TEV∗, we can use the

expression given on the right-hand side of Equation (A6). By left-multiplying the expression (A10)

with c∗T = (∆s∗1 ∆s∗2 0), we obtain:

TEV∗ =
√
c∗T Φ−1 c∗ =

[
π11 (∆s∗1)

2 + π22 (∆s∗2)
2 + 2 π12∆s∗1∆s∗2

]1/2
. (A12)

In particular, the sensitivity of the tracking error to the sustainability target changes ∆s∗i , i = 1, 2

is a linear function of the target change itself:

∂TEV∗

∂∆s∗1
=

π11∆s∗1 + π12∆s∗2
TEV∗ ,

∂TEV∗

∂∆s∗2
=

π22∆s∗2 + π12∆s∗1
TEV∗ . (A13)

As shown by (A13), the tracking error volatility reaction to target changes in sustainability

metrics depends on π11, π22 and π12. Their expressions are given in Equation (A11), and it is useful

to determine their sign to better understand the tracking-error sensitivity. We first observe that

because the covariance matrix Ω is symmetric positive semidefinite, its inverse Ω−1 (the precision

matrix) is also symmetric positive semidefinite. Hence, we note that Φ = CT Ω−1C is also

symmetric positive semidefinite, which implies that Π = Φ−1 is symmetric positive semidefinite

too, and it follows that all the diagonal elements of Π are positive.
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Therefore, the first two components of TEV∗, namely π11 (∆s∗1)
2 and π22 (∆s∗2)

2 are positive.

Now, if we denote by covSCM1,SCM2 and varGMV the covariance between the two sustainability

characteristic-mimicking portfolios and the variance of the GMV portfolio, respectively, we have:

covSCM1,SCM2 = wT
SCM1

ΩwSCM2 =
ϕs1s2

ϕs11 ϕs21

, varGMV = wT
GMVΩwGMV =

1

ϕ11

.

Hence, the numerator of π12 can be rewritten as:

ϕs11 ϕs21 − ϕ11ϕs1s2 = ϕ11 ϕs11 ϕs21

(
1

ϕ11

− ϕs1s2

ϕs11 ϕs21

)
= ϕs11 ϕs21

varGMV − covSCM1,SCM2

varGMV

,

so, contrary to π11 and π22, we cannot conclude on the sign of π12.

Finally, it is useful to decompose the portfolio risk into its main components. Using standard

risk decomposition principles (Roncalli, 2013), the tracking error volatility can be decomposed as:

TEV∗ =

(
N∑
i=1

∆w∗
i [Ω∆w∗]i

)
/TEV∗. (A14)

Using the optimal portfolio weights in (A10), we deduce that:

TEV∗ =
1

TEV∗

(
N∑
i=1

∆w∗
i [Ω (θ1wSCM1 + θ2wSCM2 − (θ1 + θ2)wGMV)]i

)
,

=
1

TEV∗

(
N∑
i=1

∆w∗
i

[
Ω

(
θ1

Ω−1 s1
1T Ω−1 s1

+ θ2
Ω−1 s2

1T Ω−1 s2
− (θ1 + θ2)

Ω−1 1

1T Ω−1 1

)]
i

)
,

=
1

TEV∗

 λ1

N∑
i=1

∆w∗
i s1i︸ ︷︷ ︸

Contribution of SCM1

+ λ2

N∑
i=1

∆w∗
i s2i︸ ︷︷ ︸

Contribution of SCM2

 . (A15)

Equation (A15) provides a decomposition of the tracking error volatility across assets, as indexed

through i, and the individual sustainability characteristics for each asset, s1i and s2i. One can

notice that, when aggregated across all assets, the last term in (A15) vanishes as the sum of active

weights is constrained to zero,
∑N

i=1∆w∗
i = 0, through the design of the optimization program (1).
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B Tables and Figures

Figure 1: Impact of Biodiversity and Climate Improvement on Sharpe ratio (left) and

Information ratio (right)
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Notes. The Figure summarizes the impact of targeted improvement vs the market-capitalization sovereign bonds

benchmark in biodiversity (measured by forest area as % of total land) and climate (measured by CO2 emissions

per capita) metrics for the Sharpe ratio (left panel) and the Information ratio (right panel). Each bar represents a

specific active fixed-income strategy based on different targeted improvements in biodiversity and climate metrics

(horizontal scales), with the impact on risk-adjusted returns represented on the vertical scale. Black bars denote the

market-capitalization benchmark, while the other colors indicate different levels of climate improvement (+10% for

red bars, +20% for yellow bars, +30% for blue bars). The analysis is based on a universe of 21 developed countries’

bond markets, covering the period from January 2003 to December 2023. Detailed results are provided in Tables 2

and 3.
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Table 1: Descriptive Statistics of Bond Indices and Sustainability Data

Avg. Ret Vol. TE Market Value Forest Area CO2 Em.

Australia 2.31 4.54 2.85 235,063 17.14 17.26

Austria 3.66 5.41 2.82 225,603 46.85 8.04

Belgium 3.88 5.70 3.23 370,437 22.58 9.42

Canada 3.20 4.22 2.15 341,480 38.74 16.05

Denmark 3.61 5.61 3.10 98,984 14.94 8.03

Finland 3.27 4.40 2.06 86,531 73.52 10.12

France 3.67 5.02 2.46 1,387,474 29.84 5.30

Germany 3.35 4.63 2.10 1,194,668 32.67 9.33

Greece 8.70 23.09 23.15 111,271 29.66 7.67

Ireland 4.69 7.84 6.47 101,632 10.37 9.23

Italy 4.69 6.10 4.90 1,370,549 30.42 6.70

Japan 2.97 2.30 2.74 5,881,858 68.40 9.22

Netherlands 3.40 5.03 2.40 323,842 10.89 9.62

New Zealand 2.31 4.08 2.89 38,369 37.42 7.40

Norway 2.79 3.33 2.69 38,109 33.21 7.70

Portugal 5.47 9.65 9.09 124,434 35.85 5.18

Spain 4.45 5.74 4.24 717,783 36.38 6.37

Sweden 3.31 4.38 2.46 75,021 68.89 4.76

Switzerland 3.87 5.26 3.30 86,098 31.22 5.40

United Kingdom 3.08 7.13 4.57 1,394,593 12.70 7.43

United States 2.84 4.80 2.11 7,505,338 33.63 17.25

Notes. The Table contains the main descriptive statistics of the data used in the empirical section, i.e., the annualized

sample average return “Avg. Ret” and volatility “Vol.” of bond indices returns (in percentage), the tracking error

volatility “TE” of the country bond index vs the market capitalization benchmark, the average country market

capitalization values (in million USD), the average country forest area (as % of total country land area) and the

domestic CO2 emissions (in tons per capita). All returns are hedged to USD and observed over the period between

January 2003 and December 2023.
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Figure 2: Biodiversity and Climate Characteristics Across Time
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Notes. For each calendar year, the figure shows the weighted average forest area (as % of total land area; top panel)

and CO2 emissions (in metric tons per capita; bottom panel) across all countries. The cross-country weights are

calculated based on either market capitalization (solid lines) or equal weights (dashed lines).
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Figure 3: Biodiversity and Climate Characteristics Across Countries
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Notes. The figure displays each country’s average biodiversity (measured as forest area % of total land area) and

climate characteristics (measured as CO2 emissions in tons per capita). The average values are calculated over the

period from 2000 to 2020.
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Figure 4: Consistency Between Sustainability Metrics Across Data Sources
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Notes. This figure compares country-level sustainability metrics from the World Bank ESG portal (WB) and the

Yale Environmental Performance Index (EPI).
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Figure 5: Ex-Ante Tracking Error Decomposition
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Notes. The Figure represents contributions to the ex-ante tracking error volatility (in % p.a.) from the changes in

CO2 emissions (in metric tons per capita) and Forest area (as % of total land) relative to the market capitalization

benchmark for December 2023. Each bar represents a combination of a decrease in CO2 emissions (from -10% to

-30% relative to the benchmark) and an increase in the level of Forest area (from +10% to +30% relative to the

benchmark).
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Figure 6: Ex-Ante Efficient Frontier: Tracking Error Volatility vs Sustainability Objectives

December 2023
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Notes. The top panel of the figure illustrates the forest area (as % of total land) and the associated tracking error

volatility (in % p.a.), for varying levels of CO2 emissions (in metric tons per capita), ranging from 0% down to -30%

relative to the benchmark. The bottom panel shows the CO2 emissions (in metric tons per capita, inverted scale)

and the associated tracking error volatility (in % p.a.), for different levels of forest area (as % of land), ranging from

0% to +30% relative to the benchmark. Each point represents a long-short bond portfolio designed to minimize

the ex-ante tracking error volatility for given levels of forest area and CO2 emissions in December 2023. The black

dot identifies the benchmark.
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Figure 7: Ex-Ante Efficient Frontier with and without Short-Selling Constraints: CO2

Emissions vs Forest Area

December 2023
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Notes. The Figures show the CO2 emissions (in metric tons per capita) and Forest area (as % of total land) for

different levels of tracking error volatility (0.3%, 0.5%, 0.7%, 0.9%) relative to the market capitalization benchmark

as of December 2023. Each point in the top panel (resp. bottom panel) represents the long-short (resp. long-only)

bond portfolio that minimizes the level of CO2 emissions for a given level of tracking error and a given level of

Forest area (ranging from 85% to 130% of the percentage of land of the benchmark). The black dot indicates the

benchmark.
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Figure 8: Ex-Ante Tracking Error Relative to the Benchmark
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Notes. The Figure shows the minimal ex-ante tracking error volatility (% p.a.) relative to the benchmark portfolio

for the 16 portfolio strategies between January 2003 and December 2023. Forest+x% & CO2-y% correspond to

the strategy that minimizes the level of tracking error with the following constraints: (i) the biodiversity indicator

equals (1 + x)% of the biodiversity indicator of the benchmark, and (ii) the climate indicator equals (1 − y)% of

the climate indicator of the benchmark.
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Figure 9: Ex-Post Efficient Frontier: Tracking Error vs Sustainability Objectives
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Notes. The top panel of the figure shows the improvement in forest area, ranging from 0% down to +30% relative

to the benchmark, and the associated tracking error volatility for various levels of CO2 emissions improvement,

ranging from 0% to -30%) relative to the benchmark. The bottom panel displays the improvement in CO2 emissions,

ranging from 0% to -30% relative to the benchmark portfolio, and the associated tracking error volatility for various

levels of forest area improvement, ranging from 0% down to +30% relative to the benchmark portfolio. These

ex-post metrics have been computed over a backtesting period from January 2003 to December 2023.
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Table 2: Climate-Biodiversity Strategy: Absolute Portfolio Statistics

CAGR Ann. Vol. Sharpe Ratio Max. DD Calmar Ratio Turnover

Forest+0% & CO2-0% (Bench.) 3.08% 3.56% 0.42 14.61% 0.10 10.07%

Forest+10% & CO2-0% 3.09% 3.56% 0.42 14.78% 0.10 19.64%

Forest+20% & CO2-0% 3.06% 3.54% 0.41 14.80% 0.10 23.45%

Forest+30% & CO2-0% 3.06% 3.50% 0.42 14.79% 0.10 22.87%

Forest+0% & CO2-10% 3.17% 3.58% 0.44 14.59% 0.11 21.98%

Forest+10% & CO2-10% 3.14% 3.55% 0.43 14.56% 0.11 26.74%

Forest+20% & CO2-10% 3.12% 3.53% 0.43 14.54% 0.10 28.37%

Forest+30% & CO2-10% 3.10% 3.49% 0.43 14.37% 0.10 30.82%

Forest+0% & CO2-20% 3.22% 3.60% 0.45 14.64% 0.11 33.45%

Forest+10% & CO2-20% 3.20% 3.56% 0.45 14.49% 0.11 30.18%

Forest+20% & CO2-20% 3.19% 3.52% 0.45 14.17% 0.11 36.65%

Forest+30% & CO2-20% 3.17% 3.48% 0.45 14.04% 0.11 39.99%

Forest+0% & CO2-30% 3.29% 3.64% 0.46 14.64% 0.12 41.63%

Forest+10% & CO2-30% 3.24% 3.60% 0.45 14.58% 0.11 40.03%

Forest+20% & CO2-30% 3.23% 3.55% 0.46 14.28% 0.11 44.80%

Forest+30% & CO2-30% 3.24% 3.50% 0.47 13.75% 0.12 45.41%

Notes. The Table presents the analytics for the 16 fixed-income portfolio strategies over the period from January

2003 to December 2023. Forest+x% & CO2-y% refers to the bond investing strategy that minimizes the level

of tracking error subject to the following constraints: (i) the biodiversity indicator is equal to (1 + x)% of the

biodiversity indicator of the market capitalization benchmark, and (ii) the climate indicator is equal to (1 − y)%

of the climate indicator of the benchmark. “CAGR” stands for Compound Annual Growth Rate, “Ann. Vol.” for

Annualized Volatility, “S.R.” for Sharpe Ratio, “Max. DD” for Maximum Drawdown, “Turnover” for One-Way

Turnover.
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Table 3: Climate-Biodiversity Strategy: Portfolio Statistics Relative to the Benchmark

Alpha Tracking Error Information Ratio

Forest+10% & CO2-0% 0.01% 0.09% 0.11

Forest+20% & CO2-0% -0.02% 0.20% -0.10

Forest+30% & CO2-0% -0.02% 0.36% -0.06

Forest+0% & CO2-10% 0.08% 0.22% 0.37

Forest+10% & CO2-10% 0.06% 0.26% 0.22

Forest+20% & CO2-10% 0.03% 0.35% 0.09

Forest+30% & CO2-10% 0.01% 0.45% 0.02

Forest+0% & CO2-20% 0.14% 0.52% 0.26

Forest+10% & CO2-20% 0.11% 0.53% 0.21

Forest+20% & CO2-20% 0.10% 0.60% 0.18

Forest+30% & CO2-20% 0.08% 0.67% 0.12

Forest+0% & CO2-30% 0.20% 0.82% 0.24

Forest+10% & CO2-30% 0.15% 0.83% 0.18

Forest+20% & CO2-30% 0.14% 0.87% 0.16

Forest+30% & CO2-30% 0.15% 0.92% 0.16

Notes. The Table presents the analytics relative to the market capitalization benchmark computed for the 16 fixed-

income portfolio strategies over the period from January 2003 to December 2023. Forest+x% & CO2-y% refers to

the sovereign bond investing strategy that minimizes the level of tracking error under the following constraints: (i)

the biodiversity indicator is equal to (1 + x)% of the biodiversity indicator of the benchmark, and (ii) the climate

indicator is equal to (1− y)% of the climate indicator of the benchmark.
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Table 4: Climate-Biodiversity Strategy: Absolute Portfolio Statistics

Yale EPI Sustainable Indicators

CAGR Ann. Vol. Sharpe Ratio Max. DD Calmar Ratio Turnover

ECO+0% & CCH+0% (Bench.) 3.08% 3.56% 0.42 14.61% 0.10 10.07%

ECO+3% & CCH+0% 3.10% 3.58% 0.42 14.75% 0.10 19.35%

ECO+6% & CCH+0% 3.12% 3.66% 0.42 15.41% 0.10 24.54%

ECO+9% & CCH+0% 3.16% 3.75% 0.42 16.02% 0.10 29.94%

ECO+0% & CCH+5% 3.13% 3.59% 0.43 14.63% 0.10 23.55%

ECO+3% & CCH+5% 3.15% 3.62% 0.43 14.97% 0.10 26.56%

ECO+6% & CCH+5% 3.16% 3.69% 0.42 15.65% 0.10 28.05%

ECO+9% & CCH+5% 3.17% 3.77% 0.42 16.26% 0.10 31.38%

ECO+0% & CCH+10% 3.22% 3.63% 0.45 14.75% 0.11 31.87%

ECO+3% & CCH+10% 3.22% 3.67% 0.44 15.27% 0.11 33.41%

ECO+6% & CCH+10% 3.23% 3.75% 0.44 15.91% 0.10 37.69%

ECO+9% & CCH+10% 3.26% 3.84% 0.44 16.46% 0.10 38.29%

ECO+0% & CCH+15% 3.31% 3.69% 0.46 14.86% 0.12 41.31%

ECO+3% & CCH+15% 3.31% 3.74% 0.46 15.55% 0.11 43.36%

ECO+6% & CCH+15% 3.32% 3.81% 0.45 16.16% 0.11 47.30%

ECO+9% & CCH+15% 3.34% 3.89% 0.45 16.61% 0.11 45.56%

Notes. The Table presents the analytics computed for the 16 sovereign bond portfolio strategies using Yale EPI

sustainable indicators over the period from January 2003 to December 2023. See Table 2 for details on calculated

metrics.
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Table 5: Climate-Biodiversity Strategy: Portfolio Statistics Relative to the Benchmark

Yale EPI Sustainable Indicators

Alpha Tracking Error Information Ratio

ECO+3% & CCH+0% 0.02% 0.15% 0.14

ECO+6% & CCH+0% 0.04% 0.40% 0.10

ECO+9% & CCH+0% 0.08% 0.66% 0.12

ECO+0% & CCH+5% 0.05% 0.15% 0.32

ECO+3% & CCH+5% 0.06% 0.26% 0.25

ECO+6% & CCH+5% 0.08% 0.46% 0.17

ECO+9% & CCH+5% 0.10% 0.70% 0.14

ECO+0% & CCH+10% 0.13% 0.33% 0.39

ECO+3% & CCH+10% 0.14% 0.42% 0.32

ECO+6% & CCH+10% 0.15% 0.59% 0.25

ECO+9% & CCH+10% 0.18% 0.80% 0.23

ECO+0% & CCH+15% 0.23% 0.55% 0.42

ECO+3% & CCH+15% 0.23% 0.62% 0.37

ECO+6% & CCH+15% 0.24% 0.76% 0.32

ECO+9% & CCH+15% 0.26% 0.93% 0.28

Notes. The Table presents the analytics relative to the market capitalization benchmark for the 16 sovereign bond

portfolio strategies using Yale EPI sustainable indicators over the period from January 2003 to December 2023. See

Table 3 for details on calculated metrics.
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Table 6: Climate-Biodiversity Strategy: Absolute Portfolio Analytics

Long-Short Portfolios

CAGR Ann. Vol. Sharpe Ratio Max. DD Calmar Ratio Turnover

Forest+0% & CO2-0% (Bench.) 3.08% 3.56% 0.42 14.61% 0.10 10.07%

Forest+10% & CO2-0% 3.09% 3.55% 0.42 14.52% 0.10 26.24%

Forest+20% & CO2-0% 3.09% 3.54% 0.42 14.43% 0.10 41.05%

Forest+30% & CO2-0% 3.10% 3.53% 0.43 14.35% 0.10 53.61%

Forest+0% & CO2-10% 3.12% 3.56% 0.43 14.38% 0.11 53.23%

Forest+10% & CO2-10% 3.12% 3.56% 0.43 14.33% 0.11 50.05%

Forest+20% & CO2-10% 3.12% 3.55% 0.43 14.25% 0.11 57.46%

Forest+30% & CO2-10% 3.12% 3.54% 0.43 14.20% 0.11 67.66%

Forest+0% & CO2-20% 3.15% 3.58% 0.43 14.23% 0.11 103.04%

Forest+10% & CO2-20% 3.15% 3.57% 0.43 14.21% 0.11 97.81%

Forest+20% & CO2-20% 3.15% 3.57% 0.44 14.21% 0.11 96.17%

Forest+30% & CO2-20% 3.15% 3.55% 0.44 14.16% 0.11 104.93%

Forest+0% & CO2-30% 3.17% 3.60% 0.44 14.15% 0.11 149.64%

Forest+10% & CO2-30% 3.18% 3.60% 0.44 14.10% 0.11 146.61%

Forest+20% & CO2-30% 3.18% 3.60% 0.44 14.14% 0.11 141.64%

Forest+30% & CO2-30% 3.17% 3.59% 0.44 14.09% 0.11 146.52%

Notes. The Table presents the analytics for the 16 sovereign bond portfolio strategies over the period from January

2003 to December 2023, with short bond positions authorized. See Table 2 for details on calculated metrics.
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Table 7: Climate-Biodiversity Strategy: Portfolio Analytics Relative to the Benchmark

Long-Short Portfolios

Alpha Tracking Error Information Ratio

Forest+10% & CO2-0% 0.01% 0.07% 0.11

Forest+20% & CO2-0% 0.01% 0.14% 0.05

Forest+30% & CO2-0% 0.01% 0.21% 0.07

Forest+0% & CO2-10% 0.04% 0.20% 0.18

Forest+10% & CO2-10% 0.04% 0.20% 0.19

Forest+20% & CO2-10% 0.04% 0.22% 0.16

Forest+30% & CO2-10% 0.04% 0.26% 0.14

Forest+0% & CO2-20% 0.06% 0.41% 0.15

Forest+10% & CO2-20% 0.06% 0.40% 0.15

Forest+20% & CO2-20% 0.07% 0.41% 0.16

Forest+30% & CO2-20% 0.07% 0.43% 0.16

Forest+0% & CO2-30% 0.09% 0.61% 0.15

Forest+10% & CO2-30% 0.10% 0.61% 0.16

Forest+20% & CO2-30% 0.10% 0.61% 0.16

Forest+30% & CO2-30% 0.09% 0.62% 0.14

Notes. The Table presents the analytics relative to the market capitalization benchmark for the 16 sovereign bond

portfolio strategies over the period from January 2003 to December 2023, with short bond positions authorized.

See Table 2 for details on calculated metrics.

43


	Introduction
	Analytical Framework
	Relative risk minimization with two sustainable investment objectives
	Decomposition of the active risk for the optimal portfolio with two sustainability objectives

	Data
	Sovereign bond indices
	Sustainability country characteristics

	Empirical Results
	Methodology
	An illustration of biodiversity and climate trade-offs
	Backtesting for sovereign bond portfolios
	Baseline sample results
	Robustness results


	Conclusion
	Detailed Analytical Results
	Tables and Figures

