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We are in the early stages of a sustainability revolution. It will have the magnitude of the industrial revolution yet 

the speed of the digital revolution.. Al Gore (2020) 

 

There is no doubt that the energy sector will only reach net-zero emissions if there is a significant and concerted 

global push to accelerate innovation Energy Policy Perspectives 2020 IEA 

 

 

1. Introduction 

How are innovation activities and technological advances shaped by the prospect of an 

approaching climate change crisis? In this paper, we explore corporate green innovation activity 

around the world and its effects on corporate behavior, in particular on future corporate carbon 

emissions. According to the latest IPCC (2021) report, to avoid an increase in average temperatures 

greater than 1.5o C, global net carbon emissions must be reduced to zero by 2050. To have any 

hope of attaining this goal, governments around the world have stepped up their policies to curb 

carbon emissions and accelerate the transition to renewable energy sources.  

Yet nearly all analysts agree that a successful global decarbonization cannot be founded 

only on regulations. It necessarily entails major technical advances in substitute energy sources and 

other technologies to reduce or capture carbon emissions. According to the IEA (2020), 

“Reducing global CO2 emissions will require a broad range of different technologies working 

across all sectors of the economy in various combinations and applications. These technologies 

are at widely varying stages of development.” 

 Much R&D that is touted as green mainly takes the form of efficiency improvements in 

energy use. Primary examples are fuel efficiency gains in transport, electricity efficiency gains in 

refrigeration, air-conditioning, computing, lighting, and heating. The promise of these 

technological improvements is that the environmental impact of consumption in terms of carbon 

emissions will become smaller and smaller. However, as Jevons (1865) first noted about coal 

consumption, greater energy efficiency—by lowering the energy cost of consumption—could 

induce an increase in aggregate demand for energy, which could undo the anticipated reduction in 

energy use: “It is wholly a confusion of ideas to suppose that the economical use of fuel is 

equivalent to a diminished consumption.” Indeed, despite all the technological improvements in 

fossil energy use, we have still not seen a global decoupling of economic growth and carbon 

emissions.  

The title of our paper is a reference to the title of Jevon’s (1865) book, The Coal Question, 

as the same economic problem he saw for the consumption of coal, which is only available in 

limited supply, arises for CO2 concentration in the atmosphere, which can only be accumulated 
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to a limited amount if we are to avoid global overheating.  The main question we are concerned 

with in this study is the impact of green innovation on future corporate carbon emissions. What 

has come to be known as the Jevons paradox (and is also referred to as the rebound effect) is a warning 

that green technological progress is not necessarily synonymous with carbon emission reductions 

because technological improvements that reduce fossil fuel energy reliance also boost economic 

activity. It is unclear a priori what the net effect is on carbon emissions of respectively green R&D 

(that is not related to fossil fuels) and brown efficiency-improving R&D (that improves the energy 

efficiency of fossil fuel-based technologies), given that consumption and production are 

endogenous, and that any successful innovation generates additional economic activity. Even pure 

green innovations, that reduce direct or downstream emissions, may cause an increase in brown 

electricity production (scope 2 emissions) or emissions in the supply chain (especially upstream), 

an impact we define as the displacement effect. 

A related question we are concerned with is the extent to which companies with high 

carbon emissions move away from fossil fuel-based technologies and embrace green innovation.  

More generally, how much do corporate characteristics (the line of business the company is in; the 

technologies it is using) determine the innovation activities a company engages in? What 

companies, in which sectors, have been the source of most green R&D?  

We can address these questions by combining three global datasets on respectively 

corporate patent filings, corporate financial reports, and corporate (direct and indirect) carbon 

emissions covering the period from 2005 to 2020.  All in all, our data covers more than 136 million 

patents held by 2.3 million firms. Based on a patent’s Cooperative Patent Classification (CPC), we 

can sort patents into three broad categories, green patents (which concern technological 

improvements in environmental impacts of economic activities), brown efficiency-improving patents 

(which achieve advances in fossil energy efficiency), and other patents that are not directly related 

to the environment or to energy. For each firm we can determine the intensity of their green or 

brown innovation activities by calculating the ratio of the number of their green (respectively 

brown efficiency) patents to the total number of patents they have filed. We calculate these ratios 

based on either worldwide patent filings or on filings with the European patent office, which are 

known to be more reliable. We can also weigh the importance of each patent based on the number 

of citations. 

We begin our analysis by exploring how these measures of corporate green (or brown) 

innovation activity are associated with firm characteristics (our analysis covers corporate 

innovative activity around the world, which allows us to control for country, sector, and firm 

characteristics). A first contribution of our study is to provide a picture of green innovation activity 

across countries, sectors, firms, and over time. For example, we find that 22.3% of publicly listed 
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companies engage in innovation, while only 1.6% of private companies file patents in a given year.  

Furthermore, we find that the distribution of countries contributing at least one green patent is 

highly skewed, with the top ten countries contributing most green patents. This is also true for the 

distribution across sectors and firms, with some sectors, such as multi-Utilities, Electric Utilities, 

Oil, Gas & Consumable Fuels, and Independent Power and Renewable Electricity production 

standing out for their high ratios of green to total number of patents. Across sectors just over 1% 

of all firms have filed at least one green patent. We also find that green innovation activity has 

steadily risen over our sample period, with the average patent ratio rising from 0.080 in 2005 to 

0.130 in 2020. 

A central idea in the economics of innovation literature is the Arrow replacement effect (Arrow 

1962), which refers to the lower incentive to innovate for an established firm with market power 

if the innovation replaces an existing technology that is working and is profitable. Another 

important idea for our analysis is learning-by-doing (Arrow 1971), which means that companies 

master the technologies they use better, the more they have been using them. A key prediction for 

our analysis that derives from these two effects is that profitable companies with operations based 

on fossil fuel energy are less likely to engage in green innovation, a new technology they are less 

familiar with. If a company engages in green innovation, it is more likely to be a new entrant that 

is less dependent on fossil fuel-based technologies.  

Consistent with these predictions, we find that companies with greater experience with 

brown technologies (as measured by the stock of brown efficiency patents they already own) are 

less likely to engage in green innovation and companies with greater experience with green 

technologies (as measured by the stock of green patents they already own) are less likely to engage 

in brown efficiency innovation.1 Furthermore, we find that that brown companies (with higher 

emissions and that are older) do not tend to engage in green R&D. This is true in particular for 

companies with higher indirect (scope 3) emissions, which suggests that there is a broader 

replacement effect at work than the one identified by Arrow:  brown companies appear to be 

locked into fossil-fuel dependent technologies through their production networks. If input 

suppliers or downstream firms/customers also rely on fossil fuel-dependent technologies, it is 

more difficult for an individual firm in the supply chain to switch to green technologies. A key 

implication from this latter finding is that, in order to induce firms to transition from brown to 

 
1 A case in point is the energy company Halliburton. In response to a recent SEC question on its exposure to carbon 
transition risk it stated that “We believe that one of the significant risks that we face in energy transition is that we will 
be unable to innovate in a timely, cost-efficient manner, or at all.” (See Climate risks gain corporate acknowledgment after 
SEC prodding by Patrick Temple-West, Financial Times 30 December 2022). We show in Figure IA.II that most of 
Halliburton’s innovation activity in recent years has been in brown innovation, which has steadily increased over time.   
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green technologies, industrial policy may be necessary to coordinate this transition across all firms 

linked through the supply chain. 

Our findings that green R&D is more likely to be undertaken by new entrants and brown 

efficiency R&D is more likely for established companies with operations that are based on fossil 

fuel energy are consistent with earlier studies that find evidence that innovation is path dependent 

(Acemoglu, 2002, Popp, 2002, and Aghion et al. 2016).  Aghion et al. (2016) consider a panel of 

automobile manufacturers and explore the extent to which these companies produce innovations 

on combustion-engine cars versus electric, hydrogen or hybrid engine vehicles. Their main finding 

is that specialization in innovation activity in clean (vs brown) technologies is self-reinforcing. Our 

study extends this evidence in support of the path-dependency view of innovation to all sectors, 

across countries, not just the automobile sector. 

Even if innovation is path dependent, and even if brown firms are less likely to undertake 

green R&D, we find that there has been a steady rise in the number of green patent filings (as 

shown in Figure 2). It is therefore possible that the promise of a sustainability revolution could be 

fulfilled.  We explore this question next by looking at the effects of green R&D on future corporate 

carbon emissions and other policy outcomes. How has green R&D affected corporate carbon 

emissions, capital expenditures, and other policies? According to the IEA (2020) “Around half of 

the cumulative emissions reductions that would move the world onto a sustainable trajectory come 

from four main technology approaches. These are the electrification of end-use sectors such as 

heating and transport; the application of carbon capture, utilization and storage; the use of low-

carbon hydrogen and hydrogen-derived fuels; and the use of bioenergy. However, each of these 

areas faces challenges in making all parts of its value chain commercially viable in the sectors where 

reducing emissions is hardest”. Another issue is the extent to which the benefits of technological 

improvements in terms of carbon efficiency are undone by rebound effects (Jevons, 1865). Finally, 

some of the green innovations may lead to a displacement in emissions. 

Our main finding on the effects of green innovation on corporate outcomes is that there 

has been no significant impact on future carbon emissions reductions. Whether in the short run 

(one year), or medium run (three & five years ahead), we do not find any significant effect of green 

innovation on direct and indirect corporate carbon emissions of the innovating firms. Consistent 

with the Jevons paradox, we find that brown efficiency innovation does result in lower future 

carbon intensity, but this benefit is undone by higher sales, which overall result in higher future 

emissions.   

We also analyse how aggregate sectoral changes in emissions are associated with green 

R&D on the presupposition that innovation could be of use not just for the innovator but also for 

other firms operating in the same sector. However, we do not find any significant spillover effects 
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of green innovation on the carbon emissions of either innovating or non-innovating firms in the 

same (GICS-6) sector. Yet, consistent with the displacement effect and the greater reliance on 

brown electricity, we do find that green innovation is associated with subsequent increases in scope 

2 emissions of the same sector. In contrast, brown efficiency innovation does not predict future 

emission changes of other innovating firms in the same sector. However, it does benefit non-

innovating firms whose direct and indirect emissions go down. But this decrease is mostly a 

consequence of lower sales for this group of firms.  

We also find that the association of innovation activity by publicly listed companies and 

their future emissions is not strongly correlated with the same association of innovation and future 

emissions by privately held firms. That is, innovation by publicly listed companies has a stronger 

positive effect on their future scope 2 emissions than the innovation by privately held firms on 

their future scope 2 emissions.  Furthermore, we do not find any spillover effects broadly speaking 

across sectors or across countries. The one notable exception is our finding that an increase in 

green innovation predicts subsequent reductions in scope 3 downstream emissions of broadly 

related industries. 

Another indirect channel through which innovation can affect future emissions of non-

innovating firms is through changes in the market shares of innovating firms. We find that firms 

with higher green patent ratios tend to lose market share to other firms that have higher emissions, 

a form of displacement effect. Finally, our third main finding on the effects of green innovation 

on future corporate carbon emissions is that to a large extent green innovation has little to 

contribute to decarbonization. Where we see significant reductions in corporate carbon emissions, 

we find that these reductions are for the most part not due to green innovation. Overall, green 

innovation contributes only 1% to corporate carbon emission reductions. In sum, green 

innovation may be necessary for the sustainability revolution, but it is far from sufficient. The 

overwhelming conclusion of our analysis is that the green industrial revolution has not materialized 

over our sample period and the promise that green innovation will set the global economy on a 

sustainable path to net zero has not yet borne fruit. 

Our paper contributes to a growing recent literature on the firm-level implications of the 

transition to a green economy.  A closely related study by Cohen et al. (2022), who also look at 

green innovation by U.S. listed companies, draws somewhat different conclusions. They find that 

green innovation activity in the energy sector is higher than that in other sectors and conclude that 

this is evidence against path dependency of innovation. We confirm some of their cross-industry 

variation, but our main finding is that within each sector brown companies (those with higher 

emissions) do less green R&D.  This is true across all sectors and countries.  More specific 

differences are that we extend our sample to firms that also file for patents outside the USPTO, 
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and to firms that are located outside the U.S. We further distinguish between green and brown 

efficiency patents, which allows us to evaluate the path-dependency hypothesis more explicitly. In 

this regard, we note that the classification of green patents used in their study tends to nest what 

we define as brown efficiency patents. Finally, their study takes ESG scores as a metric of 

environmental performance, which they motivate by the fact that asset managers tend to focus on 

such scores in their divestment screens. Our focus instead is on carbon emission outcomes. 

A parallel literature in finance explores the effect of green innovation of U.S. firms on firm 

value (e.g., Hege et al. (2022); Kuang and Liang (2022); Reza and Wu (2022)). More broadly, Bolton 

and Kacperczyk (2021, 2022a) show that the transition risk, which embeds technological progress, 

is already reflected to a large extent in equity markets. Ilhan et al. (2021) show that carbon risk is 

also priced in options.  Engle et al. (2020) have constructed an index of climate news through 

textual analysis of the Wall Street Journal and other media and show how a dynamic portfolio 

strategy can be implemented that hedges transition risk with respect to climate change news. 

Sautner et al. (2022) show that companies that report positive sentiment towards climate in their 

conference calls subsequently produce a greater number of green patents. In contrast to these 

studies, our focus is on the effects of green patents in decarbonization. 

Earlier studies on rebound effects have focused on specific activities or on sector or 

country-level data. Our study is the first to explore the effects of technological change on carbon 

emissions based on firm-level data.2  The findings on rebound effects in this earlier literature are 

mixed. For example, Schipper and Grubb (2000) have looked at aggregate data on energy use and 

found that car use and energy use in other activities have not changed much in response to 

technological improvements in energy efficiency. Based on these findings they conclude that 

rebound effects are likely to be small. Sorrell et al. (2009) provide a review of prior empirical studies 

on rebound effects. They argue that many studies only look at partial rebound effects over limited 

time periods and over restricted consumption responses. For example, studies on the consumption 

response to fuel-efficiency improvements in automobiles only measure changes in mileage 

travelled and do not consider more long-term changes in vehicle size. By looking at firm-level data 

and at cross-firm and cross-industry effects of green innovation we can identify substantially larger 

and more diverse forms of rebound effects. 

 
2 An important aspect of green innovation is the role of government policies in supporting innovation (for a literature 
review, see Greaker and Popp, 2022).  These policies are important and can induce a shift to green innovation (e.g., 
Popp, 2002; Aghion et al., 2016). Our study focuses on firm-level responses and how they depend on their 
characteristics, especially their carbon emissions. We absorb the impact of innovation policies using industry and 
country fixed effects, making an implicit assumption here that innovation policies are industry-wide and not firm-
specific. Our findings reveal how firms in an industry differentially respond to these policy interventions and how 
their differential response is linked to firm characteristics such as carbon emissions. 
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The remainder of the paper is organized as follows. Section 2 provides the conceptual 

framing for our analysis. Section 3 describes the data and provides summary statistics. Section 4 

discusses the results on the drivers of green innovation. Section 5 provides the results on the 

impact of innovation on future emissions and other corporate decisions. Section 6 concludes. 

 

2. Conceptual Framework 

We begin with a conceptual discussion of green innovation and the transition to a net-zero 

economy. There are three key guiding concepts that help us understand the various connections 

between green innovation and carbon emissions. The first, as already highlighted, is the Jevons 

paradox and other rebound effects of green innovation on energy consumption, one of which is 

the displacement effect defined above.  The narrow notion of the Jevons paradox is that an energy 

efficiency gain, or a carbon intensity gain, from a better technology will of course reduce emissions 

for a given level of operations, but if the new technology invites more users and larger operations 

then the overall reduction may be limited or may not materialize at all.  

We expect to find direct evidence of such a rebound effect if a brown efficiency innovation 

subsequently improves the carbon intensity of operations, but overall carbon emissions are not 

significantly affected or are higher. A general reason why one should expect a positive effect on 

operations and sales from a brown efficiency innovation is that the innovation improves 

profitability and the competitiveness of the innovating company, which are likely to result in an 

expansion of the business.  

There are other, more indirect, and more subtle, displacement effects to be expected.  A 

concrete and highly relevant example is the transition to electric vehicles (EV). This is one of the 

major new green innovations. If, as is likely to be the case, the share of EV grows significantly in 

the next few years then scope 1 emissions from transportation should be expected to decline. 

However, if the increased demand for electricity is met by increased production from coal-fired 

power plants, as is likely to be the case in states where coal-fired power plants are still responsible 

for the lion share of electricity production (such as West Virginia, with a 91% share, Missouri with 

75%, Wyoming with 74%, and Kentucky with 71%)3, then the green EV revolution will result in 

an increase of scope 2 emissions. What does not get burned by the vehicle will get burned by the 

power company, with a likely net increase in total emissions given that coal is far more carbon 

intensive than oil. Similarly, the production of all the parts that go into an EV, from the wheels, 

tyres, chassis, body, engine, and batteries, etc, will generate carbon emissions, so that green 

innovation could also result in higher upstream scope 3 emissions. These higher emissions will be 

 
3 See https://www.eia.gov/todayinenergy/detail.php?id=54919 
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fully offset by lower scope 1 emissions than a combustion engine vehicle only after the EV has 

clocked up many thousands of miles. 

Other rebound effects operate through product market competition. If green innovation 

involves higher costs than brown efficiency innovation (or no innovation), then the green 

innovating firm will be at a cost disadvantage relative to its industry peers. It may as a result lose 

market share. This would translate into lower carbon emissions for the green innovating firm, but 

higher carbon emissions for its competitors that are gaining market share.  Alternatively, green 

innovation could spur adoption of green technologies by industry peers, leading to an industry-

wide reduction in carbon emissions. In sum, green innovation is likely to have spillover effects, 

positive or negative, which could affect carbon emissions of non-innovating firms with the 

industry or across industries. To understand the overall impact of green innovation on carbon 

emissions it is therefore important to explore the link between green innovation activity and 

carbon emissions within and across industries. 

The second and third guiding concepts for our analysis are closely related. They are both 

associated with founding ideas first proposed by Kenneth Arrow (1962, 1971). One concept is 

commonly known as Arrow’s replacement effect (Arrow 1962), which refers to the idea that 

established firms, monopolies, have a lower incentive to innovate because their innovation mostly 

replaces their existing technology that is working and is profitable. The other concept, learning-

by-doing (Arrow 1971), has broader applications. But in the context of innovation, it means that 

companies understand the technologies they already use better, which induces them to continue 

to improve something they already master rather than explore new directions which seem more 

obscure. One key general prediction that follows from these two concepts is that profitable 

companies with operations based on fossil fuel energy (brown companies) are less likely to engage 

in green innovation, a new technology they are less familiar with, and less likely to replace their 

brown operations with green operations. A related general prediction is that innovation is likely to 

be path dependent: a company that has already been actively researching brown efficiency 

innovations is more likely to continue to do brown R&D. Green innovation, therefore is most 

likely to be undertaken by companies that are new entrants.    

Arrow (1962) focuses his analysis on an individual firm’s technology and the replacement 

of the firm’s own technology. When it comes to green and brown innovation, however, 

replacement has a broader scope and involves complementary technologies upstream and 

downstream. Replacement is not just confined to one firm. It may require technological changes 

in an entire ecosystem. Following the development of a new green technology an individual firm 

might be ready to replace its old technology if all the other firms it depends on also make the 

switch. A case in point is again electric vehicles. Switching to EV requires major changes not only 
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in the supply chain but also downstream, with new charging station networks, maintenance, 

servicing, etc. Thus, the more dependent upstream and downstream industries are on fossil fuels, 

the less likely it is that an individual firm in one sector will transition to green technologies. A 

major general prediction that follows from this observation is that an individual company is less 

likely to do green R&D the higher are its upstream and downstream scope 3 emissions.      

Finally, another key consideration in exploring the link between green innovation and 

future carbon emissions is the timing of deployment of new technologies. There can be a major 

time-to-build lag between the discovery and development of a new technology and its deployment. 

Part of this lag may be due to the time it takes to go from a working prototype to a mature 

technology. According to the latest research by the IEA (2021), many new green technologies in 

the energy sector are still at the prototype stage. Their impact on future carbon emission reductions 

is therefore likely to be small in the immediate future (see the IEA figure below).  

 

 
 

Given the relatively short and finite time interval of our study, it is not possible to account 

for impacts that are far into the future. We cannot rule out the possibility that these impacts will 

be very large, and that green innovation will fully deliver on its promises. Still, it is important to 

find out whether, and the extent to which, green innovation is already having an impact on 

reducing carbon emissions, given the small and rapidly shrinking remaining carbon budget, which 

according to the latest climate research is less than 300 gigatons (Gt) of CO2 as of 2020 if 

temperature rise is to be limited to less than 1.50C with an 83% probability (IPCC 2021). Given 

that annual energy-related emissions have been around 31.5 GtCO2 in 2020 (IEA 2021) and given 

that projected annual energy-related emissions for the next few years will remain at that level, there 

are only a few years left for green innovation to deliver on its promises before it is too late.  
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3. Data 

Our data construction starts with all global firms, both publicly listed and private, identified 

between 2005 and 2020 in the following data bases: Orbis Intellectual Property Financial, Orbis, 

Factset, and Worldscope for financial information (balance sheets and income statements). The 

financial data for public firms is based on all four. The financial data for private firms is based 

solely on Orbis IP Financial and Orbis. The latter data sets only cover the ten most recent years. 

The overall dataset is termed “full sample”. We merge these datasets with the Orbis Intellectual 

Property dataset, which provides a comprehensive coverage of patent filings and corporate 

ownership of patents by listed and unlisted companies in 81 countries. This dataset includes 136 

million patents held by 2.3 million firms. It also provides patent citations, which are a good 

measure of the importance of the innovation protected by the patent. Henceforth, we refer to this 

dataset as the “patenting sample”. 

We further combine the full sample with data from Trucost on firm-level carbon and other 

greenhouse gas emissions. Trucost reports yearly firm-level carbon and greenhouse gas emissions 

data for scope 1, 2, and 3 emissions in units of tons of CO2 equivalent. Scope 1 emissions are 

direct emissions from operations of affiliates that are owned or controlled by the company. Scope 

2 emissions are those that come from the generation of purchased heat, steam, and electricity used 

by the company. Scope 3 emissions are indirect emissions caused by the company’s operations 

and the use of its products. These include emissions from the production of purchased materials, 

product use, waste disposal, and outsourced activities. Establishing the scope 3 emissions of a 

company requires a detailed analysis of the share of emissions of producers in the supply chain 

that is attributable to the company’s input purchases. This involves estimating an input-output 

model with sector-level emission factors. Our data allows us to distinguish between scope 3 

emissions coming from upstream and downstream activities although the latter are only available 

from 2017 onwards; hence, total scope 3 emissions prior to 2017 reflect upstream emissions only. 

Finally, we include world index constituent data from MSCI. We use the ISIN identifier and 

company names to match these datasets. 

3.1 Aggregate data by country 

Internet Appendix Table IA.I provides a breakdown of our aggregate data by country. In Panel A, 

we report a breakdown of the number of firms in each country that are respectively, publicly listed, 

privately held, and have carbon emissions data. The total number of firms in our sample is 788,983, 

of which 54,009 are publicly listed companies and 734,974 are privately held firms. There are 

18,819 firms for which we have carbon emissions data through Trucost. The limited coverage 

reflects the fact that Trucost has collected emissions data mostly from listed and larger companies. 

Countries with the largest number of firms in the full sample include China, Italy, Denmark, and 
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France, each of them having more than 50,000 companies in the full sample. Even excluding these 

countries, our sample has a wide cross-country representation. Notably, in the matched Trucost 

sample, the U.S. has the largest representation of all countries, which is consistent with the fact 

that it has the relatively larger fraction of publicly listed companies. In columns 5-8, we further 

restrict the full sample to observations for which we have patent data from Orbis. Throughout 

our main analysis, we focus on patents registered with the European Patent Office (EUPO). As is 

well known, the filing process is most rigorous at the EUPO, so that these filings reflect more 

significant and enduring innovations.  In the Appendix, we provide additional robustness results 

using patents registered with any patent office worldwide.  The total number of firms in this subset 

of patenting firms represents roughly 3% of the universe of companies in our data, which reveals 

the fact that most companies do not get involved in any innovation activity. Interestingly, publicly 

listed patenting companies comprise about the same fraction of the sample with patents as 

privately held patenting firms. Still, private companies represent a significantly larger population 

of all firms. These numbers therefore indicate that public firms are significantly more likely to 

engage in innovative activities. 

In Panel B we report the distribution of patent counts across countries. Most patents came 

from publicly listed companies, which provides further evidence that innovation is typically 

produced within large companies. Notably, the fraction of patents registered by companies that 

are part of the Trucost data is over 75%. The two countries with the highest number of patents in 

our sample are the United States and Japan, each one having more than 300,000 patents registered. 

The next three countries are Germany, France, and South Korea, each with more than 100,000 

patents.  In columns 5-8, we show the average number of patents per firm, for companies that do 

engage in patenting activity. An average company in our sample registered more than 17 patents 

over the sample period. The fraction is significantly larger for public firms, which register more 

than 24 patents per firm in contrast to private firms where this number is 5.7. 

Table IA.II further shows the country-level breakdown into firm-year observations. To be 

included in the final sample, we require firm-year observations to have values for assets, book 

leverage, ROE, and country of incorporation. We lose about 3,700,000 firm-year observations due 

to this restriction. In addition, we require public firms to have records for capex, previous year’s 

December return, volatility, and market capitalization. This leads to another 200,000 firm-year 

observations being lost. In the paper, we refer to this filtered dataset with 5.3 million firm-year 

observations as the “full sample”. Columns 1-4 present the numbers for the full set of public and 

private companies.  The number of observations in the full sample is 5,318,818, of which 390,985 

are observations from public firms and 4,927,833 are observations from private firms. In columns 
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5-8, we restrict the sample to companies with at least one listed patent. That sample includes 88,727 

observations, 63% of which are from publicly listed companies. 

 

3.2 Green and brown innovation 

We make a key distinction between green innovation, targeting technologies that substitute carbon 

dioxide emitting technologies for carbon dioxide-free technologies (or that make carbon-dioxide-

free technologies more accessible), and brown innovation, which targets improvements in fossil-fuel 

based technologies. For this patent classification we rely on the description of the patent and four 

technology classification sources on patents relating to the environmental impact of technologies, 

namely the environmental technologies classified by the Organization of Economic Co-operation 

and Development (OECD)4, the International Patent Classification (IPC) Green Inventory5,  the 

efficiency-improving fossil fuel-technology categories of Lanzi et al. (2011), as well as a self-

identified classification based on patents from the Corporate Knights Clean 200. We classify 

patents into three broad categories6: i) green patents for environmental technologies; ii) general 

efficiency improvement patents that deal with technologies that improve process efficiency and 

therefore could reduce emission intensity; iii) brown patents that deal with technological 

innovation for fossil fuel-based technologies. For robustness, we also consider the OECD 

classification of green patents, which includes technologies related to environmental applications, 

such as climate mitigation, biodiversity, and wastewater management, as well as green and general 

efficiency improvements patents. 

Prior research (e.g., Cohen et al., 2022; Aghion et al., 2016) has relied on the OECD 

classification of green patents only. But the OECD classification does not always distinguish 

between patents on renewable energy technologies and brown efficiency improvement patents. 

Some green patents within the OECD classification are brown efficiency patents. To illustrate this 

point, we conduct a cloud-of-words analysis of patent descriptions using the term frequency–

inverse document frequency (TFIDF) algorithm. We search for the dominant words in our green 

patent classifier, stripping out common words in the OECD classification, and we do the same 

for the OECD classification, searching for the dominant words and stripping out the common 

words from our classification. We present the resulting clouds in Figure 1. 

In the left figure, we show the words that are uniquely dominant to our classification. 

Words, such as mri, magnetoresistive, or magnetometer are very common to fusion reactions and 

underlie the green nature of the patent. In the right figure, we start with the OECD words and 

 
4 https://www.oecd.org/env/indicators-modelling-outlooks/green-patents.htm 
5 https://www.wipo.int/classifications/ipc/green-inventory/home  
6 We provide a detailed description of our approach and the underlying IPC/ CPC classes in the following online 
document: https://wiedemannm.github.io/documents/DescriptionPatentClassification.pdf  
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filter out common words from our classification. The dominant words of this process include 

exhaust gas, internal combustion, or abradable, all three likely attributed to efficiency gains of 

brown technology. Overall, this analysis suggests that our classification is more accurate in 

identifying purely green patents. The OECD classification misclassifies some patents as green 

when they are more likely to be brown patents. For the rest of the analysis, we will thus rely on 

our classification, but we also check the robustness of our findings to using the OECD 

classification. 

In Table IA.III, we report the distribution of firms and patents conditional on a firm filing 

a green or brown patent. In Panel A, we analyze the distribution of firms by country.  In columns 

1-4, we report the statistics for firms which file a green patent, and in columns 5-8 the statistics 

for firms which file a brown patent.  Only about 1% (0.4%) of all firms have at least one green 

(brown) patent. In the cross-section, the U.S., Japan, and Germany (the U.S., Japan, and China) 

have the largest number of firms with green (brown) patents, each of them representing 7%-20% 

(7%-28%) of the total number of patenting firms. The distribution of countries contributing at 

least one green (brown) patent is skewed, with the top 10 countries contributing most green 

(brown) patents. Publicly listed companies account for 63% (66%) of firms with green (brown) 

patents.  The fraction of firms with at least one green (brown) patent that is covered by Trucost is 

roughly 42% (48%). 

In Panel B, we provide a similar breakdown for the total and average (per firm) number of 

green patents. In the full sample, over the period 2005-2020, companies have filed 162,039 green 

patents.  In this group, a large number (144,614) of green patents is registered with publicly listed 

companies, and only 17,368 patents are registered with private companies. More than 131,000 of 

green patents have been filed by companies with emission data in Trucost. The highest number of 

green patents by firm comes from Saudi Arabia, South Korea, and Germany, each of them having 

more than 10 patents per firm. In Panel C, we provide a similar breakdown for brown patents. In 

the full sample, we observe 63,689 brown patents in total; 56,556 of those patents have been filed 

by publicly listed companies and the remaining 7131 are those filed by private companies. Saudi 

Arabia, Germany, and the United Kingdom are the three countries with the highest number of 

brown patents per firm. 

In Figure 2, Panel A we show the year-by-year distribution of patenting activity, measured 

by green and brown patent counts, based on the sample of all firms with patent data. We observe 

a steady increase in patenting activity over time at least until 2018, especially for green patents. 

Green patents also represent a larger share of patenting activity. We also separate the data into 

different regions.  The two regions with the largest number of either green or brown patents are 

Asia and Europe. At the peak of 2018, each region contributed almost 10,000 patents each. The 
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equivalent number for North America is significantly less and accounts for about 5,000 patents. 

Notably, countries outside these three regions, which include Africa, Australia, and South America, 

contribute almost no patents to the overall patent count. This fact underlies the importance of any 

innovation spillovers from patenting to non-patenting regions, especially because these non-

patenting regions are responsible for significant fraction of global emissions. Panel B presents 

observations for all firms that are available in Trucost. The subsample quite closely mimics the 

behavior of the unconditional sample. We observe a steady increase in observations from 2005 

until 2015. More pronounced is the sharp increase in observations starting from 2016. This 

increase can be largely explained by the change in firm coverage by Trucost that took place post-

Paris agreement. This can be better observed in Panel C, in which we restrict our observations to 

firms that are featured in Trucost prior to 2016. We still observe the increase in firm observations 

over time but the sharp increase in 2016 is no longer as pronounced. 

 

3.3 Innovation Capacity: scale & scope 

The summary statistics in Section 3.1 suggest that the probability of a firm filing a patent is skewed 

towards larger firms. This result is not entirely surprising. To be able to innovate firms need to 

build research teams, laboratories, and other facilities. It is to be expected that bigger firms can 

build bigger research facilities, and therefore can produce more patents. What is more, firms are 

more likely to continue incurring these fixed costs if their innovative activities have been 

successful. And so, a plausible hypothesis is that the past stock of patents along with the size of 

the firm predict future patenting activity. If firms’ innovation capacities are limited by their size, 

one would also expect to see some substitution between different R&D directions. Not all 

promising research and development projects can be pursued at the same time. Firms choose the 

projects that show the greatest promise given their state of knowledge and know-how. Thus, 

another plausible hypothesis is that firms specialize in the R&D they become good at. 

We begin our analysis by formally exploring these two hypotheses. First, we associate a 

firm’s number of new patent filings at the European patent office in year t (ANYCOUNTEP) 

with its stock of European patents up to year t (PASTSTOCKANYEP), its size, number of 

employees, assets, and its age, using a Poisson pseudo-maximum likelihood model (which allows 

for non-trivial numbers of zeros in dependent variables). We report our findings in Table 1, Panel 

A. In columns 1 to 3, we look at the extensive margin by including all firms, whether they have 

any patents or not. In columns 4 to 6, we look at the intensive margin, by including only firms that 

have engaged in innovation activities in the past and own some patents.  Specifications 1 and 4 

include country and year fixed effects, specifications 2 and 5 additionally include industry-year 

fixed effects, and specifications 3 and 6 use firm fixed effects instead of industry-year fixed effects. 
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In all models, we double cluster standard errors at the firm and year dimensions to allow for cross-

correlation and serial correlation of residuals. 

Consistent with our first hypothesis, we find that the stock of patents already owned prior 

to year t (PATSTOCKANYEP), the age of the company, and the three measures of firm size 

(market cap, number of employees and total assets), all positively predict future patenting activity 

when we add industry-year fixed effects. This is true both at the extensive and intensive margins. 

In other words, innovative activities of firms are constrained by their innovative capacity, which 

is greater for larger firms and for firms that have greater R&D experience (as reflected in the patent 

stock and firm age variables). As others have pointed out (e.g., Acs and Audretsch 1988, 1991), 

much innovation activity takes place at large companies. Our findings confirm these observations 

(albeit based on broader and more recent data). These results provide important context for our 

other findings below on the path-dependency of R&D activity. 

In Panel B of Table 1 we turn to our second hypothesis, specialization through learning-

by-doing. Here we distinguish between the number of green patents a firm files in year t 

(GREENCOUNTEP) in columns 1 to 3, and the number of brown patents 

(BROWNEFFCOUNTEP) it files, in columns 4 to 6. We also break down the patent stock 

variable into the stock of green patents (PATSTOCKGREENEP) the firm holds up to year t, and 

the stock of brown patents (PATSTOCKBROWNEFFEP). Consistent with our hypothesis, we 

find strong evidence of specialization, with a higher stock of green patents (resp. brown patents) 

positively predicting future green innovation activity (resp. brown innovation activity). Moreover, 

a higher stock of green patents (resp. brown patents) negatively predicts future brown innovation 

activity (resp. green innovation activity). This latter finding in particular reveals both the presence 

of scope constraints for innovation and the effects of learning-by-doing. Overall, this latter finding 

uncovers strong path-dependency for innovation: greater experience with brown technology 

reduces the likelihood of future green innovation activity; similarly, greater experience with green 

technology reduces the likelihood of future brown efficiency innovation. This evidence is 

consistent with the path-dependency findings of Aghion et al. (2016) for the auto industry. Path 

dependency is not just a feature of that industry. It extends across industries and around the world. 

 

3.4 Green and brown innovation ratios 

As we have shown, patenting activity in any given year is significantly driven by a firm’s innovation 

capacity. Moreover, the different directions in which a firm can pursue R&D are constrained by 

the firm’s innovation capacity, so that there is some substitution between different R&D 

directions. Accordingly, new patent filings must be related to the firm’s innovation capacity to get 

a more accurate picture of the intensive margin of innovation activity. For that reason, we 
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normalize the number of green (respectively brown) patent filings by the total number of patent 

filings and define the following two variables: GREENRATIOEP is the ratio of green patents 

filed at EUPO over the total number of patent filings in that year; BROWNEFFRATIOEP is the 

ratio of brown patents filed at EUPO over the total number of patent filings in that year. 

Table IA.IV, Panel A provides information on the ratios of green or brown patent filings 

for each country. In columns 1-4 we focus on green patent ratios. The average green patent ratio 

equals approximately 11%. Interestingly, the ratios do not differ greatly between publicly listed 

and private companies, with the former having an average ratio of 11.4% and the latter 10.3%. For 

the Trucost sample, the numbers are slightly higher. Furthermore, innovation activity (as measured 

by the number of firms with at least one patent) is proportional to the size of the economy. Among 

the countries with more than 300 public or private companies, some of the ones with the highest 

ratios of green to total number of patents are: Norway with a ratio of 16.4%, Canada with a ratio 

of 15%, and Denmark with a ratio of 14.5%. In comparison China has a ratio of 12.9%, and the 

U.S. an even lower ratio of 10%. Notably, Saudi Arabia reports a large fraction of green patents 

14.9%, and the UAE an even higher ratio of 23.5%, which is interesting given their strong reliance 

on oil production. In columns 5-8 we provide respective summary statistics for brown patents. 

On average, brown patent ratios are significantly smaller. The average number for the EUPO 

patents equals 3.33%. The unconditional numbers do not deviate much from those based on the 

Trucost sample. Notable countries for significant brown patenting activity include Malaysia, 

Australia, India, Greece, Singapore, and the U.K. The numbers for the U.S. and China are about 

the same 2.61%. 

Panel B breaks patent activity down by sector (GICS6-industry). In columns 1-4 we 

present the results for green patents. Some sectors stand out for the intensity of their innovation 

activities.  The Independent Power and Renewable Electricity Producers industry has the highest 

ratio of green patents filed at EUPO, with 53.78%, followed by Electric Utilities, Multi-Utilities, 

and Gas Utilities. These results are broadly consistent with those in Cohen, Gurun, and Nguyen 

(2022) for the U.S. On the other end of the green R&D spectrum, IT and healthcare sectors are 

the two industry groups with the lowest green patent ratios. The ratios are broadly within the same 

range for public and private firms. They are also not markedly different when we restrict our 

sample to Trucost observations, which is reassuring about any selection concerns one might have.  

In columns 5-8 we report the results for brown patents. The ratios are generally larger for publicly 

listed firms, especially in those sectors with higher ratios. Among the most active industries, 

Energy Equipment & Services leads with the highest ratio of 19.95%, followed by Automobiles at 

14.38%, and Independent Power and Renewable Electricity Producers at 12.5%. 
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In Panel C, we report the distribution of patenting activity by year, with columns 1-4 

providing green patenting activity over time and columns 5-8 providing brown patenting activity. 

Green patent ratios have steadily increased over time. For example, in column 1 we see that this 

ratio was below the average of 11% in 2005, with a ratio 8%, but above average in 2020 with a 

ratio of 12.9%. The same increasing trend in green patent activity can be observed for listed 

companies (in column 2), private companies (column 3), and for Trucost companies, which are 

mostly listed companies (in column 4). When it comes to brown patent filings, we see the opposite 

trend and a decline in R&D activity over time for brown technologies, but the rate of reduction is 

very small. In Figure 3 we display the patent ratios across time by region and find broadly similar 

patterns.  

 
3.5 Summary Statistics 

In this section we provide summary statistics for the main variables in our models, conditional on 

whether firms file patents. In addition, we report complete summary statistics for publicly listed 

firms with carbon emissions data (those that can be matched to the Trucost dataset). Our empirical 

analysis in the subsequent sections is based on this restricted sample. Accordingly, these summary 

statistics provide information on how the broader universe of firms may differ from the Trucost 

universe. 

We begin by defining all the variables. Our first category is variables related to innovation 

activity. Besides the variables measuring general innovation activity and respectively green 

innovation, and brown efficiency improvements that we defined above, we also include variables 

measuring the impact of patents by how widely cited they are.  GREENRATIOEP2 is defined as 

the number of granted or purchased “green” or “general efficiency” patents over the total number 

of granted or purchased patents; OECDRATIOEP is a patent ratio based on OECD green Env-

tech classification, calculated as the number of granted or purchased OECD patents over the total 

number of granted or purchased patents; GREENCITMAXEP (BROWNEFFCITMAXEP) is 

the maximum number of forward citations any green (brown) patent of a firm received; 

GREENBBCOUNTEP (BROWNEFFBBCOUNTEP) is the number of green (brown) 

blockbuster patents patent per firm, where blockbuster patents are defined as patents in the 95th 

percentile based on the number of forward citations in a given grant year and classification.7  

 
7 Measuring the importance of patent value is generally a challenging question and, in this paper, we rely on the most 
basic measure of citation, particularly because of our global focus in the paper. Kogan et al. (2017) is an excellent 
study providing a more detailed discussion of these issues.  
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In our second category we include variables measuring corporate carbon emissions (direct 

and indirect) when available, and standard variables capturing key corporate characteristics.8  Thus, 

LOGS1TOT, LOGS2TOT, LOGS3TOT, LOGS3UPTOT, and LOGS3DOWNTOT 

respectively stand for the natural logarithm of firm-level scope 1, 2, and 3 (also upstream and 

downstream) total carbon emissions, and S1INT, S2INT, S3INT, S3UPINT, and S3DOWNINT 

are firm-level scope 1, 2, and 3 emission intensity variables defined as the level of emission divided 

by firm sales.  In our third category we include the main variables reflecting key corporate 

characteristics: i) LOGSIZE stands for the natural logarithm of a listed company’s market 

capitalization (price times shares outstanding); ii) LOGPPE is given by the natural logarithm, of 

the firm’s property, plant, and equipment (in $ million); iii) LEVERAGE is the ratio of debt to 

book value of assets; iv) ROE is given by the ratio of firm i’s net yearly income divided by the 

value of its equity; v) M/B is the end of year market cap divided by the firm’s book value; vi) 

BETA is the market beta of individual companies calculated over the preceding 12-month period; 

vii) VOLAT is the standard deviation of returns based on the past 12 monthly returns; viii) 

momentum, MOM is given by the average of the most recent 12 months’ returns on stock i, 

leading up to and including month t-1; ix) short-term reversal, RET is the past year’s December 

return on stock i; x) capital expenditure INVEST/A is the firm’s capital expenditures divided by 

the book value of its assets; xi) MSCI is an indicator variable equal to one if a stock is part of the 

MSCI ACWI index in year t, and zero otherwise; xii) LOGCAPEX is the natural logarithm of 

firm-level capital expenditures; and xiii) LOGCASH is the natural logarithm of firm-level cash 

positions.  To mitigate the impact of outliers we winsorize M/B, LEVERAGE, INVEST/A, and 

ROE at the 2.5% level, and MOM and VOLAT at the 0.5% level. 

In Table IA.V we report the sample averages, medians, and standard deviations of these 

variables. Panel A is based on all public and private firms, and Panel B on firms with available 

emission data. Columns 1 to 3 aggregate all firms with at least one patent. Columns 4 to 6 aggregate 

firms without any patents. Columns 7 to 9 aggregate firms in the bottom decile based on firms’ 

average GREENRATIOEP across the whole period. The bottom decile covers only firms with 

no green patents and represents around 35% of observations. Columns 10 to 12 aggregate firms 

in the top decile based on firms’ average GREENRATIOEP across the whole period. Both Panels 

A and B reveal considerable heterogeneity in innovative activity. Among the firms that hold at 

least one patent, there is a wide dispersion in green innovation as reflected in the standard deviation 

of GREENRATIOEP of 26.08% and the standard deviation of GREENCITMAXEP of 155.89.  

 
8 Note that we do not have a complete coverage of all corporate emissions. The Trucost data covers around 85% of 
listed companies worldwide, and almost no privately held companies. The numbers we report are therefore an 
underestimate of total corporate emissions, and since a growing fraction of high emitting companies (or their affiliates) 
have delisted over the period we cover, this underestimate is likely to be larger in later years. 
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Interestingly, the average level of emissions of innovating firms is significantly larger than that of 

non-innovating firms, with the mean of LOGS1TOT equal to 6.13 for innovating firms but only 

4.85 for non-innovating firms. A similar difference holds for scope 2 and 3 emissions. Partly this 

difference could be attributed to the fact that innovating firms are slightly larger (mean LOGSIZE 

is 7.86 for innovating firms versus 6.93 for non-innovating firms). Patenting firms have also greater 

values of LOGPPE, LOGCAPEX, and LOGCASH, and slightly higher values of M/B than non-

patenting firms do. At the same time, they do not differ much in terms of their BETA, VOLAT, 

MOM, and INVEST/A. Notably, we observe similar relationships for variables that are observed 

for the full and restricted samples, which suggests that the relationships we identify based on our 

restricted samples are not less likely driven by specific selections along different observables. 

We now turn to the analysis of innovation and the carbon transition. Our analysis will be 

guided by three fundamental insights, the Arrow replacement effect (Arrow, 1962), Jevons’ paradox 

(Jevons 1865), and the displacement effect. Arrow (1962) has pointed out that “The pre-invention 

monopoly power acts as a strong disincentive to further innovation.”9 More generally, the incentive 

to innovate is reduced if the innovation replaces an existing technology that is working and is 

profitable. By that principle one should expect companies that master technologies based on fossil 

fuels to be less motivated to engage in green innovation that would replace a technology and know-

how that is already working. This is even more likely if green innovation involves retooling and 

abandoning a knowledge base around fossil fuel-based technology. If there is an incentive to 

innovate for an incumbent firm with a fossil fuel-dependent installed base it is more likely to take 

the form of efficiency improvements in the use of fossil fuels, what we refer to as brown efficiency 

improvements. Indeed, this innovative activity plays into the strengths of the incumbent firm, its 

expertise with brown technologies, which it has built through learning by doing (Arrow 1971).  

Carbon emissions can be reduced by replacing brown with green energy or by improving 

the carbon efficiency of brown energy. Thus, both green and brown efficiency innovations are 

central to the drive to decarbonize the economy. But, as Jevons (1865) has pointed out, brown 

efficiency improvements do not necessarily translate into carbon emission reductions because the 

very efficiency gain is also inviting greater use. Furthermore, the displacement effect from green 

innovation may displace scope 1 emissions to scope 2 and scope 3 emissions, as is for example the 

case for electric vehicles. 

In the next section we explore how green innovation activity is shaped by Arrow’s 

replacement effect. In the following section we turn to Jevons’ paradox and the displacement 

 
9 Kenneth Arrow “Economic Welfare and the Allocation of Resources for Invention,” page 620, in The Rate and 
Direction of Inventive Activity: Economic and Social Factors, NBER.  
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effect to explore the link between green innovation and the future decarbonization of the 

economy. 

 

4. Green Innovation Activity: Arrow’s replacement effect and path-dependent innovation 

Basic economic analysis would suggest that firms engage in green R&D if it is more profitable 

than both no R&D and other R&D. Another consideration is comparative advantage—some 

firms, such as renewable energy companies, may be both better equipped and benefit more from 

green R&D. Brown companies that rely on fossil fuel energy may be better at squeezing out 

efficiency gains in brown technologies. Alternatively, “khaki” R&D, that is, green innovation by 

brown companies, may be most profitable if fossil fuel energy is increasingly regulated and 

expected to become obsolete. We explore these hypotheses in this section and point to some key 

factors driving green R&D across sectors and around the world. Overall, the picture that emerges 

is the importance of path-dependency in understanding green innovation activity at the firm level. 

As we will show, green firms (that are already familiar with green technologies) are more likely to 

produce green patents, whereas brown firms (which have expertise in fossil fuel-dependent 

technologies) are more likely to produce brown patents. Similarly, older companies (the industry 

incumbents) are more likely to engage in brown efficiency innovation, while younger companies 

(the new entrants) are more likely to engage in green innovation. We also find that a key predictor 

of patenting activity is the stock of past patents that a company holds. Companies that have been 

successful innovators in the past have capacities that allow them to continue to innovate. However, 

as we have shown, innovation capacities are limited. Companies cannot innovate in all promising 

directions. If their past innovative activities tended to be specialized in brown efficiency 

innovations, they will continue to innovate in that direction. In sum, innovation activity is 

characterized by path-dependence consistent with the findings of (Popp, 2002) and Aghion et al., 

2016). 

 

4.1 Green vs Brown Innovation: Firm type and Path-dependency 

The sustainable energy technological revolution necessarily involves substituting fossil fuel-based 

technology for green technology. Is this substitution taking place within firms (with the greening 

of brown firms) or across firms (with the replacement of brown firms by green firms)? This is the 

question we explore in this section. 

 Our working definition of a brown firm is a firm with high carbon emissions, that is older, 

may have larger assets, and may be a value company. Similarly, a green firm is one that has low 

carbon emissions, is younger, may have smaller asset size, and may be a growth firm. These 

characteristics are not the only possible ways to define a firm type, these are more to illustrate the 



 21 

point that companies’ emissions may be systematically driven by some ex-ante metrics. As the 

histograms in Figure 4 show, our green vs brown firm type classification is broadly descriptive of 

our universe of companies. Each panel shows the distribution of scope 1 emissions for companies 

in the lowest and the highest quintile of the distribution that is conditional on three different 

characteristics. In Panel A we show how younger firms (in the bottom quintile) have a distribution 

of scope 1 emissions that is skewed towards lower levels than the distribution for older firms (in 

the top quintile). Similarly, in Panels B and C we show that firms with respectively larger asset size 

and larger M/B ratios have also lower means and medians of their emissions. 

 Our question, rephrased with reference to these two firm types, then will be the extent to 

which we see green innovation activity at green versus brown firms, and whether we see brown firms 

greening themselves through green R&D. Given that firms have limited innovation capacities and 

given that the research projects that are most promising in view of individual firms’ accumulated 

know-how tend to crowd out other R&D, it is natural to measure the amount of green (resp. 

brown efficiency) R&D in terms of the ratio of green-to-total patent filings (resp. brown efficiency-

to-total patent filings). 

How are green (resp. brown) patent ratios linked to firm type, specifically the firm’s 

corporate carbon emissions, its age, and green and brown patent stocks? To answer this question, 

we estimate the following Pseudo Poisson Maximum Likelihood model with firm (i) and year (t) 

as units of observation10: 

 

Patent Ratioi,t = a + b*Firm Typei,t-1 + c*Controlsi,t-1 + Fixed Effects + εi,t   (1) 

where Patent Ratio is a generic variable that allows for different types of patents to be related to the 

total number of patent filings. Firm Type (a continuous variable measuring the share of a firm’s 

green and brown activities) is proxied by a combination of i) LOGS1TOT (and other carbon 

emission variables); ii) PATSTOCKGREENEP and PATSTOCKBROWNEFFEP, and iii) 

AGE/100. Controls is a vector of the following variables: LOGSIZE, LOGPPE, LEVERAGE, 

ROE, M/B, INVEST/A, BETA, VOLAT, MOM, RET, and MSCI.  We include country and year 

fixed effects. In some specifications, we also include industry-year or firm fixed effects. Our 

baseline specification uses the Trucost sector classification of 431 industries. To allow for the 

cross-sectional and serial dependence in the residuals we double cluster standard errors at the firm 

and year dimensions. Our coefficient of primary interest is b. 

 
10 Since many companies do not report any green patents a standard OLS regression is not suitable to estimate this 
relationship. 
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We report our findings for the extensive margin (which includes all firms, whether they 

own any green, respectively brown, patents or not) in Table 2.  In columns 1-3, we present the 

results for green innovation activity (GREENRATIOEP), and in columns 4-6 the results for 

brown innovation activity (BROWNEFFRATIOEP). When industry fixed effects are not included 

(column 1) the coefficients of LOGS1TOT and PATSTOCKGREENEP are positive and 

statistically significant. The coefficient of AGE is negative and statistically significant. Not 

controlling for industry, however, is misleading because technological differences (and differences 

in emissions) across industries are huge.  The results of the regressions without industry fixed 

effects are therefore difficult to interpret. For this reason, we consider specifications that absorb 

the time-varying differences across industries through industry-year fixed effects. 

When industry-year fixed effects are included (column 2) the coefficient of LOGS1TOT 

is highly significant and negative.  The other two coefficients retain the same sign and significance 

as before. When we further include firm-fixed effects, in column 3, the coefficients of 

LOGS1TOT and PATSTOCKGREENEP become insignificant.11 The results flip when we look 

at brown innovation activity (BROWNEFFRATIOEP) in columns 4-6. For this type of 

innovation activity, the association with direct carbon emissions is strongly positive across firms 

within the same industry (when we include firm fixed effects, in column 6, the association for 

LOGS1TOT becomes negative, suggesting that when direct emissions increase firms tend to 

reduce their innovation activity). Overall, the combination of these results has a clear 

interpretation: green companies do more R&D that is green, and brown companies do less; 

instead, the latter do more brown R&D. What is more, these are cross-firm rather than within-

firm effects (when we substitute industry*year FE for firm FE neither the coefficients for carbon 

emissions nor for the stock of patents are significant). These results further confirm the path-

dependency hypothesis for R&D. To the extent that brown companies engage in innovation 

activities, their innovations are less likely to be directed towards green patents (and the opposite is 

true for green companies). In addition, green innovation is most likely to be undertaken by new 

entrants. Incumbents, far from embracing renewable energy technological change, respond by 

seeking to improve the efficiency of fossil fuel-based technology. The auto industry provides a 

good illustration of these findings. Indeed, the EV revolution has been driven by new entrants 

(Tesla, BYD) and incumbents have responded by improving the carbon efficiency of their vehicles. 

In Table 3, we further explore the link between green innovation and direct carbon 

emissions on the intensive margin. That is, we restrict the sample to the universe of firms that have 

engaged in innovation (all the firm-year observations with at least one green patent, in columns 1 

 
11 In the specification with firm-fixed effects we cannot uniquely identify the coefficient of AGE because its variation 
is collinear with that of firm and year fixed effects. 
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to 3, and/or one brown patent, in columns 4 to 6) and explore how the intensity of green 

(respectively brown) innovative activity  is related to the stock of respectively green and brown 

efficiency patents the firm already owns, firm age, and the firm’s direct carbon emissions. The 

empirical model follows that in Table 2, and it is estimated using OLS with standard errors double 

clustered at firm and year dimensions. Our findings for the intensive margin are broadly consistent 

with those for the extensive margin. If anything, they are stronger, except for firm age and scope 

1 emissions, which are no longer significant for brown efficiency innovation, suggesting that entry 

and exit play a more important role in the relationship between the variables in the data. 

Patent counts (or patent ratios) are somewhat coarse innovation performance metrics to 

the extent that many patents have limited applications. Accordingly, we also take patent citations 

(which reflect the importance of a patent) as an additional measure of innovation activity. In Table 

4, Panel A, we associate the citation number of the patent with the maximum citations (respectively 

our GREENCITMAX and BROWNEFFCITMAX variables) with the same firm characteristics 

as in our previous regression for the green and brown patent ratios. We find very similar qualitative 

effects.  Companies with higher emissions have lower citations for their green patents but higher 

citations for their brown patents. Also, companies with a greater stock of green (brown) patents 

are more likely to receive more citations of their green (brown) patents. Notably, firm age is 

positively associated with citations of both types of patents.  This is to be expected since citations 

generally take time to accumulate. Similarly, our findings on the path-dependency of green R&D 

are confirmed when we focus on the most important new patents by citation count, 

GREENBBCOUNTEP and BROWNEFFBBCOUNTEP, in Panel B. Companies with a higher 

stock of green patents are more likely to make further important green innovations, and companies 

with a higher stock of brown patents are more likely to make additional brown efficiency 

innovations.  The results for firm emissions and age are slightly weaker. 

We find more direct evidence of Arrow’s replacement effect at work in Table 5, where we 

explore how the firm’s market share affects the path-dependence of innovation. If the replacement 

effect is at work, we would expect to see firms with larger market share do less green innovation 

other things equal. In Table 5 we explore how a firm’s market share based on its sales relative to 

total public and private firms’ sales in the same Trucost sector (MKTSHRSALES TRUIND) 

affects its green innovation activity. Strikingly, we find that firms with a larger market share do 

significantly less green innovation, but they do more brown innovation. Note that when we replace 

industry*year FE with firm FE market share is no longer a significant variable, so that this effect 

is entirely driven by selection in the industry. An additional prediction of the model is that firms 

with greater market share should be in a better position to switch their innovation profile because 

of their stronger competitive position. To test this hypothesis, we interact the firms’ market share 
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with their type (measured by scope 1 emissions, firm age, and the stock of green and brown 

efficiency patents). In the model in column 2 that accounts for industry-year fixed effects, we find 

that green innovation is less path dependent when firms have a larger market share. This result 

holds for all three measures of firm type. The results based on brown innovation are similar for 

firm type measured by scope 1 emissions but are weaker when we measure firm type with the 

stock of brown patents, or firm age. Note that the interaction effect is again driven by selection in 

the industry. Indeed, when we replace industry*year FE with firm FE we find that a higher stock 

of green patents induces more green innovation (and a higher stock of brown patents induces 

more brown efficiency innovation). These findings are all consistent with Arrow’s replacement 

effect: more entrenched firms (as measured by their market share) have lower incentives to do 

R&D and they are also more likely to switch their type because of their greater flexibility to do so. 

Our findings so far are that brown companies (with higher direct emissions) do not tend 

to engage in green R&D. This may be due to replacement and/or learning-by-doing effects. 

Another possibility is that brown companies may be locked into fossil-fuel dependent technologies 

through their production networks. If input suppliers or downstream firms/customers also rely 

on fossil fuel-dependent technologies, then an individual firm in the supply chain may not be able 

to easily switch to green technologies. We investigate the presence of such technological 

complementarities across firms by exploring whether indirect (scope 2, upstream and downstream 

scope 3) emissions are linked to corporate green R&D.  We report the findings of this analysis in 

Table 6. It is indeed the case that the technological ecosystem in which a firm operates affects its 

incentives to engage in green R&D. As can be seen in columns 1, 2, and 3 of Panel A, the higher 

are the firms’ indirect levels of emissions along the vertical production chain the less likely the firm 

is to engage in green R&D. Also (as is shown in Panel B), when it comes to brown efficiency 

innovation, the higher are firms’ upstream scope 3 emissions the stronger are their brown 

innovation activities. Similar, but slightly weaker results hold for scope 2 and downstream scope 3 

emissions. All in all, these latter findings reveal the presence of a much broader replacement effect 

than the firm-specific replacement effect identified by Arrow (1962): Replacing an old technology 

with a new one is more costly and less profitable if other firms along the supply chain do not 

follow in making the switch. This key finding suggests that in order to induce firms to transition 

from brown to green technologies, industrial policy that helps coordinate this transition across all 

firms linked through the supply chain may be needed. 

We also explore the change in path dependency of R&D over time in response to the rise 

in climate change awareness and tighter mitigation policy responses following the Paris 2015 

landmark agreement. We split our sample into two sub-periods, before and after 2015. We report 

our results in Table 7. The results in Panel A are for the full sample, and those in Panel B are only 
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for the legacy sample (the firms for which we have carbon emissions data before 2015). The 

interactions LOGS1TOT*Post2015, AGE*Post2015, and PATSTOCKGREENEP*Post2015 

(resp. PATSTOCKBROWNEP*Post2015) capture the change in path-dependency around the 

Paris agreement (where Post2015 is an indicator variable taking the value 0 for all observations 

before 2015 and 1 after 2015). Interestingly, there is no significant change in the link between 

carbon emissions and green (or brown) patent activity. However, the stock of green patents 

matters more for future green R&D post 2015, suggesting that green R&D has become more 

valuable post 2015 and is pursued by the (new entrant) green firms. 

4.2 Robustness 

We perform several robustness tests and report the findings in the Appendix. In Tables IA.VI and 

IA.VII we report the findings of our main regression analysis industry by industry for each GICS6 

industry to better understand in which industries our results are strongest. Overall, path-

dependency results are found in most industries, especially for the regressions with green patents 

as dependent variable. 

Second, we explore how sensitive our path-dependency results are to different patent 

classifications. In Table IA.VIII we replace our green patent classification with the broader OECD 

classification of green patents, which includes more general technologies related to environmental 

applications, biodiversity, and wastewater management, as well as a green classification capturing 

both green and general efficiency patents. We find that the qualitative predictions uncovered for 

our green patent classification also hold for this broader green classification. Firms with higher 

emissions, that are older, larger, and have a smaller stock of green patents do less green R&D. 

Third, we explore the sensitivity of our results to different patent filings than European 

patent office filings. In Table IA.IX we count all patent filings anywhere in the world. The 

dependent variables now are the ratio of green to total worldwide patent filings in year t 

(GREENRATIOWW in columns 1 to 3) and the ratio of brown to total worldwide patent filings 

(BROWNEFFRATIOWW in columns 4 to 6). Similarly, the stock of patents 

(PATSTOCKGREENWW and PATSTOCKBROWNEFFWW) now includes all patents filed 

anywhere in the world. The results clearly show that the qualitative results on path dependency 

also obtain when we look at the noisier measure of patent activity based on worldwide filings. 

Fourth, we revisit the results of Table 2, using two alternative definitions of industry, based 

on 6-digit and 8-digit GICS scores. We report the results in Table IA.X. We find that qualitatively 

changes in industry classification do not affect our results on path dependence. Another 

robustness test we conduct is to restrict our sample to those firms for which we have carbon 

emissions data before 2015 (our legacy sample). Again, as reported in Panel A of Table IA.XI (for 
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the extensive margin) and Panel B of Table IA.XI (for the intensive margin), our qualitative results 

are unchanged. We also explore how much mergers and acquisitions affect our findings. In Table 

IA.XII we report the findings of our regressions based on a sample that excludes all companies 

engaged in mergers and acquisitions (M&A) over our sample period. The results are qualitatively 

similar to our baseline findings. M&A activity is largely orthogonal to the determinants of 

corporate innovation activity even if some acquisitions are motivated by access to innovation. 

We also explore how green innovation is distributed across firms by the size of their carbon 

emissions. In Table IA.XIII, we report the findings when we split our sample into terciles based 

on firms’ initial scope 1 emissions (the first year when we observe a firm’s scope 1 emissions). In 

Panel A the dependent variable is the green patent ratio and in Panel B the dependent variable is 

the brown efficiency ratio. Interestingly, the most significant negative effects of carbon emissions 

on green innovation are concentrated in the tercile of firms with the lowest emissions. But the 

stock of green patents has similar predictive effects on green innovation across all three terciles. 

In contrast, the most significant effects of carbon emissions on brown innovation are concentrated 

in the tercile of firms with the largest emissions. Again, however, the stock of brown patents has 

similar predictive effects on brown efficiency innovation across all three terciles. 

 

5. The effects of innovation on future carbon emissions 

We have shown that green and brown efficiency innovation is strongly path dependent. Green 

companies (which tend to be younger) are more likely to produce green patents, while brown 

companies are more likely to produce brown efficiency patents. That is, brown companies do not 

redirect their innovation towards green innovations. Rather, they focus on squeezing out efficiency 

gains in their brown operations. These results suggest that companies are unlikely to decarbonize 

through the switch of their innovation profiles. 

In this section we systematically evaluate the effects of (green and brown) innovation on 

future carbon emission reductions. Much is predicated on the assumption that technological 

change is the solution to the climate crisis. But do green and brown efficiency innovation 

significantly reduce carbon emissions? The archetypal image of a technological change that 

drastically reduces carbon emissions is the substitution of a coal-fired power plant by a 

photovoltaic power station, or the substitution of a combustion-engine car by an electric vehicle. 

Yet even these obvious examples come with questions about the net effects of these technological 

changes on carbon emissions, since solar panel and electric vehicle production require inputs and 

use energy that causes upstream and downstream carbon emissions, giving rise to the displacement 

effects. Similarly, with brown efficiency-improving innovation the effect on carbon emission 

reductions may be limited because of rebound effects. Fuel economy innovations for combustion 
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engine cars may be undone by people driving longer distances. Battery life improvements for cell 

phones may simply result in greater phone usage. It is therefore unclear how much green and 

brown efficiency innovation has affected direct and indirect carbon emissions. These are the 

questions we explore in this section by exploring in turn the effects of innovation on: i) the 

companies’ own future direct and indirect emissions; ii) the effects on other companies’ direct and 

indirect emissions in the same industry; iii) the effects on carbon emissions across other, broadly 

related industries; and iv) the effects on carbon emissions across countries within the same 

industry. 

 
5.1 Green Innovation and the CO2 Problem 

We begin our analysis of the impact of green R&D on carbon emissions by estimating the 

following regression model linking future firm-level corporate policy outcomes, such as future 

carbon emissions, to measures of contemporaneous green and brown efficiency patent ratios. Our 

first model exploits both extensive and intensive margins of patenting. Formally, we estimate the 

following linear regression model: 

 

Corporate Policyi,t+h = a + b*Patent Ratioi,t + c*Controlsi,t-1 + FE + εi,t   (2) 

where Corporate Policy is a generic response variable that includes: i) the total level of emissions; ii) 

emission intensity; iii) INVEST/A; iv) LOGCAPEX; and v) LOGSALES, measured t+h years 

ahead. We let h take the value of respectively 1, 3, and 5 years to reflect the possibility that there 

may be a “time to build” lag in corporate adjustments. We also use the average value of patenting 

activity over the previous 3 years to predict corporate outcomes to take account of the fact that 

innovation breakthroughs are lumpy. The variable Patent Ratio is defined as before, and all 

regressions include year and firm-fixed effects. We double cluster standard errors at the firm and 

year dimensions. Our coefficient of primary interest is b, which measures the impact of Patent Ratio 

on future corporate policy outcomes. 

 The results are reported in Table 8. Panel A reports the effects of green innovation 

(GREENRATIOEP) on corporate policy outcomes one year (L1), three years (L3), and five years 

(L5) ahead. We also report the effects of green innovation averaged over the previous three years 

(3YEARAVGGREENRATIOEP) on these corporate policy outcomes. As shown in column 1, 

green innovation has no significant effects on firms’ direct emissions, one, three, or five years later. 

The same is true for indirect emissions (scope 2 emissions in column 2, upstream scope 3 
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emissions in column 3, and downstream scope 3 emissions in column 412), although we observe a 

small reduction in indirect emissions with a 10% statistically significant negative coefficient of           

-0.042 for scope 2 emissions three years after the green patent filings. Future emissions are also 

not significantly related to innovation activity averaged over the past three years. We conclude that 

green innovation has not resulted in significant carbon emission reductions for the innovating 

firms even after five years since the patent filing. Columns 4 to 8 further report the lack of any 

significant effects of green innovation on direct or indirect emission intensity, so that the green 

technical progress does not appear to have materialized in any significant carbon efficiency gains. 

The only significant effect of green innovation on future corporate policies has been on future 

investment (with a three-year lag), with a substantial reduction in investment following the green 

patent filings. This latter finding is somewhat surprising, given that one expects research 

breakthroughs to be followed by development (i.e., more investment). 

Panel B reports the effects of brown efficiency innovation (BROWNEFFRATIOEP) on 

corporate policy outcomes again respectively one year (L1), three years (L3), and five years (L5) 

ahead. As before we also report the effects of brown efficiency innovation averaged over the 

previous three years (3YEARAVGBROWNEFFRATIOEP) on these corporate policy outcomes. 

We find few significant effects of innovation on future corporate policies, except for a small 

increase in direct emissions with a 10% statistically significant positive coefficient of 0.065 for 

scope 1 emissions five years after the brown efficiency patent filings (in column 1), and a stronger, 

positive effect of average brown innovation on scope 1 emissions. This finding suggests that far 

from reducing future emissions, brown efficiency innovations result in increased future emissions. 

However, we also find a small improvement in scope 2 emission intensity, with a 10% statistically 

significant negative coefficient of -0.019 for scope 2 emission intensity five years after the brown 

efficiency patent filings (in column 7). Yet, this latter effect must be set against the significant 

effects on other corporate policies such as an increase in sales (column 12). Overall, what emerges 

from these findings is a picture that is consistent with the Jevons paradox: although brown 

efficiency innovation produces carbon intensity efficiency gains (for scope 2 emissions), these 

gains are offset by operating expansions (sales), which on net result in higher scope 1 emissions. 

For robustness, we consider several alternative specifications. First, in Table IA.XIV we 

confirm the insignificance of firm-level green and brown innovation in affecting future carbon 

emissions and other corporate outcomes, for the specification where we include only observations 

of firms that hold at least one green, respectively brown, patent (intensive margin). Second, in 

Table IA.XV we show the results from the regressions where we take patent counts rather than 

 
12 Note that since downstream scope 3 emissions data has become available only in recent years, we do not have 
sufficient data to explore the effects on downstream scope 3 emissions over a 5-year horizon.  
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patent ratios as the main independent variable. The main difference is that the average count of 

green patents positively predicts future scope 1, scope 2, and upstream scope 3 emissions (in Panel 

A). Another related effect is that the average count of green patents positively predicts future firm 

sales. In contrast, we find a strong negative relationship between brown patent counts and scope 

2 emissions (in Panel B). We also find a decrease in upstream scope 3 intensities in some 

specifications.  Third, we explore how the importance of the patent matters for future corporate 

outcomes. In Table IA.XVI we consider the maximum number of cites a firm’s patent receives. 

We find a strong positive effect of green patent cites on future scope 2 emissions, and a slightly 

weaker effect on upstream scope 3 emissions. In turn, green patent citations negatively predict 

downstream scope 3 emissions one year and three years into the future.  Brown patent citations 

do not seem to affect future emissions, except for scope 1 emissions which fall in the next 1-3 

years for companies with high citations of brown patents.  In Table IA.XVII we look at the number 

of blockbuster patents a firm generates. As before, we find that, if anything, a higher incidence of 

blockbuster green patents is associated with higher levels of total emissions and particularly 

upstream scope 3 emissions. All other emissions components are unrelated to this measure. We 

also find little evidence that blockbuster brown patents lead to any reduction in future emissions. 

In Table IA.XVIII we restrict our analysis to companies whose cumulative patent ratio falls in the 

top quintile of the empirical distribution based on the previous 5-year data. Among all these 

innovation metrics, we find that the only model that predicts a reduction in future emissions is the 

3-year moving average measure of green patents, which is negatively associated with scope 2 

emissions. For brown patents, we find instead that the moving average of brown innovation 

strongly predicts a future increase in scope 1 emissions. Finally, in Table IA.XIX we show the 

results from using alternative, OECD-based, patent classifications. For green patents, we find 

some evidence of a reduction in future scope 2 emissions based on the ratio of green patents. Still, 

total future emissions are not negatively associated with this predictor. We also find a reduction in 

scope 2 emissions for some specifications based on brown patents, but the overall evidence of a 

link between green innovation and future decarbonization is weak.  The conclusion we draw is 

that companies’ green R&D activities are largely divorced from their other operations. Based on 

this evidence we conclude that the green industrial revolution has not yet materialized and that green 

innovation per se as the solution to the energy transition and the path to net-zero is still more of a 

promise than a reality. 

If green or brown innovation does not lead to future carbon emission reductions by the 

innovating firms, could it be that these innovations are adopted by other firms so that green 

innovation activity spills over to the industry as a whole and materializes in industry-wide emission 

reductions? We explore this question by linking industry-level direct and indirect carbon emissions, 
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carbon intensity, and investment, to respectively green and brown efficiency innovation activity in 

the industry. Our baseline specification uses the GICS-6 industries classification. All regressions 

include the same controls as before, except that they are now measured at the industry level. We 

also include year and industry fixed effects. We double cluster standard errors at the industry and 

year levels. We report our findings for the industry-wide effects of green innovation in Table 9, 

Panel A, and of brown innovation in Table 9, Panel B. 

Consider first the effects of green innovation. In Panel A.1 we consider the effects on all 

firms within the same industry, whether they are innovators themselves or not.  We find that green 

innovation is positively associated with future scope 1 emissions in the same industry, especially 

in the longer 5-year horizon. This result is largely driven by an increase in industry sales, in line 

with Jevons’ paradox. In fact, we find that scope 1 emission-intensity at the industry level goes 

down. We further find that a greater rate of green innovation in the industry is associated with 

higher future scope 2 emissions, consistent with the displacement effect. Finally, we find that more 

green innovation is associated with significant upstream carbon emission-intensity 

improvements.13 One consistent interpretation of these latter findings could be that reduced 

upstream scope 3 intensity is achieved by switching energy sources towards electricity, and the 

increase in electricity usage may have been met by electricity produced by fossil-fuel based power 

plants, which would increase scope 2 intensity. We note that the above results do not change much 

if we take as our measure of green innovation the average of green patenting activity over three 

years (3YEARAVGGREENRATIO) to take account of the fact that innovation is a gradual multi-

year process. Finally, we also find a small significant effect on industry-wide investment, with 

greater green innovation associated with a subsequent slight increase in investment, especially in 

the longer run. 

We also break down within industry spillover effects by looking separately at firms that 

innovate and those that do not. The reason why we make this distinction is that spillovers among 

innovating firms could be driven by competition, whereas spillovers from innovating firms to non-

innovating firms are driven by adoption of the new green technologies. In Panel A.2 of Table 9 

we report the results of the effects of green innovation on corporate policies of all the innovating 

firms in the industry. Again, we find no effect of green innovation on subsequent carbon emission 

reductions even though the direction of the effect for scope 1 emissions becomes negative, 

suggesting a more beneficial effect of green innovation. Still, we find that greater green innovation 

 
13 Table IA.XX considers green citations. While the results on absolute scope 1 emissions, intensities, and sales have 
the same sign, they are statistically weaker. Table IA.XXI looks at OECD green patent ratios. The results reported in 
this table broadly confirm our findings. Scope 3 upstream intensities again improve with more green innovation. Note 
that we also find small reductions in scope 1 emissions for a 3-year lag for ever-patenting firms, but this effect 
disappears for a 5-year lag.   
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is associated with higher scope 2 emissions, especially over the longer 3-year period. In Panel A.3 

we report the results of the effects of green innovation on corporate policies of all the non-

innovating firms in the industry. We find no evidence of any within-industry spillover between green 

innovators and non-innovators.14 There is no significant subsequent carbon emission reduction by 

the non-innovators in the industry. There is, however, a significant increase in scope 2 carbon 

emission levels and intensity for the non-innovating firms. We also find a positive effect for scope 

1 emissions.  

In our tests, we assume a particular granularity in which innovation propagates within 

industries. The choice of a proper sectoral clustering is ex ante difficult even though GICS-6 is the 

preferred classification of investors. As a robustness, we therefore repeat the same analysis in Panel 

A of Table IA.XXII, but with a different industry classification: Instead of the coarser GICS-6 

classification we use the slightly finer Trucost industry classification. Most of the qualitative results 

are similar, with some notable exceptions. We now find that most of the industry-level emission 

metrics are unrelated to industry-level green ratios. The exceptions are for scope 2 intensity and 

scope 3 downstream emissions, both being positively related to green innovation. In sum, what 

emerges from these findings is that there is no evidence of significant industry-wide direct and 

indirect emission reductions following greater green patenting activity and if anything, some of the 

emissions, especially scope 2 emissions go up, consistent with the displacement effect. 

We consider next the industry-wide effects of brown efficiency innovation. The results are 

reported in Panel B of Table 9. In Panel B.1 we again look at the effects on all firms in the industry, 

whether they are innovators themselves or not. Interestingly, we find some reduction in direct or 

indirect carbon emissions following greater brown patenting activity even though the results are 

statistically insignificant.15 We further find that scope 1 and scope 3 upstream carbon emission-

intensity goes up. Another remarkable finding is the apparent heterogeneity between innovating 

and non-innovating firms. While emissions of innovating companies in the same GICS-6 industry 

increase slightly, carbon emissions of the non-innovating firms in the sector (both direct and 

indirect) go down. Interestingly, this effect is to a large extent driven by a reduction in sales, and 

investments, of that group of companies. Hence, the carbon emissions reduction of this subset of 

companies is largely coming from their loss of market share and not from a greater carbon 

efficiency of production. We again repeat the same analysis in Panel B of Table IA.XXII with the 

Trucost industry classification. Most of the qualitative results are similar, even though we find that 

 
14 We confirm these results in Table IA.XX with patent citations as a measure of green innovation. The only notable 
difference is an increase in scope 3 downstream emissions with a three-year lag. 
15 In Table IA.XX, we explore the robustness of these findings to using patent citations to measure brown innovation. 
Under this measure, the results are broadly confirmed, although absolute scope 1 emission and intensities increase in 
the long-run. 
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scope 2 emissions of innovating companies go down due to increased efficiency of energy 

production. At the same time, we again find that the market share of non-innovating companies 

goes down by a significant margin thus explaining some of the reduction in total emissions. 

If there are no significant effects of green innovation on industry-wide carbon emissions, 

could there be cross-industry effects? Could it be that technological improvements in green energy 

in one industry mainly result in carbon emission reductions in other, closely related industries? We 

explore this question next (we also look at cross-country spillovers within individual sectors in 

Tables IA.XXIII-IA.XXVIII of the Appendix). In Table 10 we associate industry-wide direct and 

indirect carbon emissions, scope 1, 2, and 3 carbon intensity, capital expenditures, and sales in a 

given industry with green innovation activity by firms outside the narrow sector, but within the 

broader sector, and ask to what extent green innovation works by reducing emissions across 

sectors. Specifically, we link innovation activity in a given GICS-8 industry to corporate outcomes 

in a corresponding GICS-2 industry, excluding the specific GICS-8.  In Panel A.1 we include all 

firms, in Panel A.2 we only look at cross-sector spillovers on innovating firms and in Panel A.3 

we only look at cross-sector spillovers on non-innovating firms. Interestingly, we find a significant 

cross-industry spillover effect on carbon emissions with a 1-year lag for upstream scope 3 

emissions, and for downstream scope 3 emissions for green innovation activity averaged over three 

years (3YEARAVGGREENRATIOEP). This effect works entirely through innovating firms, as 

is shown in Panels A.2 and A.3. 

As for the cross-industry effects of brown efficiency innovation reported in Panel B of 

Table 10, we find that the only significant cross-industry effect on the level of emissions is an 

increase in downstream scope 3 emissions. The other cross-industry effect is a significant 

worsening of scope 1 and scope 2 carbon intensity for patenting firms. These findings point to 

other channels through which rebound effects can take place. An efficiency gain in brown 

technology in one sector can result in increased carbon emissions in another sector (through the 

supply chain) by inducing greater use of a complementary brown technology. 

These findings are consistent with the general idea that cross-sector innovation is highly 

complementary, and that it takes innovation breakthroughs in multiple sectors to be able to 

implement new technologies that reduce carbon emissions at scale. Moreover, technological 

innovation in one sector can result in rebound effects in another sector, largely eliminating any 

reductions in direct emissions from the innovation.  This points to the complexity of green 

innovation as a solution to the CO2 problem. Decentralized, market-based, innovation may not 

be all that effective in decarbonizing the economy, if adoption and scaling of green technologies 

is held back by the lack of coordination of innovation across firms and sectors. 
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5.2 Spillovers from the universe of privately held companies 

Our results so far relate firm-level and industry-level emissions to innovation of publicly listed 

companies. Our focus on publicly listed firms is dictated by the availability of carbon emissions 

data for these companies. However, one could argue that such firms may benefit from innovation 

not only of similar publicly listed companies but also from innovation of privately held firms. In 

this section, we examine this spillover channel by looking at industry-level responses to green and 

brown innovation by publicly listed and privately held companies, separately. 

 In Table 11, we report the results from the analysis that considers innovation and output 

in the same GICS-6 industry, similar to our setting in Table 9. In Panel A, we look at the role of 

green innovation. We define two new variables: GREENRATIOEP PUBLIC takes innovation 

activity of all publicly listed companies, GREENRATIOEP PRIVATE uses the innovation of 

private companies. Both measures incorporate scaling by total innovation activity. In Panel A.1, 

we focus on all firms with emissions data. We find that neither public nor private innovation is 

associated with any statistically significant reduction in industry-level emissions. Notably, we find 

that green innovation in the public sector is more positively correlated with future scope 2 

emissions, as well as scope 1 and upstream scope 3 emissions, though the effects for the latter two 

are statistically insignificant. The stronger positive association of public innovation mostly comes 

from the subset of innovating companies (as reported in Panel A.2), which are also the ones whose 

sales go up by more.  

 In Table 11, Panel B, we repeat the same analysis for brown innovation. The corresponding 

new variables of interest are BROWNEFFRATIOEP PUBLIC and BROWNEFFRATIOEP 

PRIVATE. In contrast to the results in Panel A, we find that public and private innovation do not 

seem to have markedly different impacts on future industry-level emissions. This result is 

consistent with the common perception that private firms are more involved in green innovation. 

 In Table 12, we provide additional evidence on the role of public and private innovation 

through the lens of cross-industry spillovers. Here, our research design follows that in Table 10. 

In Panel A, we consider green innovation. Several interesting findings emerge. First, in aggregate, 

private innovation seems to have a large impact on industry-level emission reductions in the public 

sector. This result largely comes through the reduction of scope 3 emissions, both upstream and 

downstream. Second, this effect is mostly driven by the fact that an increase in private green 

innovation predicts a reduction in sales of public firms. It seems that innovating private firms are 

encroaching on the market position of public firms. Third, the effect on upstream scope 3 emission 

reductions is mostly due to the impact on innovating firms, while downstream scope 3 emission 

reductions are more associated with green innovation in public firms. In Panel B, we report 

corresponding results for brown innovation. We find some evidence that brown innovation, both 
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in the public and private firms, reduces scope 1 emissions, although the results are generally 

statistically weak. The only notable exception is the positive effect of innovation of public firms 

on the reduction in scope 1 emissions of innovating firms. In turn, innovation among public firms 

positively predicts scope 2 emissions, especially those of innovating firms. 

Another channel through which the Jevons paradox can manifest itself is through product 

market competition. Our measure of competition is the company’s market share (in terms of sales) 

relative to the total sales of both public and private firms within the same GICS-6 industry. As we 

show in Table 13, green innovation and the adoption of green technologies can be a handicap in 

product market competition if green firms have higher production costs than brown firms. In 

Panel A, we estimate a model with industry*year fixed effects and in Panel B a model with firm 

fixed effects. As is shown in columns 1 to 3, a firm’s market share is significantly negatively 

impacted by past green innovation activity, whether on a 1-year, 3-year, or 5-year lag.  This effect 

is largely due to cross-firm variation, given that the effects become weaker when we account for 

firm-fixed effects. In contrast, there is no significant effect of brown efficiency innovation activity 

on firms’ market share. If anything, the effect of brown efficiency innovation is to increase market 

share. Thus, even if green innovation could reduce future carbon emissions of green firms, this 

positive effect is partially undone by the increased market share of brown firms. 

 

5.3 The relative importance of green innovation for decarbonization 

Having highlighted the tenuous association between green (or brown) innovation and future 

carbon emission reductions, we explore next the extent to which corporate carbon emissions are 

explained by green innovation. In the first test, reported in Table 14, we conduct a balance test by 

comparing two samples of firms: those with decreasing emissions and those with increasing 

emissions. We perform this comparison for scope 1 emissions in Panel A and the total level of 

direct and indirect emissions in Panel E. In Table IA.XXIX, we also consider scope 2, scope 3 

upstream, and scope 3 downstream emissions. In the group of firms that decrease (increase) their 

emissions over time we further divide firms into the 50% of companies with the largest emission 

reductions (surges).  For each group, we report the means and standard deviations of different 

characteristics and the test of differences in means between each pair.  

In Panel A, we show the results based on scope 1 emissions. We find that companies with 

extreme increases and decreases in emissions are not very different from each other in terms of 

their green patent ratios as well as their brown efficiency patent ratios. The two types of companies 

have also very similar levels of patent citations. On the other hand, firms that decrease their scope 

1 emissions are on average larger and older than companies that increase their emissions; they also 

have lower M/B ratios, and negative sales growth. However, they are not very different in their 
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ROE or leverage metrics. The similarities in innovation ratios are also observed when we consider 

the sum of scope 1, scope 2, and scope 3 emissions in Panel B. 

In Table IA.XXIX Panel A, we report the results for scope 2 emissions. Results are 

qualitatively similar to those for scope 1 emissions, except that now emission reducing companies 

on average have higher brown efficiency patent ratios. They are also less profitable and have lower 

leverage ratios. In Table IA.XXIX Panel B we look at the differences for upstream scope 3 

emissions. For these indirect emissions, we find that emission reducing companies have higher 

green and brown efficiency patent ratios. These differences, however, disappear when we look at 

sorts based on downstream scope 3 emissions, as shown in Table IA.XXIX Panel C. Overall, we 

conclude that companies that reduce their emissions the most are not necessarily more innovative 

than those that increase their emissions the least. We find that the two sets of companies 

significantly differ in their sales performance (changes in sales are negative on average for 

companies reducing emissions and positive for companies increasing emissions across all scopes) 

pointing again to the limited decoupling of growth and emissions. 

 In another set of tests, we study the economic significance of green innovation using the 

two following specifications. First, we look at the relationship between the stock of innovation 

and subsequent long-term changes in emissions. This test allows us to account for the fact that 

innovation can be a process with a long gestation period. Specifically, we predict the firm-level 

absolute change in average emission levels and their intensities between the periods 2005-2014 

and 2015-2020 using measures of the stock of innovations (measured either as patent ratios or as 

patent counts) over two time periods: (i) 1990-2004; and (ii) 1990-2014. We perform the tests 

separately for green and brown innovation. We show the results of this test in Table 15. Panel A 

presents the results based on patent ratios. We find that the long-term stock of green or brown 

innovation measured by patent ratio is not related to long-term changes in emissions. Whether we 

use the shorter or the longer period to cumulate innovation, the results are not statistically 

significant. If anything, the correlations between the stock of green innovation and future emission 

changes is positive, which suggests that companies with greater patenting activity on average 

increased their emissions. In contrast, we find some albeit weak evidence that over a more 

prolonged period, companies with higher brown efficiency patents reduced their emissions. The 

results become slightly stronger when we look at the cumulative number of patents, as presented 

in Panel B. Now the number of green patents accumulated over a longish period predicts 

subsequent reductions in future scope 1 and scope 3 upstream emissions. The result is statistically 

weaker when we look at brown innovation. Overall, even though we find some evidence that over 

the long-run innovation may lead, in some cases, to reductions in emissions this result may not 

necessarily offer a silver bullet from the perspective of supporting current innovations, simply 
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because we do not have that much time to wait for the emissions reductions from innovation to 

materialize. 

 Another question of interest is whether the effect of green innovation is economically 

large. This is the question we try to answer in Table 16. Here we evaluate the partial R2 of the 

regression model that tries to explain future emissions levels using patent ratios.  As before, we 

focus on green and brown efficiency patents, and consider various predictive horizons. The 

consistent message that emerges from this analysis is that green innovation activity explains a very 

small fraction of the variation in future emissions levels. The partial R2s typically do not exceed 

1% and more frequently are significantly smaller. We conclude that green innovation is not a 

primary source of firm-level variation in future carbon emissions. Even if some companies do 

decarbonize their operations, this decarbonization is explained only to a very limited extent by 

these firms’ green patenting activity. 

 

6. Conclusion 

What emerges from our analysis of green innovation is that the predicted sustainability revolution 

has not yet begun. Although there has been a steady increase in green and brown efficiency 

innovation, these technological advances have not materialized in lower carbon emissions. Most 

of the green innovation is done by firms that are already green (with low carbon emissions) but 

brown companies (with high carbon emissions) tend to engage in brown efficiency innovation.  

Much of the promise of the latter technological advances in terms of lower carbon intensity has 

been undone by rebound effects. Furthermore, where we see significant decarbonization, it has 

little to do with green technological advances.   

We cannot determine what the counterfactual would be, had there been much less green 

innovation. It is possible that in the absence of all this innovation activity, carbon emissions might 

have been much higher. Also, as the IEA (2020) report contends, the path to decarbonization “will 

require a broad range of different technologies working across all sectors of the economy in 

various combinations and applications.” What we have found, however, is that green innovation 

has not yet put the economy on a net zero compatible trajectory. Green innovation may be 

necessary, but it is not sufficient on its own to bring about a renewable energy transition.  

A major obstacle to green innovation is Arrow’s (1962) replacement effect. Fossil fuel-

based profitable businesses have little incentive to engage in green innovation that might 

undermine their business model. But we have found a much more pervasive replacement effect at 

work, through companies’ supply chains and ecosystems. When upstream suppliers and 

downstream clients have fossil-fuel based operations it is very difficult and costly for individual 

companies to switch to a green technology. Hence, their lack of interest in green innovation. Not 
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a day goes by without some major announcement of a promising technological breakthrough that 

might solve the CO2 problem, whether it is molten-salt nuclear reactors, power-to-gas (P2G) 

renewable hydrogen production, nuclear fusion, modular carbon capture systems, or sodium-

sulphur batteries, etc. Yet, as promising as these technological breakthroughs sound, what 

ultimately matters for the transition to net zero is adoption of these green technologies at scale. 

And for this to happen in an accelerated way to avoid further overheating of the planet, what may 

be required is public policy intervention to coordinate adoption. This calls for a new form of 

industrial policy that breaks through the replacement obstacle by coordinating green technology 

adoption upstream and downstream throughout firms’ ecosystems. Moreover, subsidies for green 

innovation must be more carefully targeted to where they help unlock a general adoption of green 

technologies throughout the supply chain. Blanket subsidies for innovation without regard to the 

likely adoption of new technologies may simply be too wasteful and costly.  
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