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Abstract 

 

Governments allocate substantial resources to regulate the environmental consequences of 

industrial activity.  However, little is known about the economic value associated with such 

oversight. We document a 1.1% increase in US housing values following the establishment of 

a nearby monitoring station. This positive price effect is attributable to improvements in air 

quality as we demonstrate a 46.7% reduction in toxic emissions and a 2.6% decrease in the 

number of industrial facilities in the area subject to additional monitoring. Conservative 

estimates suggest that the value of new monitoring stations exceeds $52 billion. 
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1. Introduction 

Governments allocate substantial resources to oversee and regulate environmental 

consequences of  firms’ operations. In response, firms incur significant expenditures to comply 

with these regulations and may strategically respond to circumvent this regulatory oversight. 

Beyond the environmental impact of such oversight, policy makers require knowing the net 

costs and benefits of potential regulations to make informed decisions. This paper provides 

such assessment by investigating the value and effectiveness of air quality monitoring stations, 

one of the most widely employed environment monitoring tools. Specifically, we investigate 

the effects of monitoring station establishment on property prices, facility-level emissions, and 

air quality. 

This research question is important for two reasons. First, prior investigations into the 

effectiveness of air quality monitoring stations yield mixed findings. For example, Mu, Rubin 

and Zou (2022), reveal that local governments may cease monitoring operations in anticipation 

of declining air quality. Similarly, Zou (2021) documents an increase in pollution levels during 

periods of monitoring station inactivity, while Grainger and Schreiber (2019) highlight that the 

placement of monitors tends to avoid areas with high pollution concentrations. These studies 

raise questions about the effectiveness of air quality monitoring stations, suggesting potential 

principal-agent incentive misalignments in local agencies’ pollution monitoring activities. In 

contrast, a more recent study of monitoring station deployment in China by Axbard and Deng 

(2024) finds that such monitoring efforts can lead to intensified enforcement inspections by 

local governments, subsequently contributing to enhanced air quality. However, it is crucial to 

recognize the unique contextual factors in the Chinese setting, where the monitoring station 

deployments are part of a broader environmental policy that ties environmental performance 
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to promotion incentives for local officials.1,2 Thus, it is not yet clearly understood whether and 

how a monitoring station, on its own, impacts aggregate environmental outcomes.  

Second, our paper is the first study that brings insights into the potential value that 

monitoring stations may provide to local communities, extending beyond mere regulatory 

compliance to tangible benefits related to enhanced property values. Many countries lack 

access to air monitoring stations—illustrated by an estimate suggesting that 60% of countries 

or 1.3 billion people lack any PM2.5 monitoring (Martin et al., 2019)—due to the high cost 

associated with installing and operating monitors. By showing effects on the housing market, 

we provide systematic evidence on the cost-benefit tradeoff associated with monitoring stations, 

which is valuable for future policymaking regarding the deployment of such monitoring tools. 

To analyze the impact of monitoring stations on real estate values, we combine the real estate 

transaction-level dataset from Corelogic with data on monitoring stations obtained from the 

Environmental Protection Agency’s (EPA) Air Quality System (AQS) to determine the distance 

of a transacted property and, consequently, its exposure to the establishment of a monitoring 

station. In our baseline analyses, we categorize properties within 5 kilometers of a monitoring 

station as potentially affected by the station’s establishment. To mitigate confounding factors 

arising from variations in locality characteristics and time-varying shocks in the property 

market, we restrict our main analysis to transactions of properties within 10 kilometers of a 

monitoring station, spanning 3 years before and after the station’s establishment. Our baseline 

sample thus comprises over 3.8 million sales of residential properties between 1995 to 2020, 

 
1 In 2014, Premier Li Keqiang declared a “war against pollution” at the opening of China’s annual meeting of the 

National People’s Congress. This announcement came several months after the Chinese government introduced 

the National Air Quality Action Plan (2013), which outlined specific targets to improve air quality by the end of 

2017. See, https://aqli.epic.uchicago.edu/policy-impacts/china-national-air-quality-action-plan-2014/, for more 

information. 
2 A few other studies also investigate the same pollution control policy in China. For example, Barwick et al. 

(2023) document that increased access to pollution information leads to avoidance behaviour, which, in turn, 

reduces health harms from pollution. Greenstone et al. (2022) find that the monitoring automation limits the 

manipulation of pollution data by local governors.   

https://aqli.epic.uchicago.edu/policy-impacts/china-national-air-quality-action-plan-2014/
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examining the effects of 721 particulate matter monitoring stations that opened between 1992 

to 2020.  

Our baseline analysis shows that the establishment of monitoring stations contributes to 

enhanced property values in the surrounding area. Specifically, using a difference-in-

differences identification strategy, we observe a 1.1% increase in the value of houses located 

within 5 kilometers of a monitoring station after the station’s establishment, compared to those 

located within 5 to 10 kilometers of the same monitoring station. Further insights from  quantile 

regression estimates indicate that most of the price increase is concentrated among low-priced 

houses, particularly those in the first four price deciles, with houses in the 1st and 2nd deciles 

experiencing the largest price appreciation of 4.6% and 3.8% respectively. 

One empirical challenge in identifying the price effect of monitoring station establishments 

on housing prices is the strategic selection of monitoring sites. Specifically, Grainger and 

Schreiber (2019) provide evidence that regulators tend to avoid pollution hotspots, and such 

avoidance behavior is less prominent in high-income and predominantly white areas. To 

address this identification issue, our primary method involves comparing properties within the 

same locality but at varying distances from the monitoring stations. In our baseline 

specification, houses are categorized as treated if they are situated within 5 kilometers of the 

monitoring station, and as control if they are situated within 5 to 10 kilometers of the 

monitoring station. We include monitoring station × transaction year-month fixed effects and 

compare treated houses to control houses that are sold in the same month and located in the 

vicinity of the same monitoring station. This approach safeguards our baseline estimates from 

internal validity issues arising from differences in locality characteristics due to endogenous 

site selection. Thus, to the extent that monitoring stations are more likely to be placed in less 

polluted and higher-income areas, our baseline estimate of 1.1% is likely an underestimate of 
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the true price effects, drawing from our findings that indicate larger price effects in lower-

priced houses and more polluted areas. 

To further control for observable differences in properties, we interact station fixed effects 

with additional transaction- and property-level attributes. In the most stringent specification, 

our findings remain robust when comparing treated houses to control houses with identical 

property characteristics (e.g., number of bedrooms, number of bathrooms, residential property 

type, property age group, building square footage, land square footage, pool indicator), 

transaction characteristics (e.g., cash purchase, sale type, purchase motive, buyer type), sold in 

the same month and within 10 kilometers of the same monitoring station. The results also 

remain consistent across a battery of robustness tests, including the use of alternative sampling 

windows, distance from monitoring stations (10 to 20 kilometers), alternative identification 

specification, and the use of a subsample that excludes counties affected by environmental 

policy shocks, specifically the nonattainment designations under the Clean Air Act.  

We conduct a back-of-the-envelope calculation to illustrate the value generated by the 

establishment of monitoring stations, using the baseline price effect of 1.1% and the pre-

establishment average transaction price of treated houses, which is $271,011 in 2020 dollars. 

Based on a conservative estimate of over 17.5 million housing units situated within 5 

kilometers of any particulate matter monitoring station, we show that the establishment of 

monitoring stations results in a total increase of over $52 billion (=17,500,000×$271,011×1.1%) 

in housing values. Thus, our estimates indicate that monitoring stations create monetary value 

that benefits the local community, in addition to the potential health and labor benefits 

associated with reduction in air pollution (see for example Brunekreef and Holgate, 2002; Chay 

and Greenstone, 2005; Hanna and Oliva, 2015; Aragón , Miranda and Oliva, 2017; He, Liu and 

Salvo, 2019; Borgschulte, Molitor and Zou, 2022).  
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Next, we investigate two potential mechanisms that could drive the positive price effects. 

The first mechanism, denoted as the Improved Air Quality Channel, suggests that monitoring 

stations function as compliance enforcement tools that deter firms from engaging in 

environmental evasion behavior, thereby reducing firms’ emissions, improving air quality and 

contributing to higher house prices. To explore this mechanism, we examine changes in 

pollution levels following the establishment of a monitoring station. We consider two measures 

of pollution—facility-level annual toxic emissions and grid-level satellite measure of daily 

aerosol concentration. In line with the Improved Air Quality Channel, our findings indicate that 

facilities reduce toxic emissions by 46.7% after the establishment of a nearby monitoring 

station. Notably, most of this reduction stems from a significant decrease in air emissions, while 

responses in water and land emissions are muted. On the extensive margin, the number of TRI 

facilities drops by 2.6% following the station’s establishment. As a supplementary analysis to 

the facility-level findings, using a satellite measure of aerosol concentration, we observe a 3.1% 

reduction in pollutant concentration following the establishment of a monitoring station. These 

results align with previous study that demonstrates monitoring stations improve air quality by 

enhancing environmental regulatory actions (Axbard and Deng, 2024). 

 The second mechanism, denoted as the Information Channel, implies that new information 

about air quality in the locality, previously unavailable but now accessible following the 

establishment of a monitoring station, corrects incomplete information in the market. This, in 

turn, influences housing transaction prices as individuals incorporate updated air quality 

information into housing prices. To test the Information Channel mechanism, we identify areas 

where actual air quality differs from perceived belief. The underlying assumption is that if the 

Information Channel is the primary mechanism, then the establishment of a monitoring station 

should lead to updated beliefs about air quality, resulting in potential changes in property prices 

in areas with disparities between perceived and actual air pollution levels but no price changes 
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in areas where perceived belief aligns with actual air quality. Using the number of industrial 

facilities surrounding the monitoring station as a proxy for perceived pollution levels and 

average PM 2.5 values in the first year since the station’s establishment as a proxy for actual 

pollution levels, we categorize areas into four groups: areas with perceived low pollution and 

actual low pollution (LL) levels, areas with perceived high pollution and actual high pollution 

(HH) levels, areas with perceived low pollution and actual high pollution (LH) levels, and areas 

with perceived high pollution and actual low pollution (HL) levels. Our findings reveal a 

statistically significant positive price effect in HH areas, which contradicts the Information 

Channel that posits no effect in areas where the perceived levels of air pollution match the 

actual level. In addition, we directly test the Information Channel using a sample of properties 

near non-regulatory monitoring stations that provide values for reporting daily Air Quality 

Index values rather than for regulatory purposes. Our analysis reveals no statistically significant 

price effects upon the station’s opening. These findings rule out the Information Channel being 

the primary mechanism underlying the estimated price effect resulting from the establishment 

of monitoring stations. 

To the best of our knowledge, our paper provides the first empirical estimate of the values 

of air quality monitoring stations, considering the effects on housing values in addition to 

effects on air pollution. Specifically, we document the causal mechanism through which 

monitoring stations influence property prices by discouraging firm-level emissions and, 

consequently, improving air quality. Our findings thus complement existing studies on 

environmental quality and willingness-to-pay. For example, using the opening of industrial 

plants as a negative shock to local air quality, Currie et al. (2015) find an 11% decline in the 

values of houses nearby. Similarly, Chay and Greenstone (2005) exploit county-level tightening 

of environmental regulation following the designation of nonattainment status by the EPA and 

identify a causal negative relation between pollutant concentration and housing values. In a 
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similar vein, our study leverages the establishment of monitoring stations as a shock to air 

quality, and we document the positive price effect of monitoring station establishment, driven 

by improved air quality.3 Our study also contributes to the environmental justice literature that 

documents a  correlation between pollution and poverty. Specifically, the estimates from 

quantile treatment regressions suggest that lower-priced houses experience a larger increase in 

value from the establishment of a monitoring station. These findings point towards the 

monitoring stations serving as a valuable instrument in addressing long-standing environmental 

inequality in the country. 

Our paper also contributes to the literature concerning the impacts of environmental 

monitoring and corporate environmental decisions by documenting that the establishment of 

monitoring stations leads to a reduction in facility-level emissions on the intensive margin, as 

well as a decrease in the number of industrial facilities on the extensive margin. Our findings 

underscore the importance of regulatory risks for firms, which increase with the presence of 

monitoring, aligning with existing evidence suggesting that investor monitoring improves firm 

environmental performance (Shive and Forster, 2020; Tao, Hui and Chen, 2020; Azar et al., 

2021; Khan, Matsusaka and Shu, 2023; Ren et al., 2023).  

Finally, our work is closely related to studies examining the impacts of environmental 

regulations on emissions outcomes. Previous research has documented evasive behavior 

among profit-maximizing firms (e.g., Mu, Rubin and Zou, 2021; Zou, 2021; Alexander and 

Schwandt, 2022; Agarwal et al., 2023). Among all, for instance, Bartram, Hou and Kim (2022) 

examine the impact of California cap-and-trade program and find that financially constrained 

firms reallocate emissions and output away from the policy-hit region to avoid regulatory costs. 

Similarly, Gibson (2019) reveals that firms regulated by air quality regulations substitute air 

 
3 These results also align with Axbard and Deng (2024) and the literature on environment and health. See, for 

example, Chay and Greenstone (2003), Currie, Neidell and Schmieder (2009), Currie, Greenstone, and Moretti 

(2011), and Currie and Walker (2011). 
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emissions with water emissions. Our paper demonstrates that air quality monitoring stations 

serve as effective regulatory tools that can influence firms’ emission behavior, consistent with 

existing studies that show environmental regulations reduce industrial production and 

economic activity (Becker and Henderson, 2000; Greenstone, 2002; Greenstone et al., 2012), 

and consequently, emissions (Brown, Martinsson and Thomann, 2022; Chen, et al., 2022; 

Dasgupta, Huynh and Xia, 2023). 

The remainder of the paper is organized as follows. Section 2 provides background and a 

description of the data sources and outlines our main data sample. Section 3 presents our 

identification strategy and baseline results, along with the results of robustness tests and 

heterogeneity analyses. Section 4 delves into two potential mechanisms driving the baseline 

results, and Section 5 concludes. 

2. Background and Data 

2.1 Clean Air Act and Air Quality Monitoring 

First established in 1963, the Clean Air Act (CAA) serves as the foundational framework for 

environmental regulation in the United States. A crucial component of the CAA is the 

imposition of National Ambient Air Quality Standards (NAAQS) by the US Environmental 

Protection Agency (EPA), which specify permissible concentrations of air pollutants to 

safeguard public health and the environment.  

The CAA mandates that state governments monitor air quality within their respective 

jurisdictions. The deployment of monitoring stations is overseen by local regulatory agencies 

(at the state, county, or tribal level), with guidelines suggesting the placement of monitors in 

zones of high pollution concentration, densely populated areas, and consideration of 



 10 

meteorological factors like wind direction (US EPA, 2008). These guidelines are advisory, and 

the local agencies can exercise discretion in choosing monitor locations.4 

The EPA monitors compliance with the NAAQS using air quality data collected by a 

network of sensors and designates counties adhering to the standards as attainment counties, 

while those violating the standards as non-attainment counties, which are subject to heightened 

regulatory oversight and costs. States are required to formulate a State Implementation Plan 

(SIP), outlining specific plans for implementation, maintenance, and enforcement of the 

NAAQS. Non-attainment states must include detailed plans and additional requirements to 

mitigate air pollution in those non-attainment areas. Initiatives may involve the adoption of 

pollution abatement technologies in existing firms, the restriction of new constructions or 

modifications of major sources for pollution, or the physical or operational reduction of 

production capacity. 

 

2.2 Main Sample 

We collect from CoreLogic the transaction records encompassing residential properties sold 

nationwide during the period from 1995 to 2020. 5  The data contain information on the 

transaction price, detailed geographic information, property type (e.g., single family residence, 

condominium, apartment, duplex), number of bedrooms and bathrooms, property and land 

square footage, and effective year of construction. The data also contain transaction-level 

details including information regarding whether the transaction constituted a resale, whether it 

was an all-cash deal, whether the purchaser was a corporation, and whether the purchase was 

intended for investment purpose. 

 
4 See, for example, Grainger and Schreiber (2019) that examine the characteristics of monitor locations. 
5 CoreLogic is a national real estate data provider that collects real estate data from tax assessors and recorders 

officers across the nation. 
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 The precise geo-coded location data of each property enables us to determine the property’s 

distance to the particulate matter monitoring stations. The locations and additional information 

about these monitoring stations are extracted from the daily summary data of fine particulate 

matter (PM2.5) in the Air Quality System (AQS). Our focus is on monitoring stations with PM 

monitors used for regulatory compliance with PM2.5 standards. We exclude monitors not 

intended for regulatory purposes. To implement our research design, we focus on monitoring 

stations equipped with PM monitors operating at the neighborhood spatial measurement scale, 

covering air quality measurements within the surrounding areas spanning from 0.5 kilometers 

to 4 kilometers from the pollutant source.6, 7 

 Figure 1 illustrates the geographical distribution of PM monitoring stations overlaid on the 

spatial distribution of the satellite measure of pollution exposure in 2000.8Areas in the north 

and south, as well as the coastal west, have a higher concentration of monitoring stations. Not 

surprising, these areas experience higher levels of aerosol concentration, suggesting that the 

placement of monitoring station networks is endogenous. In Figure 2, we show the total number 

of monitoring stations categorized by year of construction. There are more than 1,300 

monitoring stations installed with PM monitors, and a significant percentage were constructed 

after 1997, the year when the Environmental Protection Agency (EPA) first established the 

PM2.5 standards.9 

 We filter the CoreLogic data in several steps. First, we focus solely on arms-length 

transactions involving residential properties, including single-family houses, condominiums, 

 
6 Air monitoring networks have various spatial scales, including 1 meter to 100 meters (microscale), 100 meters 

to 500 meters (middle scale), 4 kilometers to 50 kilometers (urban scale), and 10 kilometers to 100 kilometers 

(regional scale). Neighborhood scale monitors, covering 0.5 kilometers to 4 kilometers, are the most prevalent, 

constituting over 70% of the monitoring network in the country. 
7 Our empirical results remain robust when studying universal monitoring network in the country, irrespective of 

the type of pollutants the monitors measure, their measurement scale, or whether they are intended for regulatory 

purposes. 
8 Pollution exposure is calculated by averaging the daily aerosol optimal depth across the year 2000. 
9 See, https://www.epa.gov/pm-pollution/timeline-particulate-matter-pm-national-ambient-air-quality-standards-

naaqs, for more information. 

https://www.epa.gov/pm-pollution/timeline-particulate-matter-pm-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/pm-pollution/timeline-particulate-matter-pm-national-ambient-air-quality-standards-naaqs
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duplexes and apartments. This excludes properties transacted among family members, short 

sales and foreclosure sales. Second, we remove outliers by excluding transactions occurring at 

extreme prices—below the 1st or above the 99th percentile of the distribution of raw transaction 

prices. Additionally, we exclude observations reporting implausible property characteristics, 

such as having no bedrooms, and by eliminating observations with values below 0.1st percentile 

or above the 99.9th percentile of the distribution of the number of bedrooms, bathrooms, 

building square footage, land square footage and property age as of transaction. We only 

include observations with non-missing property attributes. Finally, to minimize potential 

confounders arising from locational heterogeneities, we confine our baseline sample to 

transactions of properties located within 10 kilometers of a monitoring station. The resulting 

dataset has 3,822,505 transactions.  

 Panel A of Table 1 presents summary statistics for the transactions in our baseline sample. 

The average house, across all transactions in all years, features 1,711 square feet of living area 

on a 18,429 square foot lot; it is 34 years old with 3 bedrooms and 2 bathrooms, located 5.75 

kilometers from a monitoring station, and is sold at a price of $221,890.  

 Panel B provides summary statistics for transactions grouped into two categories based on 

their distances to monitoring stations: within 5 kilometers of a monitoring station or within 5 

kilometers to 10 kilometers of a monitoring station. In general, houses located in these two 

categories are similar. They have nearly identical transaction-level attributes (i.e., resale, cash 

purchase, corporate buyer, owner occupied), but houses located closer to monitoring stations 

are smaller, potentially leading to a lower transaction price. Nevertheless, we control for any 

observable differences in both property-level and transaction-level characteristics between the 

two groups throughout our empirical analysis. 

2.3 Supplemental Data 
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We collect facility-level emissions data from the Environmental Protection Agency’s (EPA) 

Toxic Release Inventory (TRI) database, covering the years 1995 to 2020. TRI collects 

information on the discharge of hazardous chemicals at the facility level, providing details on 

the total amount of chemicals released into the air, water, and land, both on-site and off-site.10 

Additionally, it also includes information about the facility’s geocoded location, allowing us to 

calculate its distance to the monitoring station, and consequently, its exposure to the monitoring 

station’s establishment. For each facility in a year, we aggregate the emission data by summing 

the releases of all toxic chemicals reported by the facility in that specific year. 

 

We obtain a measure for atmospheric particle pollution using satellite data from 

National Aeronautics and Space Administration’s (NASA) Moderate Resolution Imaging 

Spectroradiometer (MODIS) algorithm. This algorithm retrieves aerosol concentrations by 

measuring the vertical extinction of the solar beam caused by dust and haze, leveraging 

information on the aerosol’s light-scattering and absorption characteristics at different spectral 

wavelengths. Termed aerosol optical depth (AOD), this measure is a dimensionless index with 

a theoretical range of -0.05 to 5, where higher values indicate higher level of aerosol 

concentration.11 It is assessed at a spatial resolution of 10 kilometers × 10 kilometers and serves 

as an estimate of ground-level pollution concentrations.12 These estimates demonstrate robust 

performance, closely aligning with the ground truth measured by EPA monitors (Liu et al., 

 
10 Industrial facilities are mandated to submit annual reports to the TRI if they meet the following criteria: (1) 

employ a minimum of 10 full-time workers, (2) operate within one of approximately 400 industries classified 

based on the six-digit NAICS code, and (3) use one of roughly 780 chemicals in quantities surpassing the EPA-

established threshold. 
11  According to the specifications outlined in https://modis-images.gsfc.nasa.gov/MOD04_L2/format.html, we 

substitute negative AODs with zeros. This adjustment is made because MODIS lacks sensitivity over land to 

retrieve aerosol levels better than +/-0.05. Consequently, in extremely clean conditions, the algorithm cannot 

determine whether the AOD is 0, 0.05 or -0.05. 
12 We follow the data cleaning procedures outlined in Zou (2021). To create grid-level dataset, we re-grid daily 

aerosol raster files to a resolution of 1km × 1km. We then overlay these re-gridded rasters onto a fixed 10km × 

10km gridded map obtained from the US National Information Center. The daily aerosol level for each 10km × 

10km is the average aerosol concentration across all 1km × 1km grids falling within the grid on a given day. 

https://modis-images.gsfc.nasa.gov/MOD04_L2/format.html
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2007; Lee et al., 2012). From 2000 to 2020, the average aerosol concentration in the United 

Sates is 0.15, with the 25th and 75th percentile being 0.03 and 0.15, respectively. 

 We collect daily meteorological data from 2000 to 2020 from Daymet, which provides 

gridded estimates of daily weather parameters, including maximum temperature, minimum 

temperature, and precipitation, at a 1 kilometer × 1 kilometer spatial resolution. We map this 

meteorological data with the grid-level data of aerosol concentrations. For each grid in the 

aerosol data, the weather estimate is calculated as the average across all 1 kilometer × 1 

kilometer grids falling within the larger grid on a given day. 

3. Effect of Monitoring Station’s Opening on Real Estate Prices 

3.1 Identification 

To the extent that the presence of monitoring stations enforces environmental regulations by 

deterring firms from emitting unauthorized pollutants and thus leading to improved air quality,  

properties situated in close proximity to the monitoring station should command higher prices 

compared to properties located further away. Our empirical design estimates the impact of 

monitoring station establishment by comparing the property price changes before and after 

their establishment. Specifically, we compare properties that transact in the same year-month 

and locality, and are comparable in terms of property and transaction characteristics but differ 

in their distance from the monitoring station. For our baseline analysis, we estimate the 

following regression: 

 

𝐿𝑛(𝑃𝑟𝑖𝑐𝑒)𝑖𝑡 =  𝛽𝐴𝑓𝑡𝑒𝑟𝑡  ×  𝕝[Distancei < 5km] + 𝑋𝑖𝑡𝜙 + 𝜆𝑧 + 𝜃𝑚𝑡 + 𝜀𝑖𝑡    (1)  
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where the dependent variable 𝐿𝑛(𝑃𝑟𝑖𝑐𝑒)𝑖𝑡 is the natural logarithm of property 𝑖’s transaction 

price in year-month 𝑡. 𝑋𝑖𝑡 is a vector of property- and transaction-level controls, which include 

indicators for number of bedrooms, number of bathrooms, property type, property age 

percentiles, building square footage percentiles, land square footage percentiles, mobile home, 

pool, cash purchase, sale type (resale or developer sale), corporate buyer, and the motive for 

purchase (investment or owner occupation). 13  Considering that monitoring stations are 

generally strategically positioned in areas with high pollution concentrations and dense 

populations, we include 100 distance indicators for properties to the monitoring station (with 

each bin covering a 0.1-kilometer range) to account for heterogeneities based on distance to 

monitoring station. In addition, we include zip code fixed effects, 𝜆𝑧, to control for all time-

invariant determinants of property prices within zip codes, and monitoring station ×  year-

month fixed effects, 𝜃𝑚𝑡, to flexibly capture trends in property values within the 10-kilometer 

radius locality over time. The baseline sample is restricted to transactions of properties within 

a 10-kilometer radius of monitoring stations, spanning a period of 6 years, encompassing 3 

years before and 3 years after the establishment of the monitor sites. Standard errors are 

clustered at the zip code level.14 

Our explanatory variable of interest is the interaction between two indicators: 𝐴𝑓𝑡𝑒𝑟𝑡, which 

equals 1 if the transaction occurs after the monitoring station’s establishment, and 

𝕝[Distancei < 5km] , which equals 1 if the property is situated within 5 kilometers of the 

monitoring station. The parameter, 𝛽 , thus captures the effects of the establishment of 

monitoring stations on house prices. If the presence of monitoring stations discourages 

 
13 Since certain counties do not report information about the number of bedrooms and/or bathrooms but otherwise 

provide good coverage, in an unreported regression, we replicate the baseline specification but include the 

observations with missing bedrooms/bathrooms by introducing separate fixed effects. Results are identical to the 

baseline findings.  
14 Unreported regression results show that the statistical significance of the estimates remains consistent when 

standard errors are clustered at the monitoring station level, county level, or census tract level.  
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environmental non-compliance among firms, we should expect a positive 𝛽, as the resulting 

improved environmental outcomes are likely to be capitalized into house prices. 

3.2 Baseline Results 

Table 2 presents baseline regression results on the house price effect of the monitoring station’s 

establishment. We find a significant positive effect of station’s establishment on house prices 

in Column 1. The coefficient of 0.011 suggests that house prices increase by 1.1% after the 

opening of the monitoring station, compared to similar houses sold at the same time but located 

further away from the same monitoring station.  

Figure 3 depicts the dynamic price effects using the same regression specification as in 

Column 1. Additional indicators for the number of periods before and after the monitoring 

station’s establishment are included, with the reference period omitted in the dynamic 

regression being the 12th quarter before the establishment. A significance test between the 

coefficients of the pre-establishment periods indicate that they are not significantly different 

from zero. This suggests that the price effect during the pre-establishment period is both 

economically and statistically muted, consistent with the parallel-trend assumptions.15 

Focusing on the post-establishment periods, we observe that the prices of properties near 

the monitoring station increase by approximately 1.1% in the first year after its opening. The 

positive price effect further rises to 1.4% in the second year and remains at the similar level in 

the third year. These results imply that the monitoring station has a lasting impact, creating 

long-term value that is reflected in house prices. 

To alleviate concerns about potential differences between transactions of properties based 

on differences in distance to the monitoring stations, in Columns 2 to 4, we incrementally 

 
15 In Appendix Figure 1, we present the dynamic price effects using the number of years to opening (instead of 

quarters) as the time indicators. Panel A shows the dynamic effects over 3-year, while Panel B shows the effects 

over an extended 5-year post-establishment period. In both figures, we observe a consistent parallel pre-trend. 
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introduce interactions between the monitoring station × time fixed effects with fixed effects 

for property type (Column 2), sale type (Column 3), and an indicator for owner-occupation 

(Column 4). In each case, we continue to find a significantly positive effect of monitoring 

station’s opening on house prices. In Column 5, we further interact the fixed effects with all 

property-level and transaction-level attributes. Although the sample size reduces significantly 

due to the large number of singleton observations resulting from the extensive fixed effects, we 

still find statistically significant positive price effect. Specifically, prices of properties located 

within 5 kilometers of the monitoring station increase by 3.9% after its establishment, 

compared to properties transacted in the same month, with the same property type, sale type, 

property size, number of bedrooms and bathrooms, and purchased by buyers with the same 

profile and purchase motives but located further away from the monitoring station. 

We also explore various fixed effects specifications. In addition to the baseline specification 

that compares properties close to the monitoring station to properties located within the 5- to 

10-kilometer radius of the same monitoring station, we also compare to properties situated 

within the 5- to 10-kilometer radius of all monitoring stations within the same zip code 

(Columns 6 and 7), as well as the same county (Columns 8 and 9). Our results remain consistent 

across these different specifications. 

3.3 Robustness Tests 

Alternative Identification Specification 

Recent development in the econometrics literature suggest that estimates obtained from 

generalized difference-in-differences are likely biased when there is staggered treatment timing 

and treatment effect heterogeneity (de Chaisemartin and D’Haultfœuille, 2020; Callaway and 

Sant’Anna, 2021; Goodman-Bacon, 2021; Baker, Larcker and Want, 2022). Our baseline 

results are less susceptible to these biases (i.e., the use of earlier-treated units as controls for 

later-treated units) because our baseline specification includes monitoring station × time fixed 
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effects, which compare treated houses to control houses located within the vicinity of the same 

monitoring station and transacted in the same period.  

Nevertheless, we explore alternative specifications to ensure the robustness of the estimates 

for price effects. One such alternative is stacked regression analysis (Cengiz et al., 2019; 

Deshpande and Li, 2019; Baker, Larcker and Want, 2022). In this method, each establishment 

of a monitoring station is a distinct treatment event with monitoring station indicators serving 

as the event-specific identifiers. We replace the distance-bin fixed effects with the interaction 

of distance-bin fixed effects and monitoring station fixed effects. This inclusion complements 

the original monitoring station × time fixed effects of the baseline specification. Results are 

presented in Table 3, and the estimates for price effects remain consistent with the baseline 

across all specifications.  

 

Alternative Comparison Group, Sampling Periods and Sample Construction 

The price effects of a monitoring station’s establishment may spill over to properties in the 

baseline comparison group. Given that air pollutants can travel over long distances , any 

reduction in emissions by firms around the monitoring stations collectively contributes to the 

improved air quality in the surrounding areas. If this occurs, our baseline estimate will 

underestimate the true price effect. 

 To test this spillover effect, we replace the baseline comparison group with properties 

situated within 10 to 20 kilometers of the monitoring station, and the results are reported in 

Table 4 Panel A. In line with our conjecture, we observe a larger price premium ranging from 

1.3% to 2.8% for properties near (x to y km) the monitoring station after its opening. 

 We also examine the distance decay of price effects by implementing various distance 

buffers around the monitoring station. In Appendix Figure 2, we plot the coefficients of price 

effects as a function of properties’ distance to the monitoring stations. In particular, we 
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categorize properties into 10 distance bins, ranging from 0-1 kilometer to 9-10 kilometers, each 

with a 1-kilometer buffer. We estimate the price effects of monitoring station establishment 

separately for properties in each bin, using properties situated within 10 to 20 kilometers of the 

monitoring station as the comparison group. Our findings reveal significant positive price 

effects up to the 4-5-kilometer bin, with houses closest to the monitoring station experiencing 

the highest value increase of more than 2%. Beyond 5 kilometers, the price effect becomes 

statistically insignificant and diminishes in magnitude, suggesting that the effectiveness of 

monitoring stations as environmental conveyance tools is highly localized.16 

 Our results also remain robust across different sampling periods. Panel B and C present 

estimates for the price effects using the same specification as in Table 2 but with varying post-

establishment periods, including a longer five-year period and a shorter one-year period 

respectively. Unreported regressions demonstrate consistent results even when we extend the 

pre-establishment period from the baseline of three years to five years. 

 One possible explanation of the positive price effects is that the area where the monitoring 

station is located may be subject to an environmental regulatory shock. The Clean Air Acts 

establish pollutant-specific National Ambient Air Quality Standards (NAAQS), which specify 

the maximum allowable concentrations of certain criterion air pollutants. Annually, the EPA 

identifies counties that are in violation of these NAAQS, designating them as nonattainment 

based on air pollution monitor measurements within these counties or nearby areas. If 

monitoring stations are more likely to be placed in nonattainment areas, this regulatory shock 

could potentially lead to an overestimation of the estimated price effects, considering the 

positive relationship between nonattainment status and housing prices (Chay and Greenstone, 

2005; Grainger, 2012).  

 
16 The distance decay relationship, where price effects diminish with distance to monitoring stations, remains 

consistent when using the baseline comparison group (properties situated within 5-10 km of monitoring stations). 
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 However, we argue that our results are less susceptible to such overestimation bias, as our 

comparison is conducted within a 10-kilometer vicinity. This means that any county-level or 

region-level regulatory changes would likely affect both houses within a 5-kilometer radius 

and those within a 5 to 10-kilometer radius. To further verify our findings and mitigate potential 

bias, we conduct the baseline estimation using a subsample limited to counties not designated 

as nonattainment. As presented in Column 1 of Appendix Table 1, the estimate price effects 

closely resemble our baseline results.17  

 

Placebo Tests 

To further validate our baseline results, we conduct two placebo tests. First, we assign each 

monitoring station a placebo establishment date that precedes its actual establishment date by 

three years. We then estimate Equation (1) and present the regression results in Table 5 Column 

1. The estimate for the price effects is both statistically insignificant and of a small magnitude. 

This suggests that house prices within and beyond 5 kilometers of the monitoring station 

exhibit parallel trends before the actual establishment of the monitoring station, providing 

robust support for our baseline findings.  

Second, we use houses located within 5 to 10 kilometers of the monitoring station as the 

placebo treatment group and observe negligible price effects. The comparison group in this 

analysis includes houses located within 10 to 15 kilometers of the same monitoring station. As 

shown in Column 2, the estimated price effects are statistically insignificant. 

 

Relocation of Facilities to Areas in the Comparison Group 

 
17 Price effects of the monitoring station’s establishment are also evident in nonattainment counties, as shown in 

Column 2, where we restrict the estimation sample to counties designated as nonattainment. 
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In response to the establishment of a monitoring station nearby, firms may opt to shift their 

production to areas beyond the regulator’s reach (i.e., areas farther away from the monitoring 

station) in an effort to minimize compliance costs. Such firm relocations are likely to exert 

downward pressure on house prices in the comparison group (Currie et al., 2015), potentially 

resulting in an overestimation of our estimated price effects.  

Our identification setting reduces the susceptibility of the estimated price effects to such 

bias. For example, we note that firms incur relocation costs and will relocate only if the benefits, 

derived from lower compliance costs and reduced compliance risks, outweigh the relocation 

expenses. Given this context, it is less likely that firms would choose to relocate to areas 

situated only 5 to 10 kilometers away within the same vicinity. Nevertheless, we conduct 

various robustness analyses to address this overestimation concern. Specifically, we estimate a 

regression using a sample that excludes comparison areas where the aggregate number of 

industrial facilities increased after the monitoring station’s establishment. As shown in Column 

1 of Table 6, the estimated price effect closely resembles the baseline estimate in terms of 

direction, statistical significance and magnitude. We further incorporate facility-level 

emissions information and exclude areas where the aggregated amount of air emissions 

(Column 2), water emissions (Column 3), land emissions (Column 4), and total emissions 

(Column 5) in the comparison areas increased following the monitoring station’s establishment. 

Results remain consistent across all subsample analyses. 

      

3.4 Heterogeneity in the Price Effect 

Quantile Treatment Effects 

The disproportionate exposure to environmental hazards, particularly among economically 

disadvantaged groups and racial minorities, is widely documented and continues to garner 

attention within communities (Banzhaf, Ma and Timmins, 2019; Christensen and Timmins, 
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2022; Dominici et al., 2022; Currie, Voorheis and Walker, 2023). Thus, the value created by 

the monitoring station network could potentially have a greater impact on economically 

disadvantaged groups. To explore this further, we estimate a quantile treatment effects 

regression model to examine how the establishment of monitoring stations affects different 

quantiles of the housing price distribution.  

The estimation of unconditional quantile treatment effects of the monitoring station’s 

establishment involves two steps (Haupt and Wiborg, 2021). The treatment variable is first 

regressed on all control variables and fixed effects included in Equation (1). The outcome 

variable, housing prices, is then regressed on the residualized treatment variable using the 

Conditional Quantile Regression algorithm (Koenker and Bassett, 1978; Borgen, Haupt and 

Wiborg, 2021).  

Figure 4 presents the average treatment effect of monitoring station establishment on various 

house price quantiles. The estimates suggest that the most pronounced price effects of 

monitoring station establishments manifest within the lower deciles of the housing price 

distribution, particularly within the first and the fourth decile. Notably, there is a substantial 

increase of approximately 4.6% in house prices in the first decile and 3.8% in the second decile 

following the establishment of monitoring stations. The third and fourth deciles similarly 

experience an increase of approximately 2%. Price effects are muted for houses falling within 

the fifth decile and above, which may be attributed to the likelihood that higher-income 

individuals residing in these residences already possess the resources needed to mitigate their 

exposure to poor air quality, consequently diminishing the capitalization of new local air 

quality monitoring. 

These findings carry important implications, particularly for economically disadvantaged 

individuals and communities. The substantial increase in house prices among the lower deciles 

of the housing price distribution signifies that the establishment of monitoring stations 
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predominantly benefits those with more limited financial resources, as they are more likely to 

reside in housing within these lower deciles.18  This outcome underscores the potential of 

monitoring stations to mitigate pollution disparities among economically disadvantaged 

individuals, thereby contributing to improved environmental equity. 

 

Heterogeneity by Monitoring Intensity 

Due to the high operating costs associated with the procurement, operation, and maintenance 

of PM monitoring stations, these stations may be granted permissions to monitor pollutants on 

an intermittent basis. Consequently, this results in cross-sectional variation in the monitoring 

frequencies across stations. Some monitoring stations may adhere to a 1-in-6-day schedule, 

others may follow a 1-in-3-day schedule, and some may conduct motoring every day.  

The monitoring schedule is published on the EPA’s website one year in advance. The 

combination of intermittent monitoring and the early release of the monitoring schedule may 

induce firms to strategically reduce emissions during monitored days while increasing 

emissions during unmonitored days (Zou, 2021). Therefore, it is anticipated that monitoring 

stations adhering to an everyday sampling schedule will possess the highest level of 

environmental oversight, thereby generating the most substantial value for the surrounding 

communities, which can then be reflected in housing prices. 

To examine the heterogeneity in price effects by monitoring intensity, we estimate separate 

regressions for two subsamples: one comprising daily monitors and the other consisting of non-

daily monitors. The estimated price effects for these subsamples are presented in Table 7, 

 
18 We confirm these findings by performing heterogeneity analyses based on zip code characteristics, utilizing 

median household income and median per capita income data obtained from 2015 American Community Survey 

(ACS) 5-year estimate. We classify zip codes into two groups: those with incomes higher than median and those 

with incomes lower than median. While the difference in coefficients is statistically insignificant, we do observe 

larger point estimates of price effects for houses in more economically disadvantaged areas—houses in zip codes 

with lower median household income and lower per capita income (Appendix Table 2). 
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Columns 1 and 2, respectively. The point estimate of the price effects of daily monitors is 0.017, 

approximately 42% larger than the estimate for the full sample. Conversely, the price effects 

of nondaily monitors are relatively smaller, providing suggestive evidence that daily monitors 

exhibit a higher level of environmental oversight and, consequently, yielding more favorable 

environmental outcomes. 

 

Heterogeneity by Pollution Level 

The price effects associated with the establishment of monitoring stations may vary cross-

sectionally based on the pollution levels in the respective areas. Areas exposed to elevated 

pollution levels may experience more pronounced price responses, as these areas are more 

susceptible to heightened regulatory scrutiny and targeted enforcement interventions aimed at 

mitigating environmental impact. To empirically examine this aspect, we regress 𝐿𝑛(𝑃𝑟𝑖𝑐𝑒)𝑖𝑡 

on the interaction of the price effect measure, 𝐴𝑓𝑡𝑒𝑟𝑡  ×  𝕝[Distancei < 5km], with empirical 

proxies for areas exposed to higher pollution levels and areas exposed to lower pollution levels, 

as illustrated in the following equation: 

 

𝐿𝑛(𝑃𝑟𝑖𝑐𝑒)𝑖𝑡 =  𝛽1𝐴𝑓𝑡𝑒𝑟𝑡  ×  𝕝[Distancei < 5km]  ×  𝕝[𝐻𝑖𝑔ℎ 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎𝑠]  +

𝛽2𝐴𝑓𝑡𝑒𝑟𝑡  ×  𝕝[Distancei < 5km]  ×  𝕝[𝐿𝑜𝑤 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎𝑠]  + 𝑋𝑖𝑡𝜙 + 𝜆𝑧 + 𝜃𝑚𝑡 + 𝜀𝑖𝑡  (2) 

 

We measure the pollution levels of localities using various pre-establishment pollution 

indicators. Our first indicator is the concentration of polluting activities in an area, determined 

by the number of industrial facilities reported in the Toxic Release Inventory within a 10-

kilometer radius of the monitoring station in the year prior to the station’s establishment. We 

categorize the measure of pollution level into four quantiles, considering areas with numbers 
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exceeding the median as high-pollution areas and those with numbers lower than the median 

as low-pollution areas.  

Column 1 of Table 8 shows a significant and positive price effect of monitoring station 

establishment in high-pollution areas, while price effects in low-pollution areas are small and 

statistically insignificant. In Columns 2 and 3, we find consistent results when we repeat the 

same estimation using the total amount of toxic releases and the total amount of toxic air 

releases as the measure of pollution level. These findings suggest that housing prices in highly 

polluted areas increase by at least 1.4% after the establishment of a monitoring station.  

4. Mechanisms 

We now explore two potential mechanisms through which the establishment of a monitoring 

station can influence property prices. Firstly, firms may engage in extensive efforts to evade 

regulatory oversight due to the substantial costs associated with regulatory compliance, as 

documented in a growing body of literature (Vollard, 2017; Zou, 2021; Alexander and 

Schwandt, 2022; Agarwal et al., 2023). This gives rise to the role of monitoring stations as 

compliance enforcement tools for ensuring that industrial facilities comply with existing 

environment regulations, thus preventing the release of unauthorized emissions (Axbard and 

Deng, 2024). Consequently, this contributes to improved air quality, and subsequently, higher 

property prices. We refer to the first mechanism as the Improved Air Quality Channel.  

Second, air quality data from monitoring stations provides prospective home buyers with 

new information about the air quality in the area. Building on existing literature that highlights 

how a lack of information can lead to  market inefficiency and the importance of information 

disclosure in overcoming market failure, the new disclosure of air quality information 

following the establishment of a monitoring station serves as a shock that corrects any 

incomplete information between buyers and sellers, thereby affecting transaction prices 
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(Mastromonaco, 2015; Frondel, Gerster and Vance, 2020; Myers, Puller and West, 2022). We 

refer to the second mechanism as the Information Channel. We explore these mechanisms in 

the following section.  

4.1 Improved Air Quality 

Firms Emissions 

We first examine whether the estimated increase in property prices following the establishment 

of a monitoring station is attributed to firms’ strategic response to heightened environmental 

oversight, resulting in improved air quality in the locality around the monitoring station. While 

earlier findings that show larger price effects in areas with higher levels of pollution provide 

suggestive evidence supporting this mechanism, we undertake a more in-depth examination 

using firm-level emissions data. Specifically, we utilize detailed geographic data from the 

facility-level annual emission records obtained from TRI. We calculate the distances of these 

facilities to the monitoring stations, and we categorize facilities located within the 5-kilometer 

radius of the monitoring station as those directly exposed to increased environmental oversight. 

We estimate  

 

𝐿𝑛(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠)𝑖𝑑𝑡 =  𝛽𝐴𝑓𝑡𝑒𝑟𝑡  ×  𝕝[Distancei < 5km] + 𝛾𝑖 + 𝜃𝑑𝑚𝑡 + 𝜀𝑖𝑑𝑡   (3) 

 

where the dependent variable is the natural logarithm of the annual emission measure of facility 

𝑖  in industry 𝑑  in year 𝑡 . Specifically, with the inclusion of industry ×  monitoring station × 

year fixed effects, 𝜃𝑑𝑚𝑡, we compare the annual emissions of exposed facilities to facilities 

situated within a 5 to 10-kilometer radius of the same monitoring station and in the same 

industry sector.19 This identification strategy controls for time-invariant heterogeneity across 

 
19 We use 6-digit North American Industry Classification System (NAICS) code, also available in the TRI data. 
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facilities and at the same time accounts for any industry-level and regional-level shocks that 

may influence facilities’ productions or emissions. 

 Column 1 of Table 9 presents the effects of monitoring station establishment on a facility’s 

Total Emissions, which is the total quantity of toxic chemicals released on-site to air, water, 

and land. We observe a statistically significant reduction in total emissions by facilities 

subjected to increased environmental oversight. These exposed facilities reduce their total on-

site emissions released by approximately 46.7% (or 126,530 pounds = 59,089 × 46.7%) 

following the establishment of a nearby monitoring station, in comparison to facilities located 

farther away from the monitoring station. These results remain consistent when we compare 

the exposed facilities to either facilities within a 5 to 10-kilometer radius of any monitoring 

stations in the same state (Panel B) or facilities within a 5 to 10-kilometer radius of any 

monitoring stations in the same county (Panel C).  

 Given that the stations we study are air quality monitoring stations that monitor fine 

particulate matter rather than water or soil quality, we should expect that the estimated 

reductions in total emissions are primarily driven by reductions in emissions through air, while 

emissions through water and land remain unaffected. In particular, we exploit regressions on 

water and land emissions as a useful placebo test to examine whether the estimated reduction 

in emissions presented in Column 1 is primarily attributable to facility-specific shocks that are 

unrelated to the establishment of a monitoring station but may influence overall production and, 

consequently, emissions. To conduct this test, we replace the dependent variable in Equation 

(3) with total air emissions, total water emissions, and total land emissions in Columns 2, 3, 

and 4, respectively.20 The results show that exposed facilities experience a significant reduction 

 
20 In Columns 2 to 5 of Appendix Table 3, we aggregate the annual emissions at the monitoring station and distance 

level (within 5 kilometers or within 5 to 10 kilometers of a monitoring station) and perform the same regressions 

using the aggregated amount of emissions as the dependent variable. Results are consistent with the findings 

obtained from regressions at the facility level. 
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of approximately 47.3% in total air emissions, whereas total water and land emissions exhibit 

minimal response, both statistically and economically.  

 In Figure 5, we illustrate the dynamic effects on air emissions across three specifications. 

Throughout all specifications, variations in the levels of air emissions in the pre-establishment 

years, relative to Year -3, consistently hover around zero, both numerically and statistically. 

However, a notable reduction is observed in the first year following the opening of the 

monitoring station. Subsequent years show incremental reductions, suggesting a prompt 

adaptive response by firms to heightened regulatory scrutiny as a strategic measure to mitigate 

regulatory costs.  

 We next examine the extensive margin of facilities’ response to the establishment of a 

monitoring station. We separately calculate the annual number of the TRI facilities located 

within the 5 kilometers and within 5 to 10 kilometers of the radius of a monitoring station in 

the year. We then regress the natural logarithm of the total number of facilities on an indicator 

for whether the facility is located within 5-kilometer radius of a monitoring station and its 

interaction with an indicator representing years after the monitor’s establishment.  

 As presented in Column 1 of Appendix Table 3, we observe a 2.6% reduction in the total 

number of facilities within a 5-kilometer radius of a monitoring station following its 

establishment. These results complement our earlier findings. Taken together, they suggest that 

enhanced environmental oversight facilitated by monitoring stations deters firms’ emissions 

both on the intensive and extensive margins, consequently enhancing values for properties in 

the vicinity. 

 

Satellite Measure of Particulate Pollution 

The comparison of air quality before and after the establishment of a monitoring station was 

previously infeasible due to the unavailability of air quality data predating the station’s 
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establishment. To circumvent this limitation, we utilize a daily-level satellite measure of 

atmospheric particle pollution, known as aerosol optimal depth (AOD), measured at a spatial 

resolution of 10 kilometers × 10 kilometers. This allows us to investigate the impact of 

monitoring station establishment on the air quality in the vicinity of the monitoring station. 

Specifically, we estimate the following equation: 

 

𝐿𝑛(𝑎𝑒𝑟𝑜𝑠𝑜𝑙)𝑔𝑡 =  𝛽𝐴𝑓𝑡𝑒𝑟𝑡  ×  𝕝[𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑖𝑜𝑛]𝑔 + 𝛾𝑔 + 𝜃𝑡 + 𝑋𝑔𝑡𝜙 + 𝜀𝑔𝑡  (4) 

 

where the dependent variable is the natural logarithm of AOD at grid 𝑔 at time 𝑡. The primary 

variable of interest is the air quality impact of a monitoring station’s establishment, depicted 

by the interaction between an indicator for post-establishment and an indicator for the grid 

where a monitoring station is located. We include grid fixed effects, 𝛾𝑔 , to account for 

unobservable cross-sectional time-invariant differences among grids. To control for variations 

in economic activities and, consequently, pollution concentration across different years, as well 

as the presence of seasonality patterns, we include time fixed effects encompassing year, 

month-of-year, and day-of-week fixed effects (𝜃𝑡). In addition, as the measure of pollutant 

concentration could be influenced by meteorological factors, we include weather controls, 𝑋𝑔𝑡, 

including daily maximum and minimum temperatures categorized into 5-degree bins, as well 

as precipitation categorized in 5-millimeter bins. 

 The regression results are presented in Table 10. As shown in Column 1 of Panel A, the 

aerosol concentration in the vicinity of a monitoring station experiences a 3.1% reduction 

following its establishment. The magnitude of this negative impact amplifies with the extension 

of the post-establishment window in the estimation sample: aerosol concentration decreases by 

3.7%, 5.1% and 7.5% when considering a 5-year post-establishment window, 10-year post-
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establishment window, and entire sample, respectively.21 These estimated effects remain robust 

across various specifications, including interacting the time fixed effects with state fixed effects 

and substituting the time fixed effects with a more stringent date fixed effects.  

 The magnitude of effects on aerosol concentration is considerably smaller than the estimated 

effects on facility-level emissions, and this difference can potentially be explained by three 

reasons. Firstly, the satellite measure of aerosol concentration is recorded at a spatial resolution 

of 10 kilometers × 10 kilometers, which is a relatively coarse measure, considering the highly 

localized effect of monitoring stations, as documented by the decaying effect presented in 

Appendix Figure 2. Secondly, the satellite measure represents a snapshot of pollution in each 

area at approximately 10:30 a.m. local time every day, which may not capture emissions or 

production activities that occur at other times. Thirdly, the satellite measure captures aerosol 

conditions in the entire column of air from its viewpoint 700km above ground, and as pollutants 

can travel over large distances, the estimated effects are likely to be attenuated. 

 Nevertheless, these results supplement our earlier findings on the impacts of monitoring 

station’s establishment on firm-level emissions. Together, our results align with the research of 

Axbard and Deng (2024) which demonstrates increased enforcement activities directed at firms 

in proximity to monitoring stations and improved air quality following their opening. By 

examining both firm-level emissions and aggregate air quality measured via satellite, we 

provide complementary evidence supporting monitoring stations as an effective environmental 

regulatory tool, facilitating environmental conveyance and leading to improved environmental 

outcomes, which are then reflected in property values. 

 

 
21 The increased magnitude may be attributed to the influence of environmental regulation affecting specific areas 

subsequent to the installation of a monitoring station, potentially leading to an overestimation of the station’s 

impact.  
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4.2 Information Channel 

Barwick et al. (2023) demonstrate that the dissemination of air quality information increases 

public awareness of air pollution, resulting in behavioral shifts such as avoiding outdoor 

pollution exposure and increased spending on protective products. In this section, we 

investigate whether the estimated price effects are driven by the availability of new information 

on air quality following the establishment of a monitoring station, as the new information may 

alter the perceptions of local pollution levels among prospective property buyers and sellers, 

thereby potentially influencing transaction prices.  

To examine the Information Channel, we begin by identifying subsets of areas where this 

mechanism is likely to have a pronounced effect—areas where the actual air quality diverges 

from the perceived belief about air quality. The underlying assumption is that, if the Information 

Channel is the sole mechanism at play, the establishment of a monitoring station would update 

people’s belief regarding air quality in the area, consequently, property prices may potentially 

increase (decrease) in areas where the monitoring station reveals a lower (higher) level of air 

pollution than previously perceived. In contrast, property values are expected to remain 

unaffected in areas where the actual air quality obtained from the monitoring station aligns 

with the perceived belief about local air pollution levels.  

We proxy for the perceived belief about local air pollution levels using the number of 

industrial facilities within a 10-kilometer radius of the monitoring station one year before the 

station’s establishment. This follows the idea that individuals gauge local pollution levels based 

on the proximity or concentration of pollution sources in the absence of monitoring stations 

that provide air quality information. We subsequently classify areas into two distinct groups: 

perceived low-pollution areas and perceived high-pollution areas, depending on whether the 

proxy falls below or above the sample median.  
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To proxy for the actual local air pollution levels, we utilize the daily PM 2.5 values recorded 

by the monitoring station averaged over the first year of its opening. Similarly, we categorize 

areas into two groups: actual low-pollution areas and actual high-pollution areas, based on 

whether the proxy is below or above the sample median. 

Finally, using these two proxies, we classify areas into four distinct groups: those with 

perceived low pollution and actual low pollution (LL) levels, those with perceived high 

pollution and actual high pollution (HH) levels, those with perceived low pollution and actual 

high pollution (LH) levels, and those with perceived high pollution and actual low pollution 

(HL) levels. If the Information Channel, rather than the Improved Air Quality Channel, is the 

primary driver of the estimated price effects, we would expect to observe no price effect for 

those located in LL and HH groups, and a decrease (increase) in prices for those located in LH 

(HL) groups. 

Table 11 presents the regression estimates of price effects derived from Equation (1) using 

subsamples of areas in LL, LH, HL, and HH, respectively. Focusing on the subsamples of 

properties in areas with no disparity between perceived and actual air quality information, 

namely LL and HH, we observe no changes in property prices for those located in LL but 

statistically significant and positive price effects in properties located in HH. This result is 

inconsistent with the Information Channel but closely aligns with the Improved Air Quality 

Channel, where the positive price effects are likely driven by expected or observed 

improvement in air quality following the opening of the monitoring station. Turning to the 

subsamples of properties in LL and HL, where there are disparities between perceived and 

actual air quality information, we observe statistically significant price effects in properties 

located in HL. However, we note a positive, though insignificant, effect on prices of properties 
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in LH, which is, again, inconsistent with the Information Channel that predicts negative price 

effects for properties located in HL.22 

There are several limitations to consider. The first limitation concerns the use of post-

establishment values of PM 2.5 as the proxy for the actual local pollution level. This approach 

introduces the possibility of confounding factors, as the post-treatment pollution level might 

be influenced by the treatment itself. Second, the estimated effects obtained in the subsample 

analyses reflect the net effects on property prices and can be interpreted by two forces. Taking 

the positive price effects in HL as an illustration, the first force is that property values increase 

as people realize that the pollution levels are lower than previously perceived, and hence, 

incorporating this positive information in transaction prices. Alternatively, positive price effects 

may reflect improved air quality due to reduced emissions from nearby industrial facilities after 

the establishment of the monitoring stations. It is challenging to disentangle these two 

mechanisms. Nonetheless, considering estimated price effects from all subsample regressions, 

we can reject the possibility that the Information Channel is the sole mechanism driving the 

positive price effects of monitoring stations establishment. 

To complement the above analysis, we explore the price effects associated with the 

establishment of non-regulatory monitoring stations, where the reported values are not 

employed for regulatory purposes but rather for disclosing daily Air Quality Index values.23 

The presence of these monitoring stations is less likely to influence polluters’ emissions 

behavior and, consequently, air quality, given that their primary purpose is non-regulatory.  

Nonetheless, they could impact house prices if participants in the real estate market respond to 

 
22  The estimated effects using these subsamples remain robust when using shorter post-establishment sample 

windows of 6 months or 1 year, or when employing total air emissions surrounding the monitoring station as an 

alternative proxy for perceived belief about air pollution levels, as shown in Appendix Figure 3. 
23  The main analyses in the paper focus on only regulatory monitors—that are, 88101 monitors. See, 

https://www.epa.gov/outdoor-air-quality-data/what-difference-between-parameter-codes-88101-and-88502-

pm25-monitors, for more information. 

https://www.epa.gov/outdoor-air-quality-data/what-difference-between-parameter-codes-88101-and-88502-pm25-monitors
https://www.epa.gov/outdoor-air-quality-data/what-difference-between-parameter-codes-88101-and-88502-pm25-monitors
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the availability of new air quality information. This offers an alternative approach to 

disentangle the two mechanisms.24 

As shown in Appendix Table 4, across all specifications, we find that house prices exhibit 

no change after the establishment of a nearby non-regulatory monitoring station, suggesting 

that air quality information, when not intended for regulatory purpose, may not influence 

property prices. However, the subdued response represents the net price effects that could be 

simultaneously driven by both positive information (perceived high pollution areas, being in 

fact, actual low pollution areas) and negative information (perceived low pollution areas being, 

in fact, actual high pollution areas), exerting opposing effects on property prices. To further 

investigate this, in Appendix Table 5, we replicate the subsample analyses presented in Table 

11 using the sample of non-regulatory monitoring stations. All estimates are statistically 

insignificant; while price effects in LH areas are in the negative direction, price effects in HL 

areas are also negative, contrary to the prediction of the Information Channel. 

Both analyses—the initial one utilizing subsample analyses and the subsequent one 

exploring non-regulatory monitoring stations—are subject to their own limitations. Therefore, 

we regard these estimates not as definitive but rather as suggestive indications that the 

Information Channel may be a trivial factor in driving the baseline price effects. 

5. Conclusion 

This paper examines the effect of monitoring stations establishment on housing prices, facility-

level emissions and air quality, focusing on the nationwide opening of particulate matter 

monitoring stations in the United States. We find that the establishment of monitoring stations 

leads to a 1.1% increase in the values of properties located near the stations, and the price 

 
24 We may fail to disentangle the two mechanisms if individuals believe that air quality data provided by non-

regulatory monitors could be used to complement regulatory actions and hence firms react to the opening of these 

stations.  
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effects are mainly driven by improved air quality in the locality as evinced by the reduction in 

emissions by facilities and hence aerosol concentration. These findings suggest that monitoring 

networks can serve as effective conveyance tools to discourage unauthorized emissions by 

firms, thereby augmenting the efficacy of existing environmental regulations.  

To assess the overall value generated by these monitoring stations, we perform a back-of-

the-envelope calculation. We first estimate the total number of housing units affected by the 

establishment of monitoring stations, drawing on data from the 2020 American Community 

Survey (ACS) at the block-group level. This involves the identification of block groups within 

a 5-kilometer boundary of any particulate matter monitoring stations using a Geographic 

Information System (GIS) software. Subsequently, we aggregate the total number of housing 

units in these affected block groups. Considering that some block groups may not be entirely 

encompassed by the 5-kilometer boundary, we apply a conservative estimate by halving the 

aggregate number of housing units (35,140,312), yielding a total of 17,570,156 housing units. 

Utilizing the estimated baseline price effects of 1.1% and the average prices of affected houses 

before opening of monitoring stations ($271,011 in 2020 dollars), the total value creation in the 

housing market amounts to $52,378,761,024 (17,570,156 × $271,011 × 1.1%). 

Efficiently designing environmental regulations remains a subject of ongoing debate. On 

one hand, environmental advocates often express concern about the scarce distribution of 

monitoring networks; on the other hand, policy regulators grapple with the high operational 

costs associated with these networks, particularly for conveyance tools such as physical 

inspections and monitoring stations. According to the EPA’s 2012 estimate of the total costs 

incurred for the monitoring program by the EPA in 2012, the annual cost of operating the entire 

particulate matter monitoring network in the country exceeds $58 million in 2020 dollars. Our 

paper contributes valuable insights by suggesting that a portion of these costs can be offset by 

the resulting increase in housing values, in addition to the health and environmental benefits 
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resulted from improved air quality. These findings have important policy implications, 

suggesting the potential use of low-cost monitoring methods or satellite data for regulatory 

purposes assessing environmental regulation compliance, rather than relying solely on data 

from fixed-point monitoring sources.
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Figure 1. Geographical Distribution of PM Monitoring Stations 

This figure presents the geographical distribution of particulate matter monitoring stations (depicted in 

black), superimposed on the satellite measure of averaged daily aerosol concentration (scaled by × 0.001) 

at a spatial resolution of 10km × 10km in 2000 across the continental United States.  
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Figure 2. Number of Monitoring Station Establishments by Year 

This figure shows the total number of particulate monitor monitoring stations established over the 

years. 
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Figure 3. Dynamic Effect of Monitoring Station Establishments on Housing Prices 

This figure shows coefficient estimates of price effects from the regression of log transaction prices on 

𝕝[Distancei < 5km] interacted with a set of time period dummies that indicate the number of quarters 

before and after the establishment of a monitoring station. The sample is restricted to transactions of 

properties within 10 kilometers of a monitoring station and 12 quarters (or 3 years) before or after the 

station’s establishment. The regression includes all property and transaction controls, zip code fixed 

effects and monitoring station × Sale Year-Month fixed effects. Quarter −12 is the omitted reference 

period while Quater 1 is the first quarter in which the monitoring station opened. Ninety-five percent 

confidence intervals are displayed around each point estimate. Standard errors are clustered at the zip 

code level. 
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Figure 4. Quantile Treatment Effects of Monitoring Station Establishments on House Prices 

This figure presents the effects of monitoring station on various quantiles of the housing price 

distribution. Each line represents a point estimate and a 95% confidence interval from a quantile 

regression of log transaction prices at 𝑞 decile on the interaction between an indicator for transactions 

occurring after the station’s establishment and an indicator for houses located within 5 kilometers of a 

monitoring station. The sample is restricted to transactions of properties within 10 kilometers of a 

monitoring station and 3 years before or after the station’s establishment. The regressions include all 

property and transaction controls, zip code (Z) fixed effects and monitoring station (M) × Sale Year-

Month (YM) fixed effects. Standard errors are clustered at the zip code level. 
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Figure 5. Dynamic Effect of Monitoring Station Establishments on Air Emissions 

This figure shows coefficient estimates of effects from the regression of log amount of firm-level air 

emissions on 𝕝[Distancei < 5km] interacted with a set of time period dummies that indicate the number 

of years before and after the establishment of a monitoring station. The sample is restricted to air 

emissions reported by facilities located within 10 kilometers of a monitoring station 3 years before and 

3 years after the station’s establishment. Year −3 is the omitted reference period while Year 1 is the first 

year in which the monitoring station opened. The upper panel includes facility (F) fixed effects and 

Industry (Ind) × Monitoring Station (M) × Year (Y) fixed effects; the middle panel includes facility (F) 

fixed effects and Industry (Ind) × State (S) × Year (Y) fixed effects; the bottom panel includes facility 

(F) fixed effects and Industry (Ind) × County (C) × Year (Y) fixed effects. Ninety-five percent 

confidence intervals are displayed around each point estimate. Standard errors are clustered at the 

industry level. 
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Table 1. Summary Statistics 

This table presents summary statistics for the key variables of control and interest in our baseline sample 

covering the period between 1995 and 2020 for the CoreLogic dataset. Panel A presents summary 

statistics for the entire baseline sample, while Panel B breaks down summary statistics for properties 

located within 5 kilometers of a monitoring station and those within 5 to 10 kilometers of a monitoring 

station. Properties are restricted to those located within 10 kilometers of a monitoring station transacted 

3 years before or after the station’s establishment.  

Panel A: Full Sample 

 (1) (2) (3)  (4) (5) (6) 

 Obs. Mean Std. Dev.  P25 P50 P75 

House Price ($1000s) 3,822,505 221.89 190.87  104.50 164.28 275.00 

# Bedrooms 3,822,505 3.07 0.97  3.00 3.00 4.00 

# Bathrooms 3,822,505 2.18 0.95  2.00 2.00 3.00 

Property Age (yrs) 3,822,505 34.12 29.09  10.00 28.00 52.00 

Building Sq. Ft. 3,822,505 1,710.74 797.52  1,168.00 1,522.00 2,037.00 

Land Sq. Ft. 3,822,505 18,429.33 77,378.11  4,863.00 7,186.00 11,015.00 

Pool (d) 3,822,505 0.07 0.26  0.00 0.00 0.00 

Mobile Home (d) 3,822,505 0.00 0.06  0.00 0.00 0.00 

Cash Purchase (d) 3,822,505 0.10 0.30  0.00 0.00 0.00 

Resale (d)  3,822,505 0.91 0.29  1.00 1.00 1.00 

Corporate Buyer (d) 3,822,505 0.63 0.48  0.00 1.00 1.00 

Owner Occupied (d) 3,822,505 0.81 0.39  1.00 1.00 1.00 

Distance to Monitor (km) 3,822,505 5.75 2.43  3.84 5.95 7.82 

        

Panel B: Samples by Distance to Monitoring Stations 

 < 5 km  5 – 10km 

 Obs. Mean Std. Dev.  Obs. Mean Std. Dev. 

House Price ($1000s) 1,466,647 210.96 182.84  2,355,858 228.69 195.40 

# Bedrooms 1,466,647 3.04 1.00  2,355,858 3.09 0.94 

# Bathrooms 1,466,647 2.10 0.93  2,355,858 2.23 0.96 

Property Age (yrs) 1,466,647 37.22 30.91  2,355,858 32.18 27.72 

Building Sq. Ft. 1,466,647 1,657.64 765.66  2,355,858 1,743.80 814.98 

Land Sq. Ft. 1,466,647 14,912.93 52,072.56  2,355,858 20,618.47 89,522.38 

Pool (d) 1,466,647 0.07 0.25  2,355,858 0.07 0.26 

Mobile Home (d) 1,466,647 0.00 0.06  2,355,858 0.00 0.06 

Cash Purchase (d) 1,466,647 0.10 0.30  2,355,858 0.10 0.30 

Resale (d)  1,466,647 0.91 0.28  2,355,858 0.90 0.30 

Corporate Buyer (d) 1,466,647 0.63 0.48  2,355,858 0.63 0.48 

Owner Occupied (d) 1,466,647 0.79 0.40  2,355,858 0.81 0.39 

Distance to Monitor (km) 1,466,647 3.14 1.22  2,355,858 7.38 1.34 
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Table 2. Baseline Regression Results 

This table presents ordinary least squares estimates where the dependent variable is the natural logarithm of the transaction price. The explanatory variable of 

interest is After × Dist. < 5km, which takes the value of one for a property within 5 kilometers of a monitoring station and transacted after the station’s 

establishment. The sample is restricted to sales of residential properties within 10 kilometers of a monitoring station that occurred 3 years before or after the 

station’s establishment. Property controls consist of indicators for number of bedrooms and bathrooms, property age percentiles, building square footage 

percentiles, land square footage percentiles, mobile home, pool, and property type (PT). Transaction controls include indicators for corporate buyer, cash 

purchase, resale (R), purchase for investment purpose (I). Distance Bin FE represents fixed effects for distance from the transacted property to a monitoring 

station, with 100 distance bins, each covering a 0.1-kilometer range. Column 1 presents baseline results with property controls, transaction controls, 

neighborhood fixed effects represented by zip code (Z) fixed effects, and time fixed effects represented by monitoring station (M) × Sale Year-Month (YM) 

fixed effects. Columns 2 to 5 introduce additional interactions of the time fixed effects. Column 2 interacts time fixed effects with PT, Column 3 with PT and 

R, Column 4 with PT, R, and I, and Column 5 with all property and transaction controls, respectively. Columns 6 and 8 replicate the specifications of Columns 

1, replacing neighborhood fixed effects with M, and Z and M, and substituting time fixed effects with Z × YM, and county (C) × YM, respectively. Columns 7 

and 9 mirror the interaction of time fixed effects with property and transaction controls as reported in Column 4. The standard errors are clustered at the zip 

code level and presented below the coefficient in parenthesis. *, **, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

          

After ×  Dist. < 5km 0.011*** 0.010*** 0.009*** 0.010*** 0.039** 0.008** 0.007** 0.009*** 0.008*** 

 (0.003) (0.002) (0.002) (0.002) (0.018) (0.003) (0.003) (0.003) (0.002) 

          

Observations 3,822,505 3,816,505 3,810,188 3,795,293 107,298 3,795,377 3,620,207 3,822,033 3,796,252 

Adj R-squared 0.816 0.825 0.826 0.835 0.957 0.828 0.856 0.816 0.835 

Neighborhood FE Z Z Z Z Z M M Z, M Z, M  

Time FE M × YM M × YM × 

PT 

M × YM × 

PT × R 

M × YM × 

PT × R × I 

M × YM × (All Prop. 

& Trans. Controls) 

Z × YM Z ×  YM × 

PT × R × I 

C × YM C ×  YM × 

PT × R × I 

Prop. & Trans. Controls Y Y Y Y N Y Y Y Y 

Distance Bin FE Y Y Y Y Y Y Y Y Y 
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Table 3. Robustness to Alternative Specifications 

This table presents ordinary least squares estimates where the dependent variable is the natural logarithm of the transaction price. The explanatory variable of interest is After × 

Dist. < 5km. Property controls consist of indicators for number of bedrooms and bathrooms, property age percentiles, building square footage percentiles, land square footage 

percentiles, mobile home, pool, and property type (PT). Transaction controls include indicators for corporate buyer, cash purchase, resale (R), purchase for investment purpose 

(I). Distance Bin FE represents fixed effects for distance from the transacted property to a monitoring station, with 100 distance bins, each covering a 0.1-kilometer range. 

Columns 1 to 6 correspond to their counterparts in Columns 1,4,6 to 9 of Table 2, respectively, which explore three geographical levels: zip code (Z), monitoring station (M), 

and county (C). The stacked difference-in-differences is applied by including interactions of both the treatment indicators (Distance Bin FE) and the time FE with monitoring 

station (M) fixed effects, using a sample restricted to sales of residential properties within 10 kilometers of a monitoring station that occurred 3 years before or after the station’s 

establishment. The standard errors are clustered at the zip code level and presented below the coefficient in parenthesis. *, **, *** represent significance at the 10%, 5%, and 

1% level, respectively. 

 (1) (2) (3) (4) (5) (6) 

 

After ×  Dist. < 5km 0.012*** 0.010*** 0.008*** 0.006*** 0.011*** 0.010*** 

 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

       

Observations 3,819,345 3,792,048 3,788,286 3,605,180 3,818,039 3,783,316 

Adj R-squared 0.825 0.843 0.837 0.863 0.826 0.845 

Neighborhood FE Z Z - - Z Z 

Time FE M × YM M × YM × PT × R × I M × Z × YM M × Z × YM × PT × 

R × I 

M × C × YM M × C × YM × PT × R 

× I 

M × Distance Bin FE Y Y Y Y Y Y 

Prop. & Trans. Controls Y Y Y Y Y Y 
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Table 4. Robustness to Alternative Control Group and Sampling Periods 

This table presents ordinary least squares estimates where the dependent variable is the natural logarithm of the transaction price. The explanatory variable of interest is After × 

Dist. < 5km. Property controls consist of indicators for number of bedrooms and bathrooms, property age percentiles, building square footage percentiles, land square footage 

percentiles, mobile home, pool, and property type (PT). Transaction controls include indicators for corporate buyer, cash purchase, resale (R), purchase for investment purpose 

(I). Distance Bin FE represents fixed effects for distance from the transacted property to a monitoring station, with 100 distance bins, each covering a 0.1-kilometer range. 

Columns 1 to 6 correspond to their counterparts in Columns 1,4,6 to 9 of Table 2, respectively, which explore three geographical levels: zip code (Z), monitoring station (M), 

and county (C). In Panel A, the comparison group is replaced with properties located within 10 to 20 kilometers of a monitoring station, and the sample consists of sales of 

residential properties within 5 kilometers or 10 – 20 kilometers of a monitoring station that occurred 3 years before or after the station’s establishment. Panel B uses the baseline 

comparison group and a sample that includes sales of residential properties within 10 kilometers of a monitoring station occurring 3 years before or 5 years after the station’s 

establishment. Panel C uses the baseline comparison group and a sample that includes sales of residential properties within 10 kilometers of a monitoring station occurring 3 

years before or 1 year after the station’s establishment. The standard errors are clustered at the zip code level and presented below the coefficient in parenthesis. *, **, *** 

represent significance at the 10%, 5%, and 1% level, respectively. 

 (1) (2) (3) (4) (5) (6) 

Panel A: Control Group [10km to 20km] 

After ×  Dist. < 5km 0.016*** 0.015*** 0.028*** 0.022** 0.015*** 0.013*** 

 (0.003) (0.003) (0.011) (0.009) (0.003) (0.003) 

       

Observations 6,102,714 6,073,842 6,043,355 5,750,858 6,100,801 6,066,349 

Adj R-squared 0.829 0.848 0.844 0.873 0.830 0.850 

       

Panel B: Sample Period [-3 to +5] 

After ×  Dist. < 5km 0.011*** 0.010*** 0.007** 0.006* 0.008*** 0.007*** 

 (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) 

       

Observations 5,265,126 5,227,147 5,229,359 4,992,017 5,264,559 5,230,403 

Adj R-squared 0.814 0.834 0.826 0.854 0.814 0.833 

       

Panel C: Sample Period [-3 to +1] 

After ×  Dist. < 5km 0.007*** 0.007*** 0.008** 0.008*** 0.006** 0.005** 

 (0.003) (0.002) (0.004) (0.003) (0.002) (0.002) 

       

Observations 2,490,539 2,473,234 2,471,429 2,355,755 2,490,161 2,472,513 

Adj R-squared 0.816 0.834 0.827 0.855 0.816 0.834 

Neighborhood FE Z Z M M Z, M Z, M 

Time FE M × YM M × YM × PT × R × I Z × YM Z × YM × PT × R × I M, C × YM C × YM × PT × R × I 

Prop. & Trans. Controls Y Y Y Y Y Y 
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Distance Bin FE Y Y Y Y Y Y 
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Table 5. Placebo Tests 

This table presents ordinary least squares estimates where the dependent variable is the natural 

logarithm of the transaction price. Column 1 tests the price effects by employing a placebo 

establishment date assigned to each monitoring station that precedes its actual establishment data by 

three years, using a sample of residential property sales within 10 kilometers of a monitoring station 

occurring 3 years before or after the station’s establishment. Column 2 tests the prices effects by 

introducing a placebo treatment group, which comprises property sales within 5 to 10 kilometers, 

compared to a comparison group consisting of property sales within 10 to 20 kilometers. Property 

controls consist of indicators for number of bedrooms and bathrooms, property age percentiles, building 

square footage percentiles, land square footage percentiles, mobile home, pool, and property type (PT). 

Transaction controls include indicators for corporate buyer, cash purchase, resale (R), purchase for 

investment purpose (I). Distance Bin FE represents fixed effects for distance from the transacted 

property to a monitoring station, with 100 distance bins, each covering a 0.1-kilometer range. The 

regressions include all property and transaction controls, zip code (Z) fixed effects and monitoring 

station (M) × Sale Year-Month (YM) fixed effects. The standard errors are clustered at the zip code 

level and presented below the coefficient in parenthesis. *, **, *** represent significance at the 10%, 

5%, and 1% level, respectively. 

 (1) (2) 

 Placebo Treatment Timing Placebo Treatment Group 

   

After ×  Dist. < 5km 0.002  

 (0.003)  

After ×  Dist. < 5-10 km  0.003 

  (0.003) 

   

Observations 2,856,908 4,970,969 

Adj R-squared 0.816 0.834 

Neighborhood FE Z Z 

Time FE M × YM M × YM 

Prop. & Trans. Controls Y Y 

Distance Bin FE Y Y 
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Table 6. Subsample Analyses 

This table presents ordinary least squares estimates where the dependent variable is the natural logarithm of the transaction price. The explanatory variable of 

interest is After × Dist. < 5km. The sample is restricted to sales of residential properties within 10 kilometers of a monitoring station that occurred 3 years before 

or after the station’s establishment. Column 1 removes sales of properties located in the comparison areas (within 5 to 10 kilometers of a monitoring station) 

where number of TRI facilities increased after the station’s establishment. Similarly, Columns 2 to 4 exclude sales of properties located in the comparison areas 

(within 5 to 10 kilometers of a monitoring station) where the total amount of reported emissions (e.g., air emissions, water emissions, land emissions, and total 

emissions) increased after the station’s establishment. Property controls consist of indicators for number of bedrooms and bathrooms, property age percentiles, 

building square footage percentiles, land square footage percentiles, mobile home, pool, and property type (PT). Transaction controls include indicators for 

corporate buyer, cash purchase, resale (R), purchase for investment purpose (I). Distance Bin FE represents fixed effects for distance from the transacted property 

to a monitoring station, with 100 distance bins, each covering a 0.1-kilometer range. The regressions include all property and transaction controls, zip code (Z) 

fixed effects and monitoring station (M) × Sale Year-Month (YM) fixed effects. The standard errors are clustered at the zip code level and presented below the 

coefficient in parenthesis. *, **, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 

 (1) (2) (3) (4) (5) 

 No. of TRI Facilities Air Release  Water Release Land Release Total Release 

      

After ×  Dist. < 5km 0.012*** 0.009*** 0.011*** 0.011*** 0.010*** 

 (0.003) (0.003) (0.003) (0.003) (0.003) 

      

Observations 3,459,681 3,392,156 3,361,488 3,490,718 3,347,188 

Adj R-squared 0.815 0.812 0.815 0.815 0.812 

Neighborhood FE Z Z Z Z Z 

Time FE M × YM M × YM M × YM M × YM M × YM 

Prop. & Trans. Controls Y Y Y Y Y 

Distance Bin FE Y Y Y Y Y 

Sample (Remove) Comparison areas where no. of facilities or total emissions (E.g., air, water, land, total release) increased after treatment 
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Table 7. Heterogeneity of Price Effects by Monitoring Intensity 

This table presents ordinary least squares estimates where the dependent variable is the natural 

logarithm of the transaction price. The explanatory variable of interest is After × Dist. < 5km. The 

sample is restricted to sales of residential properties within 10 kilometers of a monitoring station that 

occurred 3 years before or after the station’s establishment. Column 1 and 2 further restricts the sample 

to include sales of properties located near to monitoring stations with and without, respectively, at least 

one monitor that operates daily. Property controls consist of indicators for number of bedrooms and 

bathrooms, property age percentiles, building square footage percentiles, land square footage 

percentiles, mobile home, pool, and property type (PT). Transaction controls include indicators for 

corporate buyer, cash purchase, resale (R), purchase for investment purpose (I). Distance Bin FE 

represents fixed effects for distance from the transacted property to a monitoring station, with 100 

distance bins, each covering a 0.1-kilometer range. The regressions include all property and transaction 

controls, zip code (Z) fixed effects and monitoring station (M) × Sale Year-Month (YM) fixed effects. 

The standard errors are clustered at the zip code level and presented below the coefficient in parenthesis. 

*, **, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 

 

 (1) (2) 

   

After ×  Dist. < 5km 0.017*** 0.006* 

 (0.004) (0.003) 

   

Observations 1,553,955 2,194,685 

Adj R-squared 0.831 0.802 

Neighborhood FE Z Z 

Time FE M × YM M × YM 

Prop. & Trans. Controls Y Y 

Distance Bin FE Y Y 

Sample Only Daily 

Monitors 

Only Non-Daily 

Monitors 
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Table 8. Heterogeneity of Price Effects by Pre-Establishment Pollution Level  

This table presents ordinary least squares estimates where the dependent variable is the natural 

logarithm of the transaction price. In Columns 1 to 3, 𝟙[Low Pollution Areas] is an indicator for 

properties situated in areas with a pollution level below the median, based on the number of TRI 

facilities, total amount of toxic emissions and total amount of toxic air emissions, respectively, in the 

area one year before the station’s establishment . Similarly, 𝟙[High Pollution Areas] is an indicator for 

properties located in areas with a pollution level above the median. The sample is restricted to sales of 

residential properties within 10 kilometers of a monitoring station that occurred 3 years before or after 

the station’s establishment. Property controls consist of indicators for number of bedrooms and 

bathrooms, property age percentiles, building square footage percentiles, land square footage 

percentiles, mobile home, pool, and property type (PT). Transaction controls include indicators for 

corporate buyer, cash purchase, resale (R), purchase for investment purpose (I). Distance Bin FE 

represents fixed effects for distance from the transacted property to a monitoring station, with 100 

distance bins, each covering a 0.1-kilometer range. The regressions include all property and transaction 

controls, zip code (Z) fixed effects and monitoring station (M) × Sale Year-Month (YM) fixed effects. 

The standard errors are clustered at the zip code level and presented below the coefficient in parenthesis. 

*, **, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 

 

 (1) (2) (3) 

 Number of 

TRI Facilities 

Total Release Air Emissions 

    

After ×  Dist. < 5km ×  𝟙[Low Pollution Areas] 0.003 0.004 0.005 

 (0.005) (0.005) (0.005) 

After ×  Dist. < 5km ×  𝟙[High Pollution Areas] 0.014*** 0.015*** 0.014*** 

 (0.003) (0.004) (0.004) 

    

Observations 3,822,505 3,822,505 3,822,505 

Adj R-squared 0.816 0.816 0.816 

Neighborhood FE Z Z Z 

Time FE M × YM M × YM M × YM 

Prop. & Trans. Controls Y Y Y 

Distance Bin FE Y Y Y 
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Table 9. Effects of Monitoring Station Establishment on Facility-level Emissions 

This table presents ordinary least squares estimates where the dependent variables are the natural log of 

one plus the annual amount of toxic release (Column 1), air release (Column 2), water release (Column 

3), and land release (Column 4) reported by the facilities to the TRI. 𝐴𝑓𝑡𝑒𝑟 is an indicator for emissions 

reported after the establishment of a monitoring station and 𝐷𝑖𝑠𝑡. < 5𝑘𝑚 is an indicator for facilities 

located within 5 kilometers of a monitoring station. The sample is restricted to emissions from facilities 

within 10 kilometers of a monitoring station occurring 3 years before or after the station’s establishment. 

Panel A includes facility (F) fixed effects and Industry (Ind) × Monitoring Station (M) × Year (Y) fixed 

effects; Panel B includes facility (F) fixed effects and Industry (Ind) × State (S) × Year (Y) fixed effects; 

Panel C includes facility (F) fixed effects and Industry (Ind) × County (C) × Year (Y) fixed effects. The 

standard errors are clustered at the industry level and presented below the coefficient in parenthesis. *, 

**, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 

 (1) (2) (3) (4) 

 Total Release Air Release Water Release Land Release 

Panel A: Industry × Monitor × Year Fixed Effects 

After ×  Dist. < 5km -0.467*** -0.473** 0.025 -0.213* 

 (0.178) (0.182) (0.062) (0.117) 

     

Observations 7,724 7,724 7,724 7,724 

Adj R-squared 0.863 0.868 0.890 0.686 

Fixed Effects F, Ind × M × Y F,  Ind × M × Y F,  Ind × M × Y F,  Ind × M × Y 

     

Panel B: Industry × State × Year Fixed Effects 

After ×  Dist. < 5km -0.324*** -0.362*** -0.009 -0.023 

 (0.106) (0.106) (0.041) (0.060) 

     

Observations 13,203 13,203 13,203 13,203 

Adj R-squared 0.861 0.867 0.887 0.709 

Fixed Effects F, Ind × S × Y F,  Ind × S × Y F,  Ind × S × Y F,  Ind × S × Y 

     

Panel C: Industry × County × Year Fixed Effects 

After ×  Dist. < 5km -0.405** -0.386** -0.019 -0.138 

 (0.156) (0.158) (0.063) (0.097) 

     

Observations 8,462 8,462 8,462 8,462 

Adj R-squared 0.862 0.866 0.892 0.705 

Fixed Effects F, Ind × C × Y F,  Ind × C × Y F,  Ind × C × Y F,  Ind × C × Y 
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Table 10. Effects of Monitoring Station Establishment on Grid-level Aerosol Concentration 

This table presents ordinary least squares estimates where the dependent variables are the natural log of 

one plus the daily aerosol concentration scaled by 0.001 in each grid of 10 kilometers × 10 

kilometers. 𝐴𝑓𝑡𝑒𝑟  is an indicator for aerosol concentrations reported after the establishment of a 

monitoring station in the grid and 𝑇𝑟𝑒𝑎𝑡𝑒𝑑  is an indicator for grids where a monitoring station is 

situated. Panel A includes Grid (G) fixed effects, Time (T) fixed effects that include Year, Month, and 

Day of Week fixed effects, and Weather (W) fixed effects that include fixed effects for daily maximum 

temperature bins, daily minimum temperature bins and daily precipitation bins. Panel B replaces the 

time fixed effects with State × Time (T) fixed effects and Panel C replaces the time fixed effects with 

date (D) fixed effects. Column 1 restricts the sample to the period 3 years before and after the monitoring 

station’s establishment; Column 2 extends the post-establishment window to 5 years; Column 3 extends 

it to 10 years; and Column 10 employs the complete full sample. The standard errors are clustered at 

the grid level and presented below the coefficient in parenthesis. *, **, *** represent significance at the 

10%, 5%, and 1% level, respectively. 

 

 

 

 

 

 

 

 

 (1) (2) (3) (4) 

 [-3, +3] [-3, +5] [-3, +10] Full Sample 

Panel A: Time Fixed Effects 

After × Treated -0.031** -0.037*** -0.051*** -0.075*** 

 (0.013) (0.012) (0.013) (0.014) 

     

Observations 198,602,271 198,700,740 198,964,006 200,500,560 

Adj R-squared 0.274 0.274 0.274 0.274 

Fixed Effects G, T, W G, T, W G, T, W G, T, W 

     

Panel B:   State × Time Fixed Effects 

After × Treated -0.026** -0.031*** -0.036*** -0.038*** 

 (0.012) (0.010) (0.010) (0.010) 

     

Observations 198,602,271 198,700,740 198,964,006 200,500,560 

Adj R-squared 0.311 0.311 0.311 0.311 

Fixed Effects G, S×T, W G,  S×T , W G,  S×T , W G,  S×T , W 

     

Panel C:   Date Fixed Effects 

After × Treated -0.024* -0.030** -0.045*** -0.065*** 

 (0.013) (0.012) (0.013) (0.014) 

     

Observations 198,602,269 198,700,738 198,964,004 200,500,558 

Adj R-squared 0.357 0.357 0.357 0.357 

Fixed Effects G, D, W G, D, W G, D, W G, D, W 
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Table 11. Subsample Analyses based on Perceived and Actual Local Pollution Levels 

This table presents ordinary least squares estimates where the dependent variable is the natural 

logarithm of the transaction price. The explanatory variable of interest is After × Dist. < 5km. The 

sample is restricted to sales of residential properties within 10 kilometers of a monitoring station that 

occurred 3 years before or after the station’s establishment. Column 1 restricts the sample to areas with 

perceived low pollution and actual low pollution levels; Column 2 restricts the sample to areas with 

perceived high pollution and actual high pollution levels; Column 3 restricts the sample to areas with 

perceived low pollution and actual high pollution levels; Column 4 restricts the sample to areas with 

perceived high pollution and actual low pollution levels. Areas are classified as perceived low (high) 

pollution areas if the number of TRI industrial facilities surrounding the monitoring station one year 

before its opening is below (above) the sample median; areas are classified as actual low (high) 

pollution areas if the daily PM 2.5 values obtained from the monitoring station averaged across the first 

year of its opening is below (above) the sample median. Property controls consist of indicators for 

number of bedrooms and bathrooms, property age percentiles, building square footage percentiles, land 

square footage percentiles, mobile home, pool, and property type (PT). Transaction controls include 

indicators for corporate buyer, cash purchase, resale (R), purchase for investment purpose (I). Distance 

Bin FE represents fixed effects for distance from the transacted property to a monitoring station, with 

100 distance bins, each covering a 0.1-kilometer range. The regressions include all property and 

transaction controls, zip code (Z) fixed effects and monitoring station (M) × Sale Year-Month (YM) 

fixed effects. The standard errors are clustered at the zip code level and presented below the coefficient 

in parenthesis. *, **, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) 

Perceived Low 

Actual Low 

(2) 

Perceived High 

Actual High 

(3) 

Perceived Low 

Actual High 

(4) 

Perceived High 

Actual Low 

     

After ×  Dist. < 5km 0.008 0.015*** 0.003 0.014*** 

 (0.005) (0.005) (0.006) (0.004) 

     

Observations 560,922 1,256,051 336,592 1,048,244 

Adj R-squared 0.825 0.813 0.823 0.808 

Neighborhood FE Z Z Z Z 

Time FE M × YM M × YM M × YM M × YM 

Prop. & Trans. Controls Y Y Y Y 

Distance Bin FE Y Y Y Y 
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Appendix Figure 1. Dynamic Effect using an Extended Sample Period 

This figure shows coefficient estimates of price effects from the regression of log transaction prices on 

𝕝[Distancei < 5km] interacted with a set of time period dummies that indicate the number of years 

before and after the establishment of a monitoring station. The sample is restricted to transactions of 

properties within 10 kilometers of a monitoring station, occurring within 3 years before or 3 years (Panel 

A) and 5 years (Panel B) after the station’s establishment. The regression includes all property and 

transaction controls, zip code fixed effects and monitoring station × Sale Year-Month fixed effects. Year 

−3 is the omitted reference period while Year 1 is the first year in which the monitoring station opened. 

Ninety-five percent confidence intervals are displayed around each point estimate. Standard errors are 

clustered at the zip code level. 

Panel A. Dynamic Effect by Number of Years 

 

Panel B. Dynamic Effect by Number of Years using an Extended Sample Period 
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Appendix Figure 2. Distance Decay Effects of Monitoring Station on Housing Prices 

This figure presents the effects of monitoring station on housing prices. Each line represents a point 

estimate and a 95% confidence interval from a regression of log transaction prices on the interaction 

between an indicator for transactions occurring after the station’s establishment and an indicator for 

houses located within various distance intervals, ranging from 0-1 kilometer to 9-10 kilometers of a 

monitoring station. The sample consists of two groups: comparison group, including properties within 

10-20 kilometers of a monitoring station, and the corresponding treatment group. Both groups include 

transactions that occurred within 3 years before or after the station’s establishment. The regressions 

include all property and transaction controls, zip code (Z) fixed effects and monitoring station (M) × 

Sale Year-Month (YM) fixed effects. Standard errors are clustered at the zip code level. 

 



 62 

Appendix Figure 3. Robustness—Subsample Analyses based on Perceived and Actual Local 

Pollution Levels 

This figure presents the coefficient estimates of price effects from the regression of log transaction 

prices on 𝕝[Distancei < 5km]. Each line represents a point estimate and a 95% confidence interval 

from a regression of log transaction prices using a sample restricted to sales of residential properties 

within 10 kilometers of a monitoring station that occurred 3 years before and 6 months after, 3 years 

before and 1 year after, or 3 years before and 12 months after the station’s establishment. Regressions 

in LL restrict the sample to areas with perceived low pollution and actual low pollution levels; 

regressions in HH restrict the sample to areas with perceived high pollution and actual high pollution 

levels; regressions in LH restrict the sample to areas with perceived low pollution and actual high 

pollution levels; regressions in HL restrict the sample to areas with perceived high pollution and actual 

low pollution levels. Areas are classified as actual low (high) pollution areas if the daily PM 2.5 values 

obtained from the monitoring station averaged across the first year of its opening is below (above) the 

sample median. Areas are classified as perceived low (high) pollution areas if the number of TRI 

industrial facilities (in light blue) or the total amount of air emissions released by these TRI industrial 

facilities (in navy blue) surrounding the monitoring station one year before its opening is below (above) 

the sample median The regressions include all property and transaction controls, zip code (Z) fixed 

effects and monitoring station (M) × Sale Year-Month (YM) fixed effects. The standard errors are 

clustered at the zip code level. 
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Appendix Table 1. Robustness to County-level Shocks 

This table presents ordinary least squares estimates where the dependent variable is the natural 

logarithm of the transaction price. Property controls consist of indicators for number of bedrooms and 

bathrooms, property age percentiles, building square footage percentiles, land square footage 

percentiles, mobile home, pool, and property type (PT). Transaction controls include indicators for 

corporate buyer, cash purchase, resale (R), purchase for investment purpose (I). Distance Bin FE 

represents fixed effects for distance from the transacted property to a monitoring station, with 100 

distance bins, each covering a 0.1-kilometer range. All columns use a sample of residential property 

sales within 10 kilometers of a monitoring station occurring 3 years before or after the station’s 

establishment. Column 1 narrows the sample to properties situated in counties designated as attainment 

status by the EPA, while Column 2 narrows the sample to properties located in counties designated as 

nonattainment status by the EPA. The regressions include all property and transaction controls, zip code 

(Z) fixed effects and monitoring station (M) × Sale Year-Month (YM) fixed effects. The standard errors 

are clustered at the zip code level and presented below the coefficient in parenthesis. *, **, *** represent 

significance at the 10%, 5%, and 1% level, respectively. 

 

 (1) (2) (3) 

    

After ×  Dist. < 5km 0.010** 0.010***  

 (0.004) (0.004)  

After ×  Dist. < 5km ×  𝟙[Attainment]   0.014*** 

   (0.004) 

After ×  Dist. < 5km ×  𝟙[Nonattainment]   0.008* 

   (0.004) 

    

Observations 1,649,739 2,172,527 3,822,505 

Adj R-squared 0.786 0.836 0.816 

Neighborhood FE Z Z Z 

Time FE M × YM M × YM M × YM 

Prop. & Trans. Controls Y Y Y 

Distance Bin FE Y Y Y 

Sample Attainment Only Nonattainment Only Full Sample 
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Appendix Table 2. Heterogeneity of Price Effects by Zip Code Characteristics 

This table presents ordinary least squares estimates where the dependent variable is the natural 

logarithm of the transaction price. In Columns 1 and 2, 𝟙[ < Median ] is an indicator for properties 

situated in zip codes with below median household income or per capita income, respectively, based on 

the 2015 ACS 5-year estimates. Similarly, 𝟙[ > Median ] is an indicator for properties in zip codes with 

above median household income or per capita income. Property controls consist of indicators for 

number of bedrooms and bathrooms, property age percentiles, building square footage percentiles, land 

square footage percentiles, mobile home, pool, and property type (PT). Transaction controls include 

indicators for corporate buyer, cash purchase, resale (R), purchase for investment purpose (I). Distance 

Bin FE represents fixed effects for distance from the transacted property to a monitoring station, with 

100 distance bins, each covering a 0.1-kilometer range. All columns use a sample of residential property 

sales within 10 kilometers of a monitoring station occurring 3 years before or after the station’s 

establishment. The regressions include all property and transaction controls, zip code (Z) fixed effects 

and monitoring station (M) × Sale Year-Month (YM) fixed effects. The standard errors are clustered at 

the zip code level and presented below the coefficient in parenthesis. *, **, *** represent significance 

at the 10%, 5%, and 1% level, respectively. 

 

 

 (1) (2) 

 Household Income Per Capita Income 

   

After ×  Dist. < 5km ×  𝟙[ < Median ] 0.011** 0.012*** 

 (0.005) (0.005) 

After ×  Dist. < 5km ×  𝟙[ > Median ] 0.009** 0.009** 

 (0.004) (0.004) 

   

Observations 3,750,290 3,755,390 

Adj R-squared 0.816 0.817 

Neighborhood FE Z Z 

Time FE M × YM M × YM 

Prop. & Trans. Controls Y Y 

Distance Bin FE Y Y 
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Appendix Table 3. Effects of Monitoring Station Establishment on Neighborhood-level 

Emissions 

This table presents ordinary least squares estimates where the dependent variables are the natural log of 

one plus the total number of TRI Facilities (Column 1), total amount of toxic release (Column 2), total 

amount of air release (Column 3), total amount of water release (Column 4), and total amount of land 

release (Column 5) in the area surrounding monitoring station. 𝐴𝑓𝑡𝑒𝑟 is an indicator for observations 

after the establishment of a monitoring station and 𝐷𝑖𝑠𝑡. < 5𝑘𝑚 is an indicator for areas located within 

5 kilometers of a monitoring station. The sample is restricted to observations of areas within 10 

kilometers of a monitoring station occurring 3 years before or after the station’s establishment. All 

regressions include 𝐷𝑖𝑠𝑡. < 5𝑘𝑚 and monitoring station (M) × Year (Y) fixed effects. The standard 

errors are clustered at the monitoring station level and presented below the coefficient in parenthesis. *, 

**, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 

 

 

 (1) (2) (3) (4) (5) 

 No. of Facilities Total Release Air Release Water Release Land Release 

      

After ×  Dist. < 5km -0.026** -0.361*** -0.342*** 0.021 -0.190 

 (0.012) (0.100) (0.096) (0.082) (0.120) 

      

Observations 10,574 10,574 10,574 10,574 10,574 

Adj R-squared 0.700 0.450 0.469 0.303 0.092 

Fixed Effects M × Y M × Y M × Y M × Y M × Y 
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Appendix Table 4. Price effects of Establishment of Non-Regulatory Monitoring Stations 

This table presents ordinary least squares estimates where the dependent variable is the natural logarithm of the transaction price. The explanatory variable of 

interest is After × Dist. < 5km, which takes the value of one for a property within 5 kilometers of a non-regulatory monitoring station and transacted after the 

station’s establishment. The sample is restricted to sales of residential properties within 10 kilometers of a non-regulatory monitoring station that occurred 3 

years before or after the station’s establishment. Property controls consist of indicators for number of bedrooms and bathrooms, property age percentiles, 

building square footage percentiles, land square footage percentiles, mobile home, pool, and property type (PT). Transaction controls include indicators for 

corporate buyer, cash purchase, resale (R), purchase for investment purpose (I). Distance Bin FE represents fixed effects for distance from the transacted property 

to a monitoring station, with 100 distance bins, each covering a 0.1-kilometer range. Columns 1 to 6 correspond to their counterparts in Columns 1,4,6 to 9 of 

Table 2, respectively, which explore three geographical levels: zip code (Z), monitoring station (M), and county (C). The standard errors are clustered at the zip 

code level and presented below the coefficient in parenthesis. *, **, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 

 (1) (2) (3) (4) (5) (6) 

       

After ×  Dist. < 5km -0.001 -0.000 -0.006 -0.002 -0.001 -0.000 

 (0.005) (0.005) (0.006) (0.006) (0.005) (0.004) 

       

Observations 837,382 831,769 833,898 797,820 837,250 831,789 

Adj R-squared 0.872 0.882 0.877 0.894 0.872 0.882 

Neighborhood FE Z Z M M Z, M Z, M 

Time FE M × YM M × YM × PT × R × I Z × YM Z × YM × PT × R × I M, C × YM C × YM × PT × R × I 

Prop. & Trans. Controls Y Y Y Y Y Y 

Distance Bin FE Y Y Y Y Y Y 
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Appendix Table 5. Subsample Analyses based on Perceived and Actual Local Pollution Levels – 

Non-regulatory Monitoring Stations 

This table presents ordinary least squares estimates where the dependent variable is the natural 

logarithm of the transaction price. The explanatory variable of interest is After × Dist. < 5km. The 

sample is restricted to sales of residential properties within 10 kilometers of a non-regulatory monitoring 

station that occurred 3 years before or after the station’s establishment. Column 1 restricts the sample 

to areas with perceived low pollution and actual low pollution levels; Column 2 restricts the sample to 

areas with perceived high pollution and actual high pollution levels; Column 3 restricts the sample to 

areas with perceived low pollution and actual high pollution levels; Column 4 restricts the sample to 

areas with perceived high pollution and actual low pollution levels. Areas are classified as perceived 

low (high) pollution areas if the number of TRI industrial facilities surrounding the monitoring station 

one year before its opening is below (above) the sample median; areas are classified as actual low (high) 

pollution areas if the daily PM 2.5 values obtained from the monitoring station averaged across the first 

year of its opening is below (above) the sample median. Property controls consist of indicators for 

number of bedrooms and bathrooms, property age percentiles, building square footage percentiles, land 

square footage percentiles, mobile home, pool, and property type (PT). Transaction controls include 

indicators for corporate buyer, cash purchase, resale (R), purchase for investment purpose (I). Distance 

Bin FE represents fixed effects for distance from the transacted property to a monitoring station, with 

100 distance bins, each covering a 0.1-kilometer range. The regressions include all property and 

transaction controls, zip code (Z) fixed effects and monitoring station (M) × Sale Year-Month (YM) 

fixed effects. The standard errors are clustered at the zip code level and presented below the coefficient 

in parenthesis. *, **, *** represent significance at the 10%, 5%, and 1% level, respectively. 

 

 

 

 

 

 

(1) 

Perceived Low 

Actual Low 

(2) 

Perceived High 

Actual High 

(3) 

Perceived Low 

Actual High 

(4) 

Perceived High 

Actual Low 

     

After ×  Dist. < 5km 0.010 0.006 -0.020 -0.007 

 (0.013) (0.009) (0.017) (0.008) 

     

Observations 41,625 232,486 38,833 159,007 

Adj R-squared 0.857 0.898 0.754 0.822 

Neighborhood FE Z Z Z Z 

Time FE M × YM M × YM M × YM M × YM 

Prop. & Trans. Controls Y Y Y Y 

Distance Bin FE Y Y Y Y 


