	Motivation 0000	Treatment: CA100+	Measurement and data	Research Design	Results	Conclusion
--	--------------------	--------------------------	----------------------	-----------------	---------	------------

Can investor coalitions regulate corporate climate action?

Nikolaus Hastreiter

London School of Economics and Political Science Department of Geography and Environment Grantham Research Institute on the Environment and Climate Change

GRASFI - 02.09.2024

• "[*B*]iggest shareholder action plan ever launched' (Financial Times, 2017)

Phase 1, as of June 2023 (Climate Action 100+, 2024)

Measurement and data

Research Design

Results 000000000 Conclusion

Climate Action 100+

Figure 1: CA100+ investors and companies (examples)

Conclusion

Literature on investor impact and CA100+

Suggestive evidence on the effectiveness of investor action...

• through *voting* (ESG shareholder resolutions), e.g., David et al. (2007); Clark et al. (2008); Grewal et al. (2016)

Literature on investor impact and CA100+

Suggestive evidence on the effectiveness of investor action...

- through *voting* (ESG shareholder resolutions), e.g., David et al. (2007); Clark et al. (2008); Grewal et al. (2016)
- through *voicing* ("dialogue behind closed doors"), e.g., Dimson et al. (2021); Dyck et al. (2019); Barko et al. (2022); Bauer et al. (2023); Heeb and Kölbel (2024)

Literature on investor impact and CA100+

Suggestive evidence on the effectiveness of investor action...

- through *voting* (ESG shareholder resolutions), e.g., David et al. (2007); Clark et al. (2008); Grewal et al. (2016)
- through *voicing* ("dialogue behind closed doors"), e.g., Dimson et al. (2021); Dyck et al. (2019); Barko et al. (2022); Bauer et al. (2023); Heeb and Kölbel (2024)
- through *field building* Marti et al. (2023), e.g. benchmarking Chatterji and Toffel (2010); Sharkey and Bromley (2015)

- \rightarrow Data: I focus on a small N with refined and multidimensional measures

- \rightarrow Data: I focus on a small N with refined and multidimensional measures
- Goal 2: Isolate the causal impact of collective investor engagement
- → Research Design: Binned DiD & Matching DiD

- \rightarrow Data: I focus on a small N with refined and multidimensional measures
- Goal 2: Isolate the causal impact of collective investor engagement
- → Research Design: Binned DiD & Matching DiD

Findings: No impact on climate-related disclosure and reductions in historical carbon emission intensities.

Yet, a heterogeneous effect on carbon emission reduction targets.

Motivation 0000	Treatment: CA100+ ●○○	Measurement and data	Research Design	Results	Conclusion
Plan					

1 Motivation

2 Treatment: CA100+

B) Measurement and data

4 Research Design

5 Results

Occlusion

Companies could not self-select or opt out.

Companies could not self-select or opt out.

The initial CA100 focus companies (Dec 2017):

- Represent the **100 largest publicly listed corporate greenhouse** gas emitters. see list
- Selected based on reported and estimated Scope 1, 2 and 3 emissions.

Companies could not self-select or opt out.

The **initial CA100** focus companies (Dec 2017):

- Represent the **100 largest publicly listed corporate greenhouse** gas emitters. see list
- Selected based on reported and estimated Scope 1, 2 and 3 emissions.

 \rightarrow **Objective criterion** - does not clearly indicate a company's propensity to reduce carbon emissions.

The 'Plus companies' (June 2018):

- Additional 61 companies were added in June 2018. see list
- No clear selection criteria, were deemed 'transition enablers'. Could have been political and based on investor knowledge.

The 'Plus companies' (June 2018):

- Additional 61 companies were added in June 2018. see list
- No clear selection criteria, were deemed 'transition enablers'. Could have been political and based on investor knowledge.
- → Potential selection bias and violation of the PTA.

Motivation	Treatment: CA100+	Measurement and data	Research Design	Results	Conclusion

Plan

③ Measurement and data

4 Research Design

5 Results

Conclusion

Measuring corp. climate performance - challenges

Studies typically use a $\frac{GHG\ emissions}{Revenue/Assets}$ metric (Rohleder et al., 2022; Zink, 2024; Drempetic et al., 2020).

Issues: Importance of Scope 3, volatility, not-forward looking

more details

Measurement and data

Research Design

Results

Conclusion

Measuring CA100+'s impact

CA100+ engagement goals: I focus on the least and the most costly measures for companies:

- Corporate disclosure on climate change in line with the TCFD recommendations. Details
 - \rightarrow ClimateBERT-TCFD analysis following Bingler et al. (2022)

Measurement and data

Research Design

Results

Conclusion

Measuring CA100+'s impact

CA100+ engagement goals: I focus on the least and the most costly measures for companies:

- Corporate disclosure on climate change in line with the TCFD recommendations. Details
 - \rightarrow ClimateBERT-TCFD analysis following Bingler et al. (2022)
- ② Emissions reduction targets that are aligned with the Paris Agreement;
 → TPI Carbon Performance data

Motivation 0000	Treatment: CA100+	Measurement and data	Research Design ●○○	Results	Conclusion
Plan					

1 Motivation

- 2 Treatment: CA100+
- 3 Measurement and data
- 4 Research Design

5 Results

Conclusion

 $\mathsf{CA100+}$ companies are the biggest corporate polluters but differences in pollution levels will be held constant by company fixed effects

 \rightarrow Trends in pre-treatment period. Most important assumption for the DiD is PTA

 $\mathsf{CA100+}$ companies are the biggest corporate polluters but differences in pollution levels will be held constant by company fixed effects

 \rightarrow Trends in pre-treatment period. Most important assumption for the DiD is PTA

Different sectors face different challenges in the low carbon transition

 \rightarrow Sector classification - using the CA100+ and TPI sector rules (apart from across sector analysis).

Treatment: CA100+

Motivation

The non-staggered TWFE model estimated **separately for CA100 companies and the Plus List** is:

Measurement and data

Research Design

000

Results

$$Y_{it} = \alpha + \beta CA100_i * Post_t + \gamma_i + \mu_t + \epsilon_{it}$$

Y is the climate performance of company i in year t, $CA100_i$ is a dummy variable that takes the value of 1 for CA100+ companies, $Post_t$ is a time dummy that takes the value of 1 after the launch of CA100+ (2017 for CA100, 2018 for Plus), γ_i are company fixed effects and μ_t are year fixed effects.

Conclusion

Treatment: CA100+

The non-staggered TWFE model estimated **separately for CA100 companies and the Plus List** is:

Measurement and data

Research Design

000

Results

$$Y_{it} = \alpha + \beta CA100_i * Post_t + \gamma_i + \mu_t + \epsilon_{it}$$

Y is the climate performance of company i in year t, $CA100_i$ is a dummy variable that takes the value of 1 for CA100+ companies, $Post_t$ is a time dummy that takes the value of 1 after the launch of CA100+ (2017 for CA100, 2018 for Plus), γ_i are company fixed effects and μ_t are year fixed effects.

To estimate a dynamic staggered DiD specification for **CA100 companies** and the **Plus List together**, I follow Callaway and Sant'Anna (2021).

Motivation

Conclusion

Motivation	Treatment: CA100+	Measurement and data	Research Design	Results •00000000	Conclusion

Plan

Motivation

- 2) Treatment: CA100+
- 3 Measurement and data
- 4 Research Design

Climate-related and TCFD reporting and reductions

No impact of CA100+ on the focus companies' climate-related disclosure or individual TCFD categories.

see results

No impact on historical carbon intensities.

see results

Results

Conclusion

Targets - Matching results

Figure 4: Pre- and post-treatment trends across CA100, Plus and Non-CA100+ companies for each target year across all sectors.

Measurement and data

Research Design

Results

Conclusion

TWFE DiD - all sectors - CA100

	TY: 2025	TY: 2035	TY: 2050
CA100+	0.09 (0.09)	0.13 (0.13)	0.04 (0.24)
R ²	0.91	0.78	0.61
Adj. R ²	0.90	0.75	0.55
Num. obs.	766	852	852

****p < 0.001; **p < 0.01; *p < 0.05; 'p < 0.1

Table 1: TWFE DiD, CA100 compared to Non-CA100+, across all sectors (z-scores).

Measurement and data

Research Design

Results

Conclusion

TWFE DiD - all sectors - Plus

	TY: 2025	TY: 2035	TY: 2050
CA100+	-0.14	-0.48*	-0.97*
	(0.11)	(0.22)	(0.46)
R ²	0.86	0.71	0.56
Adj. R ²	0.84	0.66	0.49
Num. obs.	695	779	779

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 2: TWFE DiD, Plus compared to Non-CA100+, across all sectors (z-scores).

Event study TY2025 - all sectors

Event study TY2035 - all sectors

Event study TY2050 - all sectors

Figure 7: Target year 2050, dynamic treatment effect, all sectors, $\alpha = 5\%$) Target year: 2050 z- scores (RC 2015) 2016 2017 2018 2019 2020 2021 2022 -1 -2 -3 2016 2017 2018 2019 2020 2021 2022 Pre

 Post

Research Design

Results

Conclusion

Robustness Checks

On climate-related disclosure - no impact on:

- CDP responses
- Reporting of carbon intensities

see results

Controlling for varying regulatory environments using the *Climate Change Policy Index*

see results

Within sector matching and DiD

see results

Motivation 0000	Treatment: CA100+	Measurement and data	Research Design	Results	Conclusion ●○○
Plan					

1) Motivation

- 2) Treatment: CA100+
- 3 Measurement and data
- 4 Research Design

5 Results

Discussion

Limited effectiveness: No impact on most indicators and companies.

Possible endogeneity: Effect on targets is only significant for Plus List.

Temporal heterogeneity: Effect only significant on medium-term and long-term target setting.

Discussion

Limited effectiveness: No impact on most indicators and companies.

Possible endogeneity: Effect on targets is only significant for Plus List.

Temporal heterogeneity: Effect only significant on medium-term and long-term target setting.

Limitations:

- Small sample size and limited data availability.
- Varying intensity of the treatment effect.
- Spillover effects between the CA100+ and non-CA100+ companies,
 - e.g. through changes in institutional norms (Matisoff, 2015).
 - \rightarrow Treatment effect would be an underestimate.
 - \rightarrow I measure the effect of targeted collective investor action.

Motivation
0000Treatment: CA100+
000Measurement and data
00000Research Design
000Results
00000000

Thank you! Nikolaus Hastreiter (n.l.hastreiter@lse.ac.uk)

Conclusion

Bibliography I

- Barko, T., Cremers, M., and Renneboog, L. (2022). Shareholder Engagement on Environmental, Social, and Governance Performance. *Journal of Business Ethics*, 180(2):777–812.
- Bauer, R., Derwall, J., and Tissen, C. (2023). Private Shareholder
 Engagements on Material ESG Issues. *Financial Analysts Journal*, 79(4):64–95. Publisher: Routledge _eprint: https://doi.org/10.1080/0015198X.2023.2220648.
- Bingler, J. A., Colesanti Senni, C., and Monnin, P. (2022). Understand what you measure: Where climate transition risk metrics converge and why they diverge. *Finance Research Letters*, 50:103265.
- Chatterji, A. K. and Toffel, M. W. (2010). How firms respond to being rated. *Strategic Management Journal*, pages n/a–n/a.

Bibliography II

- Clark, G. L., Salo, J., and Hebb, T. (2008). Social and Environmental Shareholder Activism in the Public Spotlight: US Corporate Annual Meetings, Campaign Strategies, and Environmental Performance, 2001–04. Environment and Planning A: Economy and Space, 40(6):1370–1390.
- Climate Action 100+ (2024). Climate Action 100+. Website. https://www.climateaction100.org/.
- David, P., Bloom, M., and Hillman, A. J. (2007). Investor activism, managerial responsiveness, and corporate social performance. *Strategic Management Journal*, 28(1):91–100.
- Dimson, E., Karakaş, O., and Li, X. (2021). Coordinated Engagements. *Working Paper*.

Bibliography III

- Drempetic, S., Klein, C., and Zwergel, B. (2020). The Influence of Firm Size on the ESG Score: Corporate Sustainability Ratings Under Review. *Journal of Business Ethics*, 167(2):333–360.
- Dyck, A., Lins, K. V., Roth, L., and Wagner, H. F. (2019). Do institutional investors drive corporate social responsibility? International evidence. *Journal of Financial Economics*, 131(3):693–714.
- Financial Times (2017). Rapid changes in the climate for carbon-heavy investments. *Financial Times*.
- Grewal, J., Serafeim, G., and Yoon, A. S. (2016). Shareholder Activism on Sustainability Issues. *Working Paper*.
- Heeb, F. and Kölbel, J. F. (2024). The Impact of Climate Engagement: A Field Experiment.

Bibliography IV

- Marti, E., Fuchs, M., DesJardine, M. R., Slager, R., and Gond, J.-P. (2023). The Impact of Sustainable Investing: A Multidisciplinary Review. *Journal of Management Studies*, n/a.
- Matisoff, D. (2015). Sources of specification errors in the assessment of voluntary environmental programs: understanding program impacts. *Policy Sciences*, 48(1):109–126.
- Rohleder, M., Wilkens, M., and Zink, J. (2022). The effects of mutual fund decarbonization on stock prices and carbon emissions. *Journal of Banking & Finance*, 134:106352.
- Sharkey, A. J. and Bromley, P. (2015). Can Ratings Have Indirect Effects? Evidence from the Organizational Response to Peers' Environmental Ratings. *American Sociological Review*, 80(1):63–91.

Zink, J. (2024). Which investors support the transition toward a low-carbon economy? Exit and Voice in mutual funds. *Journal of Asset Management*, 25(2):147–161.

Appendix - Measurement issues of CSP

Several studies use aggregate ESG scores (e.g. Dyck et al., 2019, Barko et al, 2022). However,

- Scores aggregate disclosure, processes and outcome indicators,
- Ratings from different providers diverge (Berg et al., 2022),
- The underlying methodologies are often not publicly disclosed.

The few studies which focus on corporate climate performance typically use a $\frac{Scope1\&2}{Revenue/Assets}$ metric (e.g. Rohleder et al, 2022). However,

- In several hard to abate sectors, Scope 3 emissions are significant,
- Financial metrics used in the denominator are volatile,
- Historical intensities aren't forward-looking. Back

Appendix - CA100 companies

Airbus	Exxon Mobil	Petrochina	Anglo American
Arcelor Mittal	BASF	Berkshire Hathaway	BHP
Boeing	BP	Canadian Natural Resources	Caterpillar
Centrica	Chevron	China Shenhua Energy	CNOOC
Coal India	ConocoPhillips	Cummins	Daikin Industries
Dow	Duke Energy	E.ON	Ecopetrol
EDF	Enel	Eneos	Engie
Eni	Equinor	Exelon	Fiat Chrysler
Ford	Formosa Petrochemical	Gazprom	General Electric
General Motors	Glencore	Hitachi	Holcim
Honda	Hon Hai Precision Industry	Imperial Oil	International Paper
KEPCO	Lockheed Martin	Lukoil	LyondellBasell Industries
Marathon Petroleum	Martin Marietta Materials	Naturgy Energy	Nestle
Nippon Steel	Nissan	Nornickel	NTPC
Oil & Natural Gas	OMV	PACCAR	Panasonic
Pepsico	Petrobras	Phillips	Phillips 66
Posco	Procter & Gamble	PTT	Raytheon Technologies
Reliance Industries	Repsol	Rio Tinto	Rolls-Royce
Rosneft Oil	SAIC motor	Sasol	Shell
Siemens	Sinopec	SK Innovation	Southern Company
Suncor Energy	Suzuki	Teck Resources	ThyssenKrupp
Toray Industries	TotalEnergies	Toyota	Trane Technologies
Vale	Valero Energy	Vedanta	Volkswagen
Volvo	Petrochina	Exxon Mobil	Petrobras

Table 3: List of CA100 companies as of April 2023.

Appendix - + **companies**

ADBRI	Eskom	Saudi Aramco
AES	Firstenergy	Severstal
AGL Energy	Fortum	Siemens Energy
Air France KLM	Groupe PSA	South32
Air Liquide	Grupo Argos	Souther Copper
American Airlines	Grupo Mexico	SSAB
American Electric Power	HeidelbergCement	SSE
ANTAM	Iberdrola	St Gobain
Bluescope Steel	Incitec Pivot	Stellantis NV
BMW	Kinder Morgan	Suzano
Boral	National Grid	TC Energy
Bumi	NextEra Energy	UltraTech Cement
Bunge	NovaTek	Unilever
Cemex	NRG Energy	Uniper
CEZ	Occidental Petroleum	United Continental
China Steel	Oil Search	United Tractors
Coca-Cola	Orica	Vistra Energy
Colgate-Palmolive	Origin Energy	Walmart
CRH	Pemex	WEC Energy Group
Daimler	PGE	Wesfarmer
Dangote Cement	Power Assets	Weyerhaeuser
Danone	PPL	Williams
Delta Air Lines	Qantas	Woodside Petroleum
Devon Energy	Renault	Woolworths
Dominion Energy	RWE	XCEL Energy
Enbridge	Santos	Back

Table 4: List of '+ companies' as of April 2023.

Nikolaus Hastreiter

Appendix - Climate-BERT-TCFD

- Define baseline universe for the counterfactuals
 - \rightarrow TPI universe 580 companies
 - Large listed companies
 - Considerable carbon footprints
 - Same sectors as CA100+ companies
- I manually download companies' ARs from 2014 to 2022
- I extract raw text from PDFs, split into paragraphs and analyse with ClimateBERT-TCFD.

Appendix - ClimateBERT-TCFD descr. statistics

Nikolaus Hastreiter

Appendix - TCFD - First-Differences

	Climate	Governance	Strategy	Risk	Metrics & targets
(Intercept)	2.48*	0.60**	1.38	0.32**	0.17
	(1.14)	(0.22)	(0.83)	(0.11)	(0.31)
CA100+	2.21	-0.18	1.85	0.08	0.46
	(2.41)	(0.47)	(1.75)	(0.24)	(0.65)
Num. obs.	84	84	84	84	84
R ²	0.01	0.00	0.01	0.00	0.01
Adj. R ²	-0.00	-0.01	0.00	-0.01	-0.01

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 5: First-Differences analysis on climate-related and TCFD reporting, comparing the CA100 to Non-CA100+ companies.

Appendix - TCFD - First-Differences - CA100

	Climate	Governance	Strategy	Risk	Metrics & targets
(Intercept)	2.73**	0.70*	1.39	0.40***	0.24
	(1.03)	(0.27)	(0.78)	(0.11)	(0.30)
CA100+	0.63	0.13	0.18	0.17	0.15
	(2.17)	(0.57)	(1.65)	(0.23)	(0.63)
Num. obs.	84	84	84	84	84
R ²	0.00	0.00	0.00	0.01	0.00
Adj. R ²	-0.01	-0.01	-0.01	-0.01	-0.01

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 6: First-Differences analysis on climate-related and TCFD reporting, comparing the Plus to Non-CA100+ companies.

Appendix - Matching TCFD - Plus

Figure 9: Pre- and post-treatment trends on climate-related reporting, all sectors after matching.

Nikolaus Hastreiter

Appendix - TCFD - TWFE DiD - CA100

	Climate	Governance	Strategy	Risk	Metrics & Targets
CA100+	0.64	-0.31	0.43	0.06	0.78
	(1.49)	(0.45)	(1.06)	(0.15)	(0.51)
Num. obs.	513	513	513	513	513
R ²	0.78	0.33	0.77	0.57	0.81
Adj. R ²	0.75	0.23	0.74	0.51	0.79

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 7: DiD analysis on TCFD reporting, comparing the CA100 to Non-CA100+ companies.

Appendix - TCFD - TWFE DiD - Plus

	Climate	Governance	Strategy	Risk	Metrics & Targets
CA100+	-1.49 (1.30)	-0.01 (0.46)	-1.56 (0.96)	0.10 (0.13)	0.11 (0.43)
Num. obs.	513	513	513	513	513
Adj. R ²	0.79	0.24	0.75	0.55	0.80

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 8: DiD analysis on TCFD reporting, comparing the Plus to Non-CA100+ companies.

Appendix - Historical CI - First-Differences

	CA100	Plus List
(Intercept)	-0.18***	-0.18***
	(0.03)	(0.04)
CA100+	0.04	-0.08
	(0.06)	(0.08)
Num. obs.	139	127
R^2	0.00	0.01
Adj. R ²	-0.00	-0.00

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 9: First-Differences analysis on historical carbon intensities (in z-scores), comparing the CA100 and Plus to Non-CA100+ companies.

Appendix - Historical CI - Matching

Figure 10: Pre- and post-treatment trends across CA100, Plus and Non-CA100+ companies for historical carbon emission across all sectors.

Appendix - Historical CI - TWFE DiD

	CA100	Plus List
CA100+	0.06 (0.07)	0.05 (0.09)
Num. obs. R ² Adj. R ²	798 0.95 0.94	690 0.93 0.92

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 10: DiD conducted on historical carbon intensities for the CA100 and Plus companies across all sectors.

Appendix - CDP - First-Differences

	CA100	Plus List
CA100+	-0.10** (0.04)	-0.07 (0.04)
Num. obs.	316	290
R ²	0.02	0.01
Adj. R ²	0.02	0.00

****p < 0.001; ***p < 0.01; *p < 0.05; p < 0.1

Table 11: First-Differences analysis on reporting to CDP, comparing the CA100and Plus to Non-CA100+ companies.

Appendix - CI disclosure - First-Differences

	CA100	Plus List
CA100+	-0.12* (0.05)	-0.1 (0.05)
Num. obs. R ² Adj. R ²	214 0.03 0.02	203 0.02 0.01

*** p < 0.001; ** p < 0.01; *p < 0.05; p < 0.1

Table 12: First-Differences analysis on the years with reported carbon intensities (%), comparing the CA100 and Plus to Non-CA100+ companies.

Appendix - Targets with CCPI - DiD - CA100

	TY: 2025	TY: 2035	TY: 2050
CA100+	0.09	0.13	0.04
	(0.09)	(0.13)	(0.23)
CCPI	-0.00	-0.00	-0.00
	(0.00)	(0.00)	(0.01)
R ²	0.91	0.78	0.61
Adj. R ²	0.90	0.75	0.55
Num. obs.	766	852	852

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

 Table 13: DiD on target setting, including CCPI country scores, CA100

 compared to Non-CA100+ (z-scores)

Appendix - Targets with CCPI - DiD - Plus

	TY: 2025	TY: 2035	TY: 2050
CA100+	-0.14	-0.49*	-1.00*
	(0.11)	(0.21)	(0.46)
CCPI	-0.00	-0.01	-0.01
	(0.00)	(0.01)	(0.01)
R ²	0.86	0.71	0.56
Adj. R ²	0.84	0.66	0.49
Num. obs.	695	779	779

****p < 0.001; ***p < 0.01; *p < 0.05; 'p < 0.1

Table 14: DiD on target setting, including CCPI country scores, Plus comparedto Non-CA100+ (z-scores)

Appendix - Matching results - within sectors

Sector	CA100	Plus	Non-CA100+	Total
Electricity	9	15	24	48
Autos	9	4	13	26
Oil and gas	9	NA	9	18
Cement	1	3	4	8
Steel	4	3	7	14
Total	32	25	57	114

 Table 15: Sample size by company group and sector after matching on pre-trends within sectors.

Appendix - Matching results - Electricity

Figure 11: Matching results, Electricity - gCO2/MWh)

Appendix - TWFE DiD - Electricity - CA100

	TY: 2025	TY: 2035	TY: 2050
CA100+	-0.02	-0.01	-0.00
	(0.03)	(0.04)	(0.05)
R ²	0.88	0.81	0.72
Adj. R ²	0.86	0.78	0.67
Num. obs.	275	275	275

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 16: DiD, CA100 compared to Non-CA100+, electricity sector.

Appendix - TWFE DiD - Electricity - Plus

	TY: 2025	TY: 2035	TY: 2050
CA100+	-0.02	-0.07*	-0.10**
	(0.02)	(0.03)	(0.04)
R ²	0.87	0.78	0.71
Adj. R ²	0.84	0.74	0.66
Num. obs.	338	338	338

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 17: DiD, Plus compared to Non-CA100+, electricity sector.

Appendix - Event study TY2025 - Electricity

Appendix - Event study TY2035 - Electricity

Appendix - Event study TY2050 - Electricity

Appendix - Matching results - Autos

Figure 15: Matching results, Autos - gCO2/km)

Appendix - TWFE DiD - Autos - CA100

	TY: 2025	TY: 2035	TY: 2050
CA100+	6.85	-1.43	-17.90
	(4.26)	(7.21)	(11.91)
R ²	0.96	0.92	0.86
Adj. R ²	0.96	-0.90	0.83
Num. obs.	175	175	175

****p < 0.001; ***p < 0.01; *p < 0.05; ·p < 0.1

Table 18: DiD, CA100 compared to Non-CA100+, automotive sector.

Appendix - TWFE DiD - Autos - Plus

TY: 2025	TY: 2035	TY: 2050
-1.93	-28.59***	-36.75**
(4.78)	(8.00)	(12.42)
0.97	0.94	0.89
0.97	0.93	0.87
135	135	135
	TY: 2025 -1.93 (4.78) 0.97 0.97 135	TY: 2025TY: 2035-1.93-28.59***(4.78)(8.00)0.970.940.970.93135135

****p < 0.001; ***p < 0.01; *p < 0.05; ·p < 0.1

Table 19: DiD, Plus compared to Non-CA100+, automotive sector.

Appendix - Event study TY2025 - Autos

Appendix - Event study TY2035 - Autos

Appendix - Event study TY2050 - Autos

Back