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Abstract

I study the environmental impacts of the US monetary policy shock using air
pollution records from satellite images. An unexpected tightening reduces output
but increases air pollution. The puzzle is explained by a clean investment chan-
nel: An increase in firm financing costs hinders clean investment and subsequently
increases pollution. The channel has emerged since the global financial crisis. Con-
sistently, the pollution increase after a tightening coincides with the decreasing
renewable energy ratio, and is stronger for cleaner firms and states. Regarding
environmental amenities in consumer welfare, the optimal monetary policy should
coordinate with fiscal policy to control inflation with a moderate environmental
impact.
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1 Introduction

While the central bank’s main target is stabilizing inflation, its environmental impact can

be substantial. Economic activities, dependent on the financing cost, produce environ-

mental impacts, such as air pollution and carbon emissions. As environmental impact

is gradually incorporated into economic sustainability measurement, it is increasingly

important in policy evaluation. The environmental impact of fiscal policy, including

carbon emission policy, has been well studied (Annicchiarico & Di Dio, 2015; Fischer &

Springborn, 2011; Heutel, 2012). However, the environmental impact of monetary policy,

the other pillar in the macroeconomic policy analysis, remains relatively underexplored

(Annicchiarico & Di Dio, 2017; Attílio et al., 2023).

The central bank adjusts monetary policy to moderate economic and financial con-

ditions, subsequently impacting the environment. When the targeted interest rate in-

creases, it passes to firms’ cost of capital (Fornaro et al., 2024; Lee et al., 2021), interfering

with their investment decisions (Hartzmark & Shue, 2023). Potentially, monetary policy

impacts air pollution through its impact on economic activities. During the transition to

a greener economy, as the global economy aims, a higher capital cost places barriers to

clean investment (Hirth & Steckel, 2016; Steckel & Jakob, 2018; Zhang et al., 2023). The

high capital cost eventually slows down the energy transition and the pollution reduction

path. In this paper, I study the direction and magnitude of the impact of monetary pol-

icy on air pollution. Then, I search for potential channels through which the monetary

policy impacts air pollution.

The environment amenity is increasingly important in measuring consumer welfare.

As material consumption increases after centuries of globalization, its marginal welfare

improvement gradually declines relative to the environment. The decline accelerates

due to increased air pollution after the expansion of global industrial production, which

worsens air quality. Toxic air pollutants are detrimental to human health (R. A. Liu et al.,

2022). If the ultimate target of macroeconomic policies, including the monetary policy
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aiming at inflation stabilization, is consumer welfare maximization (Khan et al., 2003),

they should place a weight on environmental concerns. The weight should increase with

an increasingly global economy. In this paper, I incorporate environmental amenities into

consumer welfare. Then, I study the optimal central bank response and compare it with

the policy without incorporating the environmental impacts.

I measure air pollution using geospatial data and monitoring station data. While

previous studies on air pollution tend to use the latter, they are subject to issues such

as availability, measurement standards, and weighting in aggregation (Burney, 2020; Fan

et al., 2023). Firstly, monitoring stations are not available in many places, such as

the desert area, where city pollution can spill. The stations are also less established

in developing countries. Secondly, the measurement standards vary between monitoring

stations, as different stations use devices with potentially different accuracy and capturing

standards. The issue is critical in cross-regional or cross-country analysis. Thirdly, when

aggregating the results from station level to city level or state level, the weight assigned

to each station is by discretion. Due to these issues, I adapt the geospatial data of air

pollution, which are globally available, under unique measurement, and scalable.

The aggregated clean investment data are available for the US as collected by the

Clean Investment Monitor. It is the only national-level dataset on all clean investments

and provides the dynamics of clean investment for each subcategory, such as retail and

manufacturing. The dataset enables me to identify the channel from financing cost to

clean investment, which subsequently impacts air pollution by developing and implement-

ing clean technology.

To connect macroeconomic dynamics with organizational behavior, I also use the

Environmental, Social, and Governance (ESG) data of listed firms in the US. These data

support the channel starting from monetary tightening. A higher interest rate increases

firms’ capital costs, whereas cleaner firms with more green investment are more impacted,

slowing down the implementation of clean technology and increasing air pollution.
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In this study, I firstly test monetary policy’s impact on air pollution and economic

activity. Air pollution is identified by applying a Principal Component Analysis (PCA)

on a list of key air pollutants used to construct the Air Quality Index (AQI). Monetary

policy is identified using the MP1 of Jarocinski shocks, which represents conventional

monetary policy. I apply the Local Projection (LP) and the Smooth Local Projection

(SLP) methods to the change in air pollution depending on the monetary policy shock

(MPs). Surprisingly, after the Federal Fund Rate (FFR) increases, output declines, but

air pollution increases. Intuitively, air pollution should co-move with output, as it is

proportional to industrial activities.

To investigate the seemingly counterintuitive diverting responses by air pollution and

output, I check the clean investment response to MPs and the air pollution response

to clean investment. I apply the LP method with Instrumental Variable (IV), where

the change in air pollution depends on clean investment with MPs as IV. I find that

clean investment declines following a tightening, and air pollution increases with the

clean investment decline, suggesting that clean investment is channeling the monetary

policy’s role in air pollution. To test the channel, I also check the changes in stock indices

and energy usage after the tightening, and their responses are consistent with the clean

investment channel. As a further step, I use firm data and find that the firm capital cost

increases following a tightening. More environmentally friendly firms are more sensitive

to tightening regarding capital cost change, exit probability, and firm-level pollution.

Additionally, I take advantage of the geospatial pollution data to examine air pollution

responses to MPs at the state and mesh levels. I find that air pollution increases more in

places with a more stringent environment-related credit policy and a higher clean energy

dependency ratio. All empirical findings imply that the clean investment channel drives

the diverted responses to MPs by air pollution and output.

Based on the empirical findings, I find the optimal monetary policy to maximize

consumer welfare after a MPs. I set up an Environmental Dynamic Stochastic General

Equilibrium (E-DSGE) model with two types of capital: traditional and environmen-
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tal. Traditional capital works like capital in classic DSGE models, boosting production.

Environmental capital reduces air pollution per unit of output, as pollution reduction

technology improves with clean investment. I also incorporate a fiscal policy with a

pollution tax imposed on firms’ pollution. Both firms and the government invest in en-

vironmental capital. I estimate novel parameters in the model, which do not appear in

previous E-DSGE models, by minimizing the absolute values of IRF distance between the

model and the baseline SLP. I also use the Bayesian estimate to check the distribution

of the parameters of interest. The estimated optimal policy positively responds to air

pollution. For a better stabilizing effect, it needs to coordinate with a fiscal policy that

levies the pollution tax rate after the pollution increases following a MPs.

1.1 Literature

The study is related to three stands of literature. Firstly, monetary policy impacts the

real economy, and optimal monetary policy has been empirically tested to follow a linear

rule. Monetary policy impacts the output (Camara et al., 2024; Kolasa & Wesołowski,

2020; Rossi & Zubairy, 2011) and financial markets (Gürkaynak et al., 2022; Lakdawala

et al., 2021; Miranda-Agrippino & Rey, 2020). These impacts subsequently pass to

investment activities (Christiano et al., 2005; Tenreyro & Thwaites, 2016), which depend

on financing costs and aggregated economic activity. Previous empirical findings suggest

that the optimal interest rate follows a Taylor rule (Coibion & Gorodnichenko, 2011;

Woodford, 2001), where the interest rate is linear to inflation (Khan et al., 2003) or

price (Gorodnichenko & Shapiro, 2007). The rule also dictates that the interest rate

positively responds to the output gap (Coibion & Gorodnichenko, 2012) so that the output

fluctuates less, leading to less fluctuation in consumption. For the central bank, targeting

a specified inflation rate and output gap is to maximize consumer welfare through price

stability. My paper contributes to the literature by studying the impact of monetary

policy on air pollution, a growingly important determinant of consumer welfare. Based on

the main empirical findings, I incorporate pollution targeting into the optimal monetary

policy rule to improve its optimality in maximizing consumer welfare.
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Secondly, the impact of the interest rate on air pollution is closely related to green

finance. Monetary policy has a substantial impact on the green financial market (Lupu

et al., 2024), including both equity (Gordo et al., 2024) and debt (Tufail et al., 2024).

It also impacts clean energy use regarding both production (Chen & Lin, 2024) and

consumption (Hashmi et al., 2022), as an increase in FFR reduces clean energy use and

subsequently increases pollution. The interest hike potentially passes to firms’ cost of

capital (Lee et al., 2021), which is important since clean energy investment is capital

intensive (Creutzig et al., 2017; Fornaro et al., 2024; Hirth et al., 2015; International

Energy Agency, 2021). Environmental modeling suggests that capital cost impacts clean

energy deployment (Hirth & Steckel, 2016; Steckel & Jakob, 2018). When clean energy

deployment activities decline, air pollution increases, as measured by firm-level carbon

dioxide (CO2) and its equivalent (Hartzmark & Shue, 2023). Previous studies have

identified the impact of monetary policy on carbon emissions through investment in

photovoltaics (PV) in several Asian economies (Zhang et al., 2023). My paper contributes

to the literature by focusing on a comprehensive list of air pollutants. They are more

detrimental to human health than CO2, which is usually used to measure pollution in

the previous literature. The focus on toxic air pollutants increases the relevance of my

empirical findings to consumer welfare regarding environmental amenities. I also identify

the decomposed channel from monetary policy to firms’ cost of capital, subsequently

clean investment, and finally air pollution.

Thirdly, the impact of environmental policy, while typically a microeconomic concern,

is gradually drawing the attention of macroeconomics. Output tends to co-move with

carbon emission (Attílio et al., 2023; Halkos & Paizanos, 2015; Mughal et al., 2021;

Ullah et al., 2021). However, its correlation with other air pollutants is less clear, and

the mechanism is more complicated (Clay et al., 2021; R. A. Liu et al., 2022; Shukla

et al., 2022). Compared to CO2, toxic air pollutants, such as PM2.5, tend to die out

soon when exposed to the air, and their spatial spillovers are limited. Therefore, their

dynamics can be better measures to adopt clean technology, especially at the regional

level. The environmental amenity first appeared in the consumer utility function in
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Roback (1982), and was later incorporated into macroeconomic analysis as a pollution-

in-utility function from the consumer side (Angelopoulos et al., 2013). The E-DSGE is

based on the macroeconomic DSGE framework and introduces concepts in the Integrated

Assessment Model (IAM) (Drudi et al., 2021), such as the negative impact of pollution on

output. E-DSGE has been used to evaluate different fiscal policy regimes, such as carbon

tax, quota, and intensity targets (Chan, 2020; Fischer & Springborn, 2011; Heutel, 2012).

It has also been used to study the impact of coordination between fiscal and monetary

policies (Annicchiarico & Di Dio, 2015, 2017), where constraints and trade-offs exist.

My paper contributes to the literature by differentiating between traditional (brown)

and environmental (green) capital in E-DSGE. I also endogenize pollution abatement

technology as it is improved by investing in environmental capital. With my model

setting, I analyze the welfare of monetary policy by incorporating air pollution, which is

increasingly important in determining consumer welfare. I find the optimal coordination

between fiscal and monetary policies to maximize consumer welfare.

The rest of the paper is as follows. Section 2 introduces the data used in the study

and shows several stylized facts. Section 3 presents the baseline identification and finding.

Section 4 identifies the clean investment channel as the mechanism of the baseline finding

with empirical evidence at the national, firm, and regional levels. Section 5 proposes

the E-DSGE model based on empirical findings and quantitatively identifies the optimal

monetary policy. Section 6 extends the empirical findings globally to test the spillover of

US monetary policy. Section 7 concludes.

2 Data and Measurements

This section describes the datasets used in the study. Firstly, I introduce the pollution

data, including the geospatial data and the way of aggregation. Secondly, I present the

exogenous monetary policy shocks (MPs). Thirdly, I explain official national accounts

used in the main findings. Lastly, I display supplementary data, such as firm data and

financial market indicators used to support the main findings.

6



2.1 Pollution

The air pollution geospatial data are from CAMS global reanalysis (EAC4) by the

ECMWF global reanalysis of atmospheric composition.1 The dataset has been validated

and used in geographic studies (Inness et al., 2019; Z. Liu & Lu, 2024; Tang et al., 2021;

Vazquez Santiago et al., 2024). The sample period starts from 2003 with frequency up to

every three hours. The spatial resolution is 0.75 degrees (about 75 km at the equator),

rendering each mesh (cell) approximately a 75km-by-75km square. The US contains 2,344

meshes. The mesh size is sufficiently accurate for identifying the pollution dynamics at

the state level. For each pollutant, I take the population-weighted sum of the recorded

amount in each cell that stays within or touches the state boundary. The summarized

value is the amount of the pollutant in the state.2.

Previously, economic studies tend to use monitoring station data to track the air

pollution dynamics. For the US, the most widely used dataset is from the Environmental

Protection Agency (USEPA, or EPA).3 Table A.3 shows an example of selected PM2.5

data. However, their data are subject to three critical issues: Firstly, the dataset is not

available everywhere. Secondly, the measurement standards differ by station, as rows

5 and 6 of the table record values substantially differ by measurement method at the

same station. The values also substantially differ at the same station even when the

method is identical, as shown by rows 1 and 2 or 3 and 4. Thirdly, when aggregating

to the state level, the weight of each station is subject to discretion,4 and the recorded

values at different stations (such as the station of the first two rows and the second two

rows) can substantially differ. Comparing with monitoring station data, the geospatial

dataset is globally available, applies the same accounting standard across regions, and

automatically guarantees an unbiased aggregation. Therefore, I adopt geospatial data
1The dataset is publicly available on the website of Atmosphere Monitoring Service at coperni-

cus.eu.
2For more details about the method I use to aggregate the meshes to the country or state levels,

see Appendix A.2
3For China, a web-scraping-based dataset is publicly available at quotsoft-dot-net.
4A generally used weighting method to weight each station in an aggregated region is to firstly

find the geographic center of the region, then assign each station a weight inversely proportional to the
distance between the geographic center and the station.
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to measure aggregated pollution dynamics at national and state levels. I also use the

monitoring station data as a robustness check.

Based on constructing an air quality index (AQI) by air monitoring stations such as

the USEPA, I apply the PCA to a list of indicators. The six components I use include

PM10, PM2.5, total carbon monoxide (CO), total nitrogen dioxide (NO2), total ozone

(O3), and total sulfur dioxide (SO2), consistent with the components of AQI. I apply

the PCA on the monthly time series of each component, then extract the first principal

component (PC1) as the pollution indicator.5 PC1 explains more than 90 percent of the

total variations of the six components and is, therefore, a reasonable proxy of air quality.

The coefficients of all pollutants in PC1 are overwhelmingly positive, except O3, which

is negatively correlated with NO2 (Almond et al., 2021). For each pollutant, I apply

seasonal adjustment on the aggregated time series using ARIMA-13-SEATS before the

PCA.6

The dynamics of US pollution (PC1) is in Figure 1. As shown by the HP-filtered

trend, pollution has experienced continuous decline since the early 2000s and continues

to decline after the Global Financial Crisis (GFC). The Quantitative Easing (QE) period

after the GFC and before late 2014 corresponds to a remarkable decline in pollution.

The declining trend temporarily paused in 2017, when the US withdrew from the Paris

Agreement.
5For the detailed description of the method and the PCA statistics, see Appendix A.2.
6The application is available using the R function seasonal::seas. For time series with frequen-

cies higher than monthly, the R function dsa::dsa is useful.
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Figure 1: US Pollution Dynamics

Notes: The “Original” series is the seasonally adjusted time series. For the “Filtered” series, the

lambda parameter of the HP filter is 14,400. The gray rectangle represents the period from De-

cember 2007 to June 2009, corresponding to the Global Financial Crisis (GFC). The dash lines

represent the dates 2014/10/29, 2020/03/15, and 2022/03/09, corresponding to Fed policy regime

changes.

2.2 Monetary Policy Shock

The baseline monetary policy shock (MPs) used in the study is extracted from 30-minute

high-frequency changes in federal fund rates around the Federal Open Market Committee

(FOMC) meetings, which captures the unexpected part of interest rate changes.7 FOMC

meetings are usually held on average 8 times each year. We focus on the meetings from

2003 to 2023, as the pollution data start from 2003. 181 FOMC meetings were held

during the selected period, and the extracted baseline MPs (MP1) is shown in Figure 2.
7The data are from the personal website of Marek Jarocinski.
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Figure 2: Proxies of Monetary Policy Shock: Baseline

Notes: For each MPs event, the corresponding date is the day when the FOMC is held.

2.3 Other Data

To support my main findings, I also use national account records from the US and other

countries, firm data, financial market data, power plant data, carbon emission data,

weather data, population density data, and nighttime light (NTL) data. For more details,

see Appendix A.3.

The summary statistics of the monthly panel data I use are in Table A.1,8 and the

summary statistics of the quarterly panel data I use are in Table A.2.

3 Responses to Shock

I adopt the local projection (LP, Jordà, 2005) method to study the effects of monetary

policy on pollution. The method enables the event-study approach to identify the impact

of monetary shock in the presence of confounding factors (Jarociński, 2024; Swanson,

2021). Specifically, I apply the following regression equation.

yt+h − yt−1 =

Q∑
q=1

ϕ(h)
q ∆yt−q +

M∑
m=0

β(h)
m xt−m +

R∑
r=1

γ(h)r Wt−r + ut+h|t (1)

8For GDP, I convert the quarterly series to monthly through the MATLAB function interp1,
which applies linear interpolation on missing data points.
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where yt is pollution, GDP, or CPI in month t, ∆yt is the change of y in month t relative to

month t−1, x is the high-frequency FFR shock around the FOMC announcement.9 I use

AIC criteria to choose the lags of pollution and the shocks. In the extended specifications,

I add the control W (including changes in other dependent variables in the LP setting).

To deal with the turbulence frequently encountered when entering alternative data in

LP, I implement the smooth local projection (SLP, Barnichon and Brownlees, 2019) as

the baseline identification.

Applying the equation for h = 0, · · · , H, the IRF is obtained from {β(0)
0 , · · · , β(H)

0 }.

I look up to H = 30 months, or 2.5 years. The IRF of the baseline SLP regressions is

shown in Figure 3. After a one-unit conventional MPs, output drops by 0.19 log points

at its peak 10 months after the shock. Pollution increases by 0.62 log point at its peak

25 months after the shock.10

Month
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-0.3

-0.2

-0.1

0

0.1

0.2
GDP

0 10 20 30

-0.5

0

0.5

1
Pollution

Figure 3: Pollution Response to MPs, Baseline (GDP and Pollution)

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on

the Newey-West standard errors.

The result is surprising: After the monetary tightening, output declines but pollution
9I only study the effects of conventional monetary policy in the baseline. The comparison with

unconventional monetary policy will be discussed later.
10The MP1 shock used here has a period-wise standard deviation of 0.072, or monthly standard

deviation of about 0.05.
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increases. Intuitively, air pollution should co-move with output, as it positively correlates

with economic activities (Clay et al., 2021). The mechanism behind the diverging paths

of output and pollution after tightening remains to be solved.

3.1 Robustness

From the deviating paths of output and pollution, the first check to look at is the change

in pollution per unit of output by the MPs. If clean investment decreases following a

tightening, pollution per unit of output should increase, as shown in Figure 4. The effect

turns significantly positive 12 months after the MPs before gradually growing, implying

a lagged response of pollution to monetary policy and investment activities.

0 5 10 15 20 25 30

Month

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4: Pollution per Unit of GDP Response to MPs

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on

the Newey-West standard errors.

To address the potential issues caused by the arbitrary PCA, I look at the responses to

the tightening by different pollutants. The IRF to MPs for each pollutant predominantly

explained by the first component from the the PCA is in Figure 5. All the pollutants

increase after tightening.
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Figure 5: Pollution Response to MPs, by Pollutant

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on

the Newey-West standard errors.

I also investigate the time-varying pollution responses to MPs. I divide the sample

into three periods: before GFC, post-GFC and before the withdrawal from the Paris

Agreement, and since the withdrawal. The IRF results for each period are in Figure 6.

The positive response, especially the long-term positive response, is driven by the last

period. The period before the GFC shows an overall negative response, as pollution co-

moves with output and does not depend on clean investment. The different responses

across the three periods are consistent with the recent surge in clean investment, when

clean investment in the US has become the new general trend.
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Figure 6: Pollution Response to MPs, by Period

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on

the Newey-West standard errors.

The baseline result is robust to other checks. (1) The responses remain qualitatively

the same with the minimum delay assumption, as shown in Figure B.1. (2) Extending

the IRF horizon to longer periods (60 months, or 5 years), the positive pollution response

stays, as shown in Figure B.2. (3) By assuming that there are no lagged responses in MPs

and only one lagged period of pollution, the results remain, as shown in Figure B.3. (4)

Using the LP-IV identification with endogenous FFR and MPs as IV, the result qualita-

tively remains, as shown in Figure B.4. (5) By replacing GDP with industrial production

(IP), which is available monthly, as the proxy of output, the result still holds, as shown

in Figure B.5. (6) The pollution responses to the MPs are positive to the sign of the

MPs when the shock is either positive or negative, as shown in Figure B.6. (7) Pollution

is potentially determined by the weather conditions regardless of economic activities. To

exclude this potential channel, I control for the average monthly temperature, and the

result remains qualitatively unchanged after adding the control, as shown in Figure B.7.

(8) I test for the potential pretrend of the pollution before the shock, and I do not find

any significant pretrend, as shown in Figure B.8. (9) The responses potentially differ

across periods, as the mechanism of monetary transmission changes in a low-interest
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environment. However, I find positive pollution responses to be universal in both QE

and non-QE periods, as shown in Figure B.9, and in both ZLB binding and non-binding

periods, as shown in Figure B.10. (10) When I change the Jarocinski MP1 response to

other conventional MPs, the positive response remains, as shown in the upper half of

Figure B.11. However, the positive response does not apply to unconventional MPs, as

shown in the lower half, suggesting that the environmental impact of MPs is transmitted

only through conventional monetary policy. (11) By applying the PCA analysis to the

aggregated pollution of all countries instead of the US itself, the result does not quali-

tatively change, as shown in Figure B.12. (12) Using weekly pollution series, pollution

response to MPs remains positive, as shown in Figure B.13. (13) Using quarterly pollution

series aggregated from the monthly series, pollution response to MPs remains positive, as

shown in Figure B.14. (14) Using the pollution series from the EPA monitor station data

with the same PCA method as in the baseline, the long-term positive pollution response

remains significant and substantial, as shown in Figure B.15. (15) Adding the second

principal component (PC2) in the PCA to the baseline LP, the baseline results do not

qualitatively change, as shown in Figure B.16. (16) The positive pollution response to

MPs holds not only for the US but also for the EU (Figure B.17) and Japan (Figure B.18).

In both cases, the pollution only positively responds to domestic MPs instead of the US

shock, suggesting the channel to be predominantly domestic.

4 Clean Investment Channel

In this section, I illustrate that the baseline finding is consistent with a clean investment

channel. Firstly, investment declines after tightening, especially clean investments that

impact air pollution. Secondly, the use of renewable energy declines in the long run,

suggesting less adoption of clean technology during the transition phase. Thirdly, firm-

level evidence suggests that cleaner firms are more sensitive, more likely to exit, and have

more pollution increase after tightening. Finally, regional analysis implies that places

with lower green premiums and higher clean energy dependency have more pollution
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increase after a tightening. All these findings support the channel, and the connection of

the steps is illustrated in the flowchart in Figure 7.
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1Figure 7: Flowchart of the Mechanism

4.1 Clean vs Non-clean Investment

Monetary policy impacts the economy through the interest rate, which directly affects

investment activities, including clean investment. Since the end of the GFC, the Fed has

started three rounds of Quantitative Easing (QE) to stimulate the economy, exposing the

economy to a low-interest rate environment. Such an environment boosts investment,

particularly capital-intensive clean investment. As shown in Figure 8, FFR stayed close

to zero after the GFC until the end of 2014, when US exited the QE. Firms’ cost of capital

declined concurrently, implying the transmission from low FFR to low firm capital cost.

The low FFR and capital cost are accompanied by an increase in clean energy share,

defined as the percentage of clean energy capacity among newly commissioned power

plants.11 Intuitively, the low-interest environment nurtures clean investment, boosting

the use of clean energy.
11Clean energy includes biomass, geothermal, hydropower, nuclear, solar and wind. Non-clean en-

ergy includes coal, oil and gas.
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Figure 8: FFR, Cost of Capital, and Clean Energy New Commission Share

Notes: For each year, the ICCA is calculated as the average of all firms in all months. The

gray rectangle represents the period from December 2007 to June 2009, corresponding to the

Global Financial Crisis (GFC). The dash lines represent the dates 2014/10/29, 2020/03/15, and

2022/03/09, corresponding to Fed policy regime changes.

The importance of clean energy started to increase after the GFC. While most newly

opened power plants used non-clean technology before the GFC, the share of clean tech-

nology turned substantial afterward, as shown by the cumulative capacity of newly opened

power plants since 1993 in Figure 9. By 2023, clean technology-based power plants ac-

count for more than a third of the cumulative new capacity, in contrast to less than 5

percent in 2007. The total clean investment also experienced a steady increase through-

out the year, as shown by Figure 10. Air pollution declines during the period, as in

Figure 1. Therefore, the increase in clean energy new commission share is likely driven

by the low interest rate environment and improves air quality.
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Commissioned by Year, US

Notes: The capacity of commission is the

cumulative value since 1993, the beginning of

the sample period.
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US

Notes: Technologies included in each segment

(type) follow the overall investment trends for

the US economy as reported by the Bureau of

Economic Analysis (BEA).

To associate the observed increase in air quality with monetary policy, I firstly look at

the impact of interest rates on clean investment. I use quarterly aggregated investment

data and aggregate monthly MPs to quarters. As shown in Figure 11, among invest-

ments, the sensitivity of clean investment is particularly high to tightening, consistent

with the capital-intensive property of clean investment. Manufacturing clean investment,

which represents clean technology development, and retail clean investment, which rep-

resents clean technology adoption by households and businesses, are particularly slashed

by a tightening. I define investment cleanliness as the ratio of all clean investment over

all investment, and it decreases following as tightening. The results show that clean

investment is highly sensitive to MPs, and the response is quick.
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Figure 11: Clean Investment Response to MPs

Notes: MPs is aggregated to the quarterly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on

the Newey-West standard errors.

Next, I look at the response of air pollution to clean investment. Since the interest

rate is unlikely to affect air quality through ways other than clean investment, and it

drives clean investment, as shown above, I use the exogenous MPs as an IV of clean

investment in the LP of pollution on clean investment. The IRF in Figure 12 shows

that pollution decreases after clean investment increases. Pollution per unit of GDP also

decreases, as shown in Figure C.1. Therefore, tightening discourages clean investment,

which eventually worsens air quality.
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Figure 12: Pollution Response to Clean Investment (IV: MPs)

Notes: MPs is aggregated to the quarterly frequencies consistent with the dependent variable. In

the first stage, the number of lags of the endogenous variable is selected by the AIC criteria for

up to 4 periods. In the second stage, the number of lags of the dependent variable (Q) and the

endogenous variable (M) are selected by the AIC criteria for up to 4 periods. The dashed ribbons

are the 90 percent confidence intervals generated by bootstrapping with 1,000 draws.

The magnitude and time horizon of air pollution response to MPs using the two-stage

LP-IV identification (through endogenous clean investment) roughly match the baseline.

In the baseline, pollution increases by 0.62 log point after a one-unit MPs, and the

peak comes 25 months (8 quarters) after the shock. From the perspective of all clean

investments, investment decreases by 1 log point one quarter after a one-unit MPs, and

pollution increases by about 0.3 log points seven quarters after the investment decline.

From the manufacturing and retail clean investment perspective (Figure C.2), investment

declines by 2 log points three quarters after a one-unit MPs, and pollution increases by

0.4 log points seven quarters after the investment decline.12

The stock market also reflects the decline in clean investment by tightening. I use

daily closed prices of stock market indices and the MPs in corresponding FOMC dates. As

shown in Figure 13, stock market indices fall after tightening, especially indices with clean
12The baseline uses monthly frequency, and the peak response is 0.62 log point, higher than the 0.3

or 0.4 log points implied by LP-IV. However, the monthly peak should be higher than the quarterly
peak, and averaging the responses to quarterly frequency lowers the peak impact. By aggregating the
time series to quarterly with the same specification as the baseline, the peak response turns to about
0.52 log points 8 quarters after the MPs, which matches closer to the magnitude implied by LP-IV.
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investment concepts. For both NASDAQ and S&P 500, the magnitude of the decline is

stronger for the subindices that represent clean investment, including NASDAQ Renew-

able Energy Equipment (RE), NASDAQ Clean Edge Green Energy (CELS), S&P 500

Clean Power, and S&P 500 Cleantech.13 With a forward-looking property, the response

to MPs by clean investment-related equity is stronger than aggregated clean investment

in magnitude, and its results support the clean investment channel.
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Figure 13: Equity Market Response to MPs

Notes: The number of lags of the dependent variable (Q) and the shock (M) are selected by the

AIC criteria for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals gener-

ated based on the Newey-West standard errors.
13NASDAQ RE and NASDAQ CELS indices have been available since early 2015. S&P 500 Kensho

Clean Power and S&P Kensho Cleantech indices have been available since late 2016. Therefore, I sub-
sample these indices to the period since 2016Q4 for data availability and comparability. I also exclude
the period after 2022Q1 to avoid the stock market turbulence since then.
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4.2 Clean Energy Share

If clean investment declines following a tightening, and it impacts air pollution through

clean energy use, the tightening will impact the energy use structure. The traditional and

clean energy usage responses to MPs, as shown in Figure 14, support the channel. Fossil

fuel production increases, while renewable energy (RE) production declines following a

tightening. The decline in renewable energy use aligns with previous literature (Chen

& Lin, 2024; Hashmi et al., 2022). The short-term dynamics are potentially due to the

decline in fossil fuel prices after tightening, as shown in Figure C.3. My new finding is

that the decline in renewable energy use does not recover, implying a long-term structural

change in energy use. Potentially, a tightening slows down the ongoing transition towards

clean energy by raising the cost of clean investment. The energy cleanness worsens as a

result of the lower clean investment.
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Figure 14: Clean Energy Use Response to MPs

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on

the Newey-West standard errors.

4.3 Cleanliness of Firms

The decline in clean investment following a tightening is also supported by firm-level

evidence, and it particularly impacts environmentally friendly firms. The first step for
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the central bank interest rate to impact the firms is to pass to the firms’ capital cost.

For each firm in each month, I use the Analyst-forecast-based Implied Cost of Capital

(ICCA) calculated by Lee et al. (2021), which is suitable for time-series analysis. The

identification is as follows.

ICCAt+h − ICCAt−1 = ϕ(h)∆ICCAt−1 + β(h)xt + ut+h|t (2)

The parameter estimate to look at is β(h).

As shown in Figure 15, the tightening impact passes to capital cost in 8 months,

and its impact continues for another 8 months. The transmission is sufficiently quick to

identify the tightening impact on investment concurrently at an annual frequency, as the

response turns significantly positive within one year.
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Figure 15: ICCA Response to US MPs

Notes: The dashed ribbons are the 90 percent confidence intervals generated based on standard

errors clustered to firm and year.

Moreover, the response to the tightening is more sensitive for environmentally friendlier

firms. I apply the following identification to estimate the heterogeneous effect across

firms’ cleanliness.

ICCAi,t+h−ICCAi,t−1 = ϕ(h)∆ICCAi,t−1+β
(h)
1 si,t−L+β

(h)
2 xtsi,t−L+α

(h)
i +τ

(h)
t +ui,t+h|t (3)

Here, I proxy environmental friendliness by four indices: renewable energy ratio, CO2

equivalent per unit of revenue, emission score, and resource use score. Note that I use
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last year’s indice, si,t−L, for each firm i to exclude potential endogeneity issues. The

interaction terms of MPs and the indices, β2, reflect the sensitivity of firm environmental

friendliness to the response to MPs, and their results are shown in Figure C.4.

The environmentally friendlier firms are more likely to quit after a tightening. I iden-

tify the probability of a listed firm in the US exiting the market as dependent on the cost

of capital interacting with the environmental friendliness indicator, and the interaction

term captures the sensitivity of raising capital cost by environmental friendliness. The

identification is the following logit regression.

log

(
1

1− Pr(Exiti,t)
− 1

)
= β0 + β1si,t + β2xtsi,t + γWi,t + ui,t (4)

Controls, W , include the number of years the firms exist in the market. Using the

logit regression, Table 1 shows that environmentally friendlier firms are more likely to

quit after a tightening. When environmentally friendly firms exit disproportionally after

tightening, existing firms’ average environmental awareness declines, negatively impacting

clean energy adoption and clean investment and, subsequently, air pollution.

Table 1: Firm Exit Probability, Logit Regression

Original Renewable

Energy Ra-

tio

CO2 Equiv-

alent / Rev-

enue

Emission

Score

Resource

Use Score

ICCA 5.8766*** -8.8430 12.3992*** 5.2579*** 4.3996***

(0.2355) (7.1787) (2.1817) (1.3596) (1.4037)

Indicator -1.6283+ 2.1941*** -2.8786*** -2.9768***

(1.1348) (0.6433) (0.4546) (0.4549)

ICCA × Indicator 21.7395** -6.6377+ 5.8759* 8.2521**

(10.1555) (4.5306) (3.4717) (3.4581)

N 70670 6241 19241 34980 34980

AIC 31571 522 1501 4248 4263

Notes: Significance Codes: ***: 0.01, **: 0.05, *: 0.1, +: 0.2.
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Then, I look at firms’ pollution emission responses to a tightening using the following

identifications.

yi,t = βxt + γWi,t + αi + ui,t (5a)

yi,t = β1si,t + β2xtsi,t + αi + τt + ui,t (5b)

Here Equation 5a is the original specification of firm emission to the tightening, and

Equation 5b is used to look at heterogeneous responses across firms’ cleanliness.

From the firm-level emission record, a tightening also degrades air cleanliness, and

the impact is partly through leaving a stronger impact on environmentally friendlier

firms. Using CO2 equivalent (Scope 1 and 2, which includes direct emission) as the

proxy for pollution, a tightening increases pollution, as shown in the first column of

Table 2. The result is in line with Hartzmark and Shue (2023). In the other columns, the

interaction term captures the sensitivity of pollution to environmental friendliness after

the tightening, and the environmentally friendlier firms respond more to the tightening.14

To exclude the impact of potential noise in the firm-level indicators, I replace the

cleanliness indicator with the dummy of whether the cleanliness ranking of the firm is

above the 80th percentile (or below the 20th percentile) and look at the interaction term

of the dummy with the MPs. The results suggest more responses by the cleanest fifth

and fewer responses by the least clean fifth of all firms, as in Table C.1. The results align

with the baseline, suggesting that the firm’s clean investment change is an important

source of the channel from MPs to air pollution.
14I include Year FE as I intend to capture the variation by MPs after controlling for firm and year

fixed effects.
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Table 2: Firm Pollution Responses to MPs and Cleanliness

Original Renewable En-

ergy Ratio

Emission Score Resource Use

Score

MPs 0.3060∗∗

(0.1307)

Indicator 0.0566 0.0187 0.0816

(0.1000) (0.0765) (0.0768)

Indicator × MPs 1.4664∗∗ 1.5413∗ 2.0115∗∗

(0.6344) (0.8016) (0.8583)

Firm FE Yes Yes Yes Yes

Year FE Yes Yes Yes

N 5,093 1,132 4,716 4,716

Adjusted R2 0.9795 0.9771 0.9812 0.9809

Notes: Significance levels are based on Firm standard-errors. For specifications with Year FE, they

are based on Firm and Year standard-errors. Significance Codes: ***: 0.01, **: 0.05, *: 0.1, +:

0.2.

4.4 Cleanliness of Regions

Taking advantage of the geospatial data, I study the heterogeneous pollution responses

across regions. By applying the baseline identification to each mesh, I obtain the IRF for

each mesh. I apply the same equation as Equation 1 to each region i that can be mesh,

and the specification is as follows.

yi,t+h − yi,t−1 =

Q∑
q=1

ϕ
(h)
i,q ∆yi,t−q +

M∑
m=0

β
(h)
i,mxt−m +

R∑
r=1

γ
(h)
i,r Wi,t−r + ui,t+h|t (6)

Then, I take the average of the responses across months, and the map showing the

average response at mesh level is in Figure 16. While the pollution response is pre-

dominantly positive across states, it is driven by the West and the Midwest, which are

characterized by more stringent environmental policies and higher clean energy depen-
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dency compared to other US regions. Most pollution declines come from west Texas,

where traditional energy facilities are concentrated. In California, the strongest pollu-

tion increase comes from the most polluted Greater Los Angeles area, suggesting that

the recorded response is not driven by noise in humanless places. Then, I aggregate the

mesh-level pollution data to state level and obtain the IRF for each state. The map

showing the average response by each state is in Figure C.5.

Figure 16: Average Pollution Response to MPs by Mesh

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. When taking the average across the time horizon from the month the MPs

is realized to 20 months later, insignificant values at a 90 percent confidence level are treated as

zero. If the region has both significantly positive and significantly negative responses, the average

response by the region is interpreted as zero. Extreme values with absolute values greater than

0.25 are winsorized on the map.

Intuitively, in states with more stringent environmental policies, firms invest more

in clean energy, and the green premium, as defined by the difference in capital cost of

environmentally friendly and environmentally hazardous firms, is lower. Consequently,
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firms try to become environmentally friendlier for a lower capital cost, partly by cleaning

up their investment. Therefore, these states are more sensitive to tightening, as clean

investment accounts for a greater share of total investment. To test this hypothesis, I use

the following identification.

yi,t+h − yi,t−1 = β
(h)
1 si,t−L + β

(h)
2 xtsi,t−L + γ(h)Wi,t−1 + α

(h)
i + τ

(h)
t + ui,t+h|t (7)

Here yi,t is pollution in state i in year-month t. xt is MPs in year-month t. si,t is the

regional indicator (e.g., environmental friendliness) in state i in month t.15 W includes

controls, such as weather. α and τ are state and month fixed effects, respectively. To

exclude potential endogeneity, the regional indicator I use in the regression is lagged by

L. I choose the length of the lag as one year in the baseline. The key coefficients to

estimate are β(h)
2 , corresponding to the interaction term.

To look at the impact of environmental friendliness on the pollution response to MPs,

I firstly define the green premium indicator. For each state, I group all firms according to

an environmental indicator, such as the renewable energy usage ratio. The firms ranking

in the top 20 percent are the high-value firms, and those ranking in the bottom 20 percent

are the low-value firms. Then, I calculate the average capital costs of high-value and low-

value firms. Their difference is the green premium. I use the green premium as the

regional indicator in the interaction term identification, and the IRFs of the interaction

term are in Figure 17.16. The interaction term of green premium and MPs is constantly

negative using the renewable energy ratio as the grouping factor, implying that when

a state imposes a more stringent environmental policy, defined as having a lower green

premium, the air pollution response to tightening increases.
15The regional indicators are at annual frequency. Therefore, the value used depends on the year

corresponding to year-month t.
16For each facet in the figure, if the indicator has positive upward polarity for environmental friend-

liness, I color the facet title in green, otherwise I color it in red.
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Figure 17: Pollution Response to Interaction of US MPs and Clean Energy Credit
Support, State level

Notes: The dashed ribbons are the 90 percent confidence intervals generated based on standard

errors clustered to region and year.

Then, I use clean investment share in GDP as the proxy for the environmental friend-

liness indicator. Intuitively, places with higher environmental policy stringiness are more

inclined to clean investments. The IRFs of the interaction terms are in Figure C.6. The

increase in air pollution is stronger in states with a higher clean investment share in GDP,

especially retail clean investment share, suggesting clean investment as a channel for the

pollution response to tightening.

Then, I use the clean energy dependency ratio as the regional indicator. For each

state, the clean energy dependence ratio is the clean energy power plant capacity divided

by the total power plant capacity. The IRFs of the interaction terms are in Figure 18.

The pollution response increases with the share of clean energy and declines with the

dependency on coal, oil and gas. As clean investment, including capital-intensive in-

vestment in clean power plants, is more prominent in states with a higher clean energy
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dependency ratio, tightening has a stronger impact in these states.
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Figure 18: Pollution Response to Interaction of US MPs and Clean Energy New
Commission Share, State level

Notes: The dashed ribbons are the 90 percent confidence intervals generated based on standard

errors clustered to region and year.

As a further step, I directly study the heterogeneous responses at the mesh level. To

match the firms with the meshes, I geocode the location of the address of the headquarters

of each firm and locate the mesh of the location. Then, I calculate the average of the

firm-level indicators (e.g., renewable energy usage ratio) of all firms within each mesh.

As an illustration, the average renewable energy usage ratio at the mesh level is shown

in Figure C.7.

By applying the interaction term identification at the mesh level, the results using the

green premium as the regional indicator are shown in Figure C.8. By including at least

the first-degree neighboring meshes, the results are consistent with my hypothesis that

environmental stringiness induces more clean energy investment and exposes a region

under a higher pollution sensitivity to tightening.17

Likewise, I use the clean energy dependency ratio as the regional indicator at mesh

level. The map showing the cleanliness of power plants within each mesh is in Figure C.9.
17At least the first-degree neighboring meshes should be included when measuring the pollution

impact of a tightening. Assume pollution to be evenly spread across each direction. When the firm is
located in a corner of the mesh, only a quarter of the pollution is recorded within the mesh. Overall,
7
16 of the pollution sourced within a mesh impacts the area outside the mesh.
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The clean power plants are more sparsely distributed than traditional energy-based power

plants. The IRFs of the interaction term between the regional indicator and the MPs are

shown in Figure C.10. In line with state-level findings, places with a higher clean energy

dependency are exposed to more pollution increases after a tightening.

5 Optimal Policy Coordination

In this section, I present the E-DSGE model used to simulate previous empirical find-

ings. Firstly, I quantitatively sketch the agents’ behaviors in the economy, including the

behaviors of households, firms, the government, and the central bank. Secondly, I cali-

brate the model with parameters based on previous literature before estimating the new

parameters using Bayesian estimation. Thirdly, I find the optimal coordination of fiscal

and monetary policies that maximizes consumer welfare after a monetary tightening.

Based on Annicchiarico and Di Dio (2015), I introduce a household utility function

with pollution, two types of capital (clean and traditional), a pollution factor dependent

on environmental capital, and a pollution tax invested in environmental capital. The

model starts with a representative agent whose utility is determined by a composite con-

sumption, cash holding, and labor. The composite consumption consists of consumption

(good) and pollution (bad). The price dynamics follow the New Keynesian framework

with Calvo price adjustment. Capital consists of traditional capital and environmental

capital. Firm factors of production include traditional capital and labor. It produces

goods with pollution, and the pollution factor (intensity per unit of good) depends on

clean technology. Clean technology is improved with environmental capital. The repre-

sentative firm also chooses the abatement effort, where the cost of abatement increases

with the effort, and the pollution declines with the effort. The government charges a

pollution tax on firms proportional to pollution, and invests all the tax income on envi-

ronmental capital. The central bank sets the interest rate following a Taylor rule linearly

dependent on inflation and the output gap. The flowchart of the model is in Figure 19.
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Figure 19: Flowchart of the Model

5.1 Model Setting

5.1.1 Household

The representative household maximizes its utility across periods, V .

max
Ct,Mt,Lt,Bt,It

Vt = Ut + βEtVt+1 (8)

It chooses the good C, cash holding M , labor L, bond holding B, and investment I, in

each period t. The time discount factor per period is β.

The utility per period, U , is determined by:

Ut =
C̃1−σ
t

1− σ
+

γ

1− b

(
Mt

Pt

)1−b

− χ
L1+η
t

1 + η
(9)

The household derives utility from the composite good, C̃, and utility from cash holding

is derived from the real value deflated by price P . It has a disutiliy of labor.

The composite good consists of a combination of the material good and the pollution

Z, which is a bad that negatively contributes to the composite good.

C̃t =
[
aC1−ϕ

t + (1− a)(Z−1
t )1−ϕ

] 1
1−ϕ (10)
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The household faces the budget constraint:
Mt

Pt
+
Bt

Pt
+ Ct +

Kt

1− g
+

Φ

2

(
It

Kt−1

− δ

1− g

)2

Kt−1 + CAt

≤ Mt−1

Pt
+
Bt−1Rt−1

Pt
+ wtLt +

(
rt +

1− δ

1− g

)
Kt−1 +Πt

(11)

Bond holding competes with cash holding with a gross interest rate of R > 1. Traditional

capital K is associated with a capital adjustment cost. At the steady state, investment

partly (g) goes to traditional capital and barely compensates for the depreciation in

the steady state, where the capital adjustment cost is zero. The cost of abatement CA

depends on the pollution abatement effort U . The wage per unit of labor is w, and the

return to one unit of traditional capital is r. The firms’ profit Π is zero in the competitive

market equilibrium.

The traditional capital dynamics consists of depreciation and non-clean investment,

IK .

Kt = (1− δ)Kt−1 + IKt (12)

5.1.2 Firm

The representative firm’s production function is:

Yt = (1− Γ)AtK
α
t−1L

1−α
t (13)

Output Y depends on Total Factor Productivity (TFP) A and capital and labor

inputs. It is negatively impacted by pollution, and the lost portion is Γ, which follows:

Γ(M) = γ0 + γ1M + γ2M
2 (14)

Here I assume M , the global pollution stock, to be fixed, as its change is of substantially

lower order of magnitude than the dynamics we study.18 The output can be derived from
18Using the calibration in AD2015, d(Mt) = 1.4647 × 10−8M2

t − 6.6722 × 10−6Mt + 1.3950 × 10−3,
Mt = .9979Mt−1 + Zt + Z∗

t , M = 800 ⇒ D = 0.0054. When Z increases by 1%, M increases by only
0.0021%. From log-linearlization on d(Mt) = dt = γ0 + γ1Mt + γ2M

2
t , d̂t = 2γ2M

2+γ1M
d M̂t = 2.4691M̂t,

Γ̂t = − d
1−d d̂t = −0.0055d̂t = −0.0135M̂t. Therefore, Γ declines by 0.0000418%, which is ignorable.
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a continuum of Dixit-Stigliz intermediate goods:

Yt =

[∫ 1

0

Y
θ−1
θ

jt dj

] θ
θ−1

, θ > 1 (15)

The firm maximizes profit, which is zero in the competitive equilibrium, by choosing

capital input, labor input, and abatement effort.

max
K,L,U

Πt = PtYt − wtLt − rtKt − Tt − CAt = 0 (16)

The government taxes the firms with the amount T due to the pollution. In each period,

only a fraction (ω) of the firms change their prices, while the remaining firms have sticky

prices.

5.1.3 Pollution

Pollution Z is determined by the abatement effort, the pollution factor φ, and the output.

Zt = (1− Ut)φtYt (17)

The abatement effort can be considered as the effort paid by firms, and the pollution

factor reflects clean energy technology.

The tax is proportional to pollution emissions with a fixed tax rate τ .

Tt = τZt (18)

The environmental capital dynamics consists of depreciation, government spending,

and clean investment, IN .

Nt = (1− δN)Nt−1 + Tt + INt (19)

Clean investment is funded by both the government through tax and the households

through investment.

The pollution factor, which represents clean technology advancement, is determined

by the environmental capital.

φt = ωφφ̃t + (1− ωφ)φt−1 (20)
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The technology is also sticky, as its adoption requires some time to be put into use. I

assume that a portion (ωφ) of the new technology is realized in each period. The pollution

factor with out sticky technology, φ̃, is a function of environmental capital. When clean

investment increases, the pollution factor decreases.

φ̃t = φf
(

µ

µ+Nt

)h
(21)

The cost of abatement effort is determined by abatement effort and output.

CAt = ϕ1U
ϕ2
t Yt (22)

5.1.4 Monetary Policy

The monetary policy follows a Taylor-type rule targeting inflation and output gap with

policy stickiness.

log(Rt) = ρR log(Rt−1) + (1− ρR)(log(R
n) + ψπ(π̂t − ̂̄π) + ψY (Ŷt − ̂̄Y )) + εR,t (23)

The targeted inflation and output are the steady-state values. The MPs εR follows an

i.i.d. distribution with volatility σR.

εR,t = νR,t, νR ∼ iid(0, σ2
R) (24)

5.1.5 Market Clearing Conditions

Productivity follows a sticky path with a productivity shock εA in each period.

log(At) = ρA log(At−1) + εA,t (25)

The shock follows an i.i.d. distribution with volatility σA.

εA,t = νA,t, νA ∼ iid(0, σ2
A) (26)

The goods market clears.

Yt = Ct + It +
Φ

2

(
It

Kt−1

− δ

1− g

)2

+ CAt (27)
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5.1.6 Clean Investment Sensitivity

While the steady-state clean investment share is g, the sensitivities of clean and non-clean

investment are different, generating different investment responses to a monetary tight-

ening when the economy deviates from the steady state. The empirical results suggest a

higher investment response by clean than non-clean investments due to a longer invest-

ment horizon. My model setting incorporates this fact, as clean technology adoption is a

gradual process, and the payback period of clean investment is longer than non-clean in-

vestment. To calculate the relative sensitivity of clean versus non-clean investment after

a MPs, I calculate the durations of the two types of investment based on the marginal

cash flow from one additional unit of clean and non-clean investment, respectively.

The marginal cash flow for traditional capital, MPIK , comes from higher productiv-

ity.

MPIKt = Et

∞∑
n=1

1

(1 + rt)n
dΠt+n

dKt+n−1

dKt+n−1

dKt−1

(28)

The marginal cash flow for environmental capital, MPIN , comes from less pollution

tax and abatement cost.

MPINt = Et

∞∑
n=1

1

(1 + rt)n
dΠt+n

dφt+n

dφt+n
dNt

(29)

Using the duration formula, the Macaulay durations of the marginal cash flows for

traditional and environmental capital are respectively:

DurKt =
1− δ

rt + δ
(30)

DurNt =
1

ωφ − δN

[
(1− δN)(rt + ωφ)

rt + δN
− (1− ωφ)(rt + δN)

rt + ωφ

]
− 1 (31)

The relative sensitivity to investment by environmental versus traditional capital, εNI

εKI
,

is: (
εNI
εKI

)
t

=
DurKt
DurNt

(32)
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The property can be used to generate responses after a deviation from the steady

state. The derivation is in Appendix D.1.4.

From the duration of clean investment (environmental capital), I have the following

prediction.

Prediction 1. The Macaulay duration of environmental capital investment increases

when the adoption rate of clean technology decreases.

When the speed of clean technology decreases, it takes more months for the pollution

factor to fully realize the technological benefit of clean investment. The property em-

pirically matches the longer investment horizon of clean investment relative to non-clean

investment. The proof is in Appendix D.1.5.

Using the same duration formula, I obtain that the duration of environmental capital

tends to be longer than traditional capital’s.

Prediction 2. The Macaulay duration of environmental capital investment is longer than

that of traditional capital investment.

Therefore, clean investment has a longer horizon than non-clean investment in terms

of financial payback. The condition holds for conventional calibration.

The impact of pollution increase emerges after several months when the negative

output impact by the MPs dies out, but the regression in pollution-control technology

persists. I prove that the magnitude of the increase in pollution after a positive MPs

increases if the clean investment share increases.

Prediction 3. Pollution increases more after a monetary tightening when the clean

investment share increases.

The proof is in Appendix D.1.6. Like the previous prediction, this one also holds for

conventional calibration, as I will show next.
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5.2 Calibration

The calibration of a parameter follows previous literature if it exists. To match the em-

pirical baseline, I calibrate the model using a monthly frequency. Common parameters

follow the general literature in New Keynesian DSGE, and those related to the environ-

ment follow Annicchiarico and Di Dio (2015). The values used in the calibration are

shown in Table 3. Key steady-state values derived from the parameter calibration are

also shown.

Table 3: Calibration of parameters

Variable Description Value
Parameters

σ Consumer relative risk aversion 1
ϕ

Elasticity of substitution between
consumption and pollution 0.5

β Time discount factor 0.9983
δ Capital depreciation rate 0.0083
Φ Capital adjustment cost factor 20
α Capital share in production 0.33
η Inverse Frisch elasticity of labor supply 1
ω Speed of price change per period 0.7
b Consumer relative risk aversion in cash 0.5
ρR Persistence of monetary policy shock 0.9
σR Volatility of monetary policy shock 0.1
ψπ Monetary policy response to inflation 1.5
ψY Monetary policy response to output 0.0416667
ρA Persistence of TFP shock 0.97
σA Volatility of TFP shock 0.1
χ Disutility factor of labor 5
γ Utility factor of cash 0.003
γ0 Pollution damage function: constant term 0.001395
γ1 Pollution damage function: linear term -6.6722e-06
γ2 Pollution damage function: quadratic term 1.4647e-08
ϕ1 Factor of effort cost on abatement effort 0.185
ϕ2 Curvature of effort cost on abatement effort 2.8
φf Pollution factor without clean technology 0.45
M Global pollution reservation 800

Steady state
κ NKPC inflation response to MCP 0.1291
Γ Pollution damage ratio 0.0054
K
L

Steady state capital-labor ratio 129.9134
sI Steady state investment ratio 0.2720
εNI

εKI

Relative investment elasticity of environmental
versus traditional capital 1.3836

ε
IN ,MP

ε
IK,MP

Relative MPs elasticity of clean
versus non-clean investment 2.4603

Notes: The steady state values are based on arbitrarily assigned values of parameters to be esti-

mated.
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The IRFs of key variables in the model are in Figure 20. After MPs, FFR increases.

Output, consumption, and CPI decline due to fewer investment activities. The decline

in environmental capital is greater than in traditional capital, and pollution increases

after several periods when output gradually recovers. The pollution increase is due to

the regression of clean technology, represented by an increase in the pollution factor.

Long-term household utility declines due to lower consumption and higher pollution.

IRF: MPs
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Figure 20: Model IRF to MPs: Initial Value Calibration

Notes: For the parameters to be estimated, the steady-state values are the initial values in the

estimations.

By varying the clean investment share, the dynamics change and pollution increases

more after the MPs when the share increases. As in Figure D.2, the pollution increase is

stronger when the environmental capital share increases. This is consistent with Predic-

tion 3. The difference comes from the faster decaying impact on environmental capital

for the higher environmental capital share after a tightening, which causes a stronger

impact on pollution reduction technology, as reflected by the pollution factor change.
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The result is consistent with the empirical evidence.

5.3 Estimation

Several parameters are novel in the model setting without reference to previous literature.

Therefore, their values need to be estimated. I estimate their values by matching the

model IRF with the empirical baseline IRFs regarding pollution and output responses

for a selected period after the shock. I estimate the parameters x that minimize the

standard-error-weighted sum of the squared distances between the model and empirical

IRFs across the selected periods as follows.19

x = argmin
∑

y∈{Z,Y }

Hmax∑
h=Hmin

(
dy(x;h)
dεR

− β
(h)
y,0

se(β(h)
y,0 )

)2

+M
∑

y∈{IK ,IN}

min
h

(dy(x;h)
dεR

)− min
h=h∗

(β
(h)
y,0 )

se(β(h∗)
y,0 )

2

(33)

The indicators to be matched, y, include pollution and output. y(x;h) is the log deviation

of y from the steady state h months after the shock when the parameters are x. β
(h)
y,0

is the empirical IRF of h months after the shock. I set Hmin to 5 months and Hmax to

30 months. Additionally, I match traditional and clean investment using peak-to-peak

matching with a multiplier M of 10.

I estimate the parameters of interest using both the gradient-based optimization algo-

rithm20 and the Bayesian estimation. The estimation results are shown in Table 4. The

details of the estimation are given in Figure D.1. The statistics of the estimation are in

Table D.1.
19As the MPs in the empirical identification is unit based, I rescale the model IRFs by dividing

original magnitudes by the interest rate R’s response to εR in the first period.
20The MATLAB function I use is fmincon with the interior point algorithm.
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Table 4: Estimation of parameters

Variable Description Initial
value

Optimized
value

Bayesian
optimum

Parameters
a Consumer utility weight on consumption 0.9 0.7851 0.7953
δN Environmental capital depreciation rate 0.0083 0.0100 0.0093
h Curvature of pollution factor on environmental capital 1 1.0000 0.9902
µ Buffer of pollution factor on environmental capital 1 1.0000 1.0055
ωφ Speed of technology adoption per period 0.04 0.0976 0.1330
τ Pollution tax rate 0.2 0.0100 0.1716
g Ratio of environmental capital investment 0.2 0.0821 0.0566

ε
IN ,MP

ε
IK,MP

Relative MPs elasticity of clean
versus non-clean investment

2.4603 2.0845 2.0697

Likelihood

(distance)2 Sum of squared distances
between SLP and model IRF

19.0261 10.8981 11.5171

Notes: (a) I apply the Metropolis-Hastings algorithm with Random Walk draws. The first 100,000

draws use the identity matrix to draw shifts from a multivariable normal distribution. After the

100,000 draws, I calculate the covariance matrix of the generated chains of parameters and use it

as the covariance matrix of the random draw for the next 250,000 draws.

(b) As in Uribe and Schmitt-Grohe (2017), I assign each estimated parameter a uniform prior with

an upper bound and a lower bound using reasonable values, and I skip a draw if any of the result-

ing parameters is out of the boundary, or if there is no stable steady state based on the generated

parameters.

The estimated model IRFs reasonably match the empirical baseline IRF, as shown in

Figure 21, especially the pollution and GDP, since I estimate the parameters based on

the two indicators.
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Figure 21: IRF Matching, SLP and E-DSGE

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on

the Newey-West standard errors.

The distributions of the generated chains of parameters in the Bayesian estimation

imply the range of the values of the parameters of interest, as shown in Figure 22. The

depreciation rate of environmental capital, δN , is not very different from that of tradi-

tional capital. The curvature of the pollution factor function on environmental capital,

h, is low, as its value is close to one. The clean technology adoption is sticky, as im-

plied by a ωφ peaking at somewhere substantially below one. Pollution estimated by

the gradient algorithm peaks at 25 months after the shock, which exactly matches the

empirical baseline.21 The pollution tax is low, consistent with the current situation in
21The estimated pollution factor peaks 23 months after the shock. The model assumes that tech-

nology adoption in each period only varies with the environmental capital in the period. As envi-
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the US. Finally, the proportion of investment in environmental capital is less than the

initially calibrated 20 percent. The Bayesian median is close to the 10 percent implied

by the clean investment divided by the concurrent structure and equipment investments

in the US in 2023. The empirical clean investment ratio is also close to the 8.2 percent

estimated by the gradient algorithm. However, the incompleteness of the clean invest-

ment data provided by the Clean Investment Monitor implies the actual clean investment

percentage is potentially higher.

ronmental capital gradually recovers from the initial large decline, the magnitude of technological
adoption on the pollution factor declines, and the pollution factor peaks just before the new round of
technology adopted is less advanced than the existing technology. That is, the peak h∗ arrives when:{
φ̃t+h∗ > φt+h∗−1

φ̃t+h∗+1 < φt+h∗
, and φ̃t+h+1 < φ̃t+h for sufficiently large h. Therefore, such a h∗ exists.
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Distribution of generated chains of parameters
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Figure 22: Bayesian Estimation of the Model: Parameters Distributions

Notes: (a) I apply the Metropolis-Hastings algorithm with Random Walk draws. The first 100,000

draws use the identity matrix to draw shifts from a multivariable normal distribution. After the

100,000 draws, I calculate the covariance matrix of the generated chains of parameters and use it

as the covariance matrix of the random draw for the next 250,000 draws.

(b) As in Uribe and Schmitt-Grohe (2017), I assign each estimated parameter a uniform prior with

an upper bound and a lower bound using reasonable values, and I skip a draw if any of the result-

ing parameters is out of the boundary, or if there is no stable steady state based on the generated

parameters.

5.4 Optimal Policy

The economic turbulence after a MPs declines household utility. To optimize household

utility or to minimize utility loss by stabilizing consumption and pollution after the

shock, the central bank potentially helps by targeting pollution in addition to inflation

and output. By modifying the monetary policy to add a pollution target in the Taylor

44



function:

log(Rt) = ρR log(Rt−1)+(1−ρR)(log(Rn)+ψπ(π̂t− ̂̄π)+ψY (Ŷt− ̂̄Y )+ψZ,mp(Ẑt− ̂̄Z))+εR,t
(34)

Here ψZ,mp is the response to change in pollution. With positive responses to pollution,

pollution is more stabilized, whereas consumption becomes less stabilized. Observing the

initial pollution decline, the central bank more aggressively lowers the interest rate than

the pollution-neutral case to prevent the loss of environmental capital.

Utility response to the shock is:

dUt+h
dεR,t

= C̃1−σ d log C̃t+h
dεR,t

+ γ

(
M

P

)1−b d log Mt+h

Pt+h

dεR,t
− χL1+η d logLt+h

dεR,t
(35)

When varying the monetary policy response to pollution, ψZ,mp, the change in house-

hold utility after a MPs is shown in Figure 23. More aggressive responses to pollution

at sufficiently low levels help stabilize the utility change after a shock. The stabilization

effect comes from reduced consumption and pollution factor volatility, as shown in Fig-

ure D.3. The latter comes from lower financial costs after the initial tightening, helping

defend environmental capital from further depreciation.

Besides monetary policy, changing the fiscal policy by varying the pollution tax with

the overall pollution level also helps stabilize the utility change after a MPs. Instead of

a fixed tax rate, allowing the rate, τ , to change with pollution:

τt = τZψZ
t (36)

When varying the fiscal policy response to pollution, ψZ , the change in household util-

ity after a MPs is shown in Figure 24. A negative ψZ implies credit for the firm emission

after a tightening, which helps stabilize the utility change after a shock. The effectiveness

increases when the magnitude of adjustment increases within sufficiently low levels. The

stabilization effect comes from relaxing the financial cost of investing in environmental

capital, as shown in Figure D.4. When the credit expands, the environmental capital loss

is partly recovered, preventing the pollution factor from increasing and, subsequently,
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increasing air pollution.
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Figure 23: Consumer Welfare Response to
MPs, by Monetary Policy Regimes

Notes: All the parameter calibrations follow

the values that minimize the sum of distances

between SLP and E-DSGE at each selected

horizon.
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Figure 24: Consumer Welfare Response to
MPs, by Fiscal Policy Regimes

Notes: All the parameter calibrations follow

the values that minimize the sum of distances

between SLP and E-DSGE at each selected

horizon.

As both fiscal and monetary policies can be revised from the baseline model to better

stabilize household utility after a MPs, their coordination potentially benefits the house-

holds more. To investigate the benefit of coordination, I vary both ψZ and ψZ,mp to find

the optimal policy mix that minimizes the utility loss from volatility after a MPs. The

optimization problem is:

min
ψZ,mp,ψZ

∫ Hmax

Hmin

(
dUt+h
dεR,t

)2

dh (37)

The results are shown in Figure 25, implying the optimal policy mix to be ψZ =

−19.5 and ψZ,mp = 0.55. At this point, after a monetary tightening, tax credits are

imposed on firms to prevent their further loss and subsequent loss in environmental

capital investment. Concurrently, the interest rate will be lowered following the initial

output and pollution drops, which prevents environmental capital loss that induces a

long-term pollution increase. Lowering the initial turbulence in environmental capital
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prevents long-term pollution deviation and utility instability.

Figure 25: Optimal Fiscal and Monetary Policy Coordination for Consumer Welfare
Maximization after a MPs

Notes: The interval of ψZ,mp is 0.05, and the interval of ψZ is 1.5. The optimal point is denoted

with the green dot. All the parameter calibrations follow the values that minimize the sum of dis-

tances between SLP and E-DSGE at each selected horizon.

Note that the negative response of pollution tax rate to pollution can also be inter-

preted as a regulation relaxation after an increase in pollution. When regulation relaxes,

the aggregated pollution tax rate should decrease. Such policy benefits consumers, who

care about both material consumption and environmental amenities.

6 Extension

In this section, I extend the results to other countries and study the global spillover of

the US MPs. I also present the recent global pollution trend and investigate the role of

US monetary policy in influencing it.
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6.1 The Global Spillover

The decline in air pollution since the GFC is mainly driven by advanced economies, as

shown in Figure E.1, particularly the EU. Pollution reduction in the US is also remarkable,

except in the late 2010s when the US withdrew from the Paris Agreement. Compared to

AE, pollution in emerging markets (EM) barely declines.22

Looking at the pollution change by countries and regions in the US and China, as

shown in Figure E.2, the European countries have experienced the most remarkable

pollution decline since the GFC. The decline is also substantial in the US, Canada,

Australia, and Japan. For EM economies, pollution in China declines after increasing

policy attention during the period. The observation is consistent with the clean energy

dependency ratio of the newly opened power plants, as shown in Figure E.3. The cleanness

of new power plants is substantially higher in the US, Europe, and other AE economies

compared to the EM economies.

As an extension to the baseline identification, I add the aggregated output, pollution

and CPI of EM economies to the baseline LP specification, and the IRFs are shown

in Figure E.4. Here, due to data concerns, I use nighttime light (NTL) as a proxy

for economic activities in EM. The CPI of EM is calculated by the US inflation and

the change in the real exchange rate for each country.23 While the output decline and

pollution increase still hold for the US, the output decline in the EM is accompanied by

a weak pollution decline, implying co-movement. CPI in EM also declines in line with

the output decline.

I apply the baseline identification to each country and US/China regions, and the

average responses are shown in Figure 26. Among EM economies, the pollution decline

mainly appears in China. While clean investment is vastly domestic for AE, the overall
22EM here includes all OECD members except Chile, Colombia, Costa Rica, Latvia, Lithuania,

Mexico, and Turkey. I also add Hong Kong, Singapore, and Taiwan to AE.
23For each country in each year, I calculate the inflation as the US inflation plus the percentage

change of the PPP conversion ratio (real exchange rate over nominal exchange rate, quoted in domes-
tic currency per USD). Then, I calculate the average inflation across the EM economies weighted by
the population of each country in the corresponding year.
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response by EM economies shows that the channel is weak for them. The economic

activities of the EM economies, as proxied by NTL in Figure E.5, imply a comovement

between output and pollution in these countries, notably India, Brazil, and most African

countries. Moreover, the output decline in EM is unlikely to be related to the US dollar

appreciation after the US MPs, as shown by the exchange rate of the US dollar after the

MPs in Figure E.6.

Figure 26: Average Pollution Response to MPs by Country and Region

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The

number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria

for up to 4 periods. When taking the average across the time horizon from the month the MPs

is realized to 20 months later, insignificant values at a 90 percent confidence level are treated as

zero. If the region has both significantly positive and significantly negative responses, the average

response by the region is interpreted as zero. Extreme values with absolute values greater than

0.25 are winsorized on the map.

7 Conclusion

This paper studies the environmental externalities of the US monetary policy shock by

looking at the air pollution responses after the shock. Surprisingly, output declines, but
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air pollution increases after a monetary tightening. The divergent path is explained by

a clean investment channel, where the tightening passes to firms’ capital cost, diverting

their funding away from investment in clean technology and subsequently increasing air

pollution. The channel is supported by firm-level evidence, as environmentally friendlier

firms are more sensitive to tightening. It is also consistent with heterogeneous responses

at the regional level. Finally, the quantitative results imply that if the monetary policy

targets pollution in addition to inflation and output, the environment-augmented house-

hold utility will further stabilize. The effectiveness of pollution targeting improves when

coordinating with pollution tax relief that prevents environmental capital loss.

The data used in the study are also useful for related research questions. Firstly,

environmental policy in developing countries potentially changes following a US monetary

tightening. Secondly, firm behavior on clean investment after a capital cost increase

potentially differs across industries. Moreover, the study only points out one of the

channels for the increase in pollution after tightening, and there are potentially other

channels that lead to similar environmental impacts.
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Appendix A Data
A.1 Baseline Panel Summary Statistics

Table A.1: Summary Statistics: Monthly Panel Data

N Time range Mean SD Min Max
Pollution (Satellite) 252 2003M1:2023M12 0.0000 0.2576 -0.4278 0.7933
Pollution (EPA) 252 2003M1:2023M12 -0.0000 0.4956 -0.8213 0.8270
PM10 252 2003M1:2023M12 -17.6725 0.2677 -18.2347 -16.6355
PM2.5 252 2003M1:2023M12 -18.0152 0.2703 -18.6031 -16.9726
CO 252 2003M1:2023M12 -7.0439 0.0702 -7.2219 -6.8343
NO2 252 2003M1:2023M12 -12.3019 0.2282 -12.6444 -11.7613
O3 252 2003M1:2023M12 -5.0072 0.0244 -5.0815 -4.9045
SO2 252 2003M1:2023M12 -12.6920 0.3287 -13.1481 -11.9983
CO2 240 2003M1:2022M12 18.5939 0.0790 18.2939 18.7851
MPs: MP1 252 2003M1:2023M12 -0.0025 0.0458 -0.5725 0.1574
MPs: Acosta FF0 252 2003M1:2023M12 -0.0012 0.0244 -0.2000 0.1300
MPs: Swanson FFR 252 2003M1:2023M12 -0.0002 0.0096 -0.0551 0.0537
MPs: Forward Guidance 252 2003M1:2023M12 -0.0539 0.8466 -3.0408 4.0094
MPs: LSAP 252 2003M1:2023M12 -0.0243 0.9626 -11.2674 2.5469
MPs: Information 252 2003M1:2023M12 0.0346 0.7154 -4.8446 2.7570
GDP 252 2003M1:2023M12 9.8110 0.1190 9.5897 10.0442
CPI 252 2003M1:2023M12 5.4448 0.1315 5.2073 5.7325
Indistrial Production 252 2003M1:2023M12 4.5832 0.0485 4.4388 4.6454
Temperature 204 2003M1:2019M12 3.1918 0.0468 3.0450 3.3357

Notes: MPs are aggregated to monthly level. For MPs, a month includes at most one shock, so the
value for the month is either zero or the shock in that month.

Table A.2: Summary Statistics: Quarterly Panel Data

N Time range Mean SD Min Max
Pollution (Satellite) 84 2003Q1:2023Q4 0.0000 0.2534 -0.3905 0.5774
Pollution (EPA) 84 2003Q1:2023Q4 -0.0000 0.4954 -0.7437 0.8065
MPs: MP1 84 2003Q1:2023Q4 -0.0075 0.0670 -0.4151 0.1480
GDP 84 2003Q1:2023Q4 9.8092 0.1194 9.5897 10.0415
Gross Fixed Capital Formation 84 2003Q1:2023Q4 8.2155 0.1575 7.9692 8.4906
Private Domestic Investment 84 2003Q1:2023Q4 8.0180 0.2034 7.5740 8.3548
Private Fixed Investment 68 2007Q1:2023Q4 8.0407 0.1960 7.6845 8.3345
All Clean Investment 26 2018Q1:2024Q2 24.2658 0.4599 23.6236 25.0605
Manufacturing Clean Investment 26 2018Q1:2024Q2 21.5886 1.1988 19.7880 23.6790
Retail Clean Investment 26 2018Q1:2024Q2 23.6158 0.4228 22.8950 24.2615
Other Clean Investment 26 2018Q1:2024Q2 23.2946 0.4050 22.5075 23.9562

Notes: MPs are aggregated to quarterly level.

57



A.2 Details of Pollution Data
A.2.1 Geospatial Data

Data Source The monthly air pollution dataset is derived from CAMS global re-
analysis (EAC4) monthly averaged fields, the fourth generation of the ECMWF global
reanalysis of atmospheric composition. The data period begins in January 2003. The
data assimilation principle the source data uses is based on the method used to forecast
weather and air quality (CAMS2020). Public access is available from the Atmosphere
Data Store of the Atmosphere Monitoring Service implemented by the ECMWF, Coper-
nicus, the Earth Observation component of the European Union’s space programme.

Alternatively, the source provides the tri-hourly version of CAMS global reanalysis
(EAC4) with the same set of indicators. The high-frequency version is potentially use-
ful for further economic analysis requiring more frequent pollution dynamics than the
monthly observations.

Panel Construction The six indicators I use from the dataset include: PM2.5 (kg per
cubic meter), PM10 (kg per cubic meter), total column carbon monoxide (kg per square
meter), total column nitrogen dioxide (kg per square meter), total column ozone (kg per
square meter), and total column sulfur dioxide (kg per square meter). All the indicators
are single-level variables, with the total column variables being the sum of the values
across altitudes.

The shape files I use for countries and US states are from GADM.24 In each geospatial
map file, I crop the target region using each shape file by including all meshes that touch
any polygon within the shape file. The resolution of the geospatial data, 0.75 degrees
(about 75km at the equator), is sufficiently accurate to capture the area of each US state.
As an illustration, I show the PM10 geospatial map of the selected North American region
with the shape files of the US states in Figure A.1.

24The shape files are publicly available on the website of GADM.
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Figure A.1: Pollution Data from Satellite Image: US PM10, January 2003

For each US state, I select all meshes that touch or lay within the shape file of the
state. Then, I sum up the values of all selected meshes and label the summation as PM10
in the selected state in the month that corresponds to the map file.

Principle Component Analysis For each pollutant, I take the logarithm of the orig-
inal value. In the baseline, I apply the PCA to the time series of the population-weighted
average of air pollutants of the US. The percentage of variation explained by each com-
ponent indexed by descending power is shown in Figure A.2.
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Figure A.2: Explanatory Power of Each Component Derived from the Principle
Component Analysis on Air Pollution Indicators

Then, I compare the original series with the PCA-fitted series for each pollutant. I only
show the fitted series for the first two principal components, as they jointly explain more
than 95 percent of the variation. As shown in Figure A.3, the first principal component,
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PC1, explains most of the variations in the two comprehensive indicators (PM10 and
PM2.5), NO2, and SO2, including the trend. It also explains some variations in CO,
especially the overall trend. The second principal component (PC2) partly explains the
detrended variation. The variation in O3 is seldom explained by the first two principal
components.
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Figure A.3: Explanatory Power of Each Component Derived from the Principle
Component Analysis on Air Pollution Indicators

After PCA, I normalize the scale of the first principal component (PC1) so that one
unit of change in PC1 corresponds to one log-point change in pollution.

A.2.2 Monitoring Stations

The air pollution data from US monitor stations are publicly available on the USEPA
website. I download the data from the pre-generated data files. In the Tables of Daily
Summary Data, available since 1980, I use PM2.5 non FRM/FEM Mass (88502), PM10
Mass (81102), CO (42101), NO2 (42602), Ozone (44201), and SO2 (42401) to construct
the pollution (PC1) time series using the same method as I do for the geospatial data.
As an illustration, I show selected observations of the PM2.5 data in Table A.3.
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Table A.3: Air Pollution Data from US EPA: PM2.5 Sample

State
Code

County
Code

Site
Num-
ber

Paremeter
Code

POC Method
Code

Arithmetic
Mean

19 013 0009 88502 3 731 7.1
19 013 0009 88502 4 731 4.6
19 137 0002 88502 3 731 2.8
19 137 0002 88502 4 731 4.5
53 003 0004 88502 4 771 14.6
53 003 0004 88502 8 171 19.5

Notes: The data are from the Daily Summary Data of the Pre-Generated Data Files
of the United States Environmental Protection Agency. The selected rows are for
the date 2024-01-01. Paremeter Code 88502 represents PM2.5 non FRM/FEM Mass.
Method Code 171 represents Met-one BAM-1022 W/PM2.5 SCC - Beta Attenuation.
Method Code 731 represents Met-One BAM-1020 W/PM2.5 SCC - Beta Attenuation.
Method Code 771 represents Correlated Radiance Research M903 With Heated Inlet -
Nephelometry.

For each row in the data, I can identify the state and the date. The longitude and
latitude of each monitoring station are also publicly available on the website.

From the longitude and latitude of all stations, I aggregate them to match the meshes
in the geospatial data. The matching statistics are in Table A.4. Note that there are 2344
meshes for the US. Within each mesh, I aggregate the observation of each station weighted
by the inverse of the distance between the station and the centroid of the mesh, following
the invese distance weighting (IDW) approach (Wong et al., 2004). The aggregation
from mesh to nation follows the same process as the aggregation in the geospatial data
by taking the population-weighted average.

Table A.4: Spatial Coverage of EPA Monitor Stations

Pollutant Number of
Mesh With
Available Data

Number of
Mesh With
Available Data
After Filter

Percent of Pop-
ulation Cov-
ered

Percent of Pop-
ulation Cov-
ered After Fil-
ter

CO 268 268 64.43 64.43
NO2 342 342 65.14 65.14
O3 703 703 86.62 86.62
PM10 462 462 70.58 70.58
PM2.5 384 134 60.48 6.80
SO2 403 403 69.45 69.45

Notes: The data are from the Daily Summary Data of the Pre-Generated Data Files of the United
States Environmental Protection Agency.
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A.3 Other Data
A.3.1 National Accounts

US Economy Data for the US economy are from the FRED database provided by the
Federal Reserve Bank (Fed) of St. Louis. For monthly data, I use industrial production
(INDPRO), CPI (CPIAUCSL), CPI of fuel price (CUSR0000SEHE), FFR (FEDFUNDS),
and exchange rate of US dollar (TWEXBPA, RTWEXBGS)25. For quarterly data, I use
GDP (GDPC1), gross fixed capital formation (USAGFCFQDSNAQ), private domestic
investment (GPDIC1), and private fixed investment (FPIC1).

US Clean Investment The dataset for US aggregated clean energy investments is
publicly available on the Clean Investment Monitor quarterly since 2018. The website
is founded by the Rhodium Group and the MIT Center for Energy and Environmental
Policy Research (CEEPR) to track clean energy investment and transition using the
novel dataset. It provides clean investment by segment, including retail, manufacturing,
and others. It also provides some aggregated statistics at the state level, such as retail
investment.

Other For other countries, I obtain quarterly national indicators from the International
Financial Statistics (IFS) of the International Monetary Fund (IMF). Indicators I use in-
clude GDP (NGDP_R_SA_XDC), CPI (PCPI_IX), consumption (NC_R_SA_XDC),
private consumption (NCP_R_SA_XDC), government consumption (NCGG_R_SA_XDC),
investment (NI_R_SA_XDC), export (NX_R_SA_XDC), import (NM_R_SA_XDC),
current accounts (BG_BP6_USD), currency exchange rate to US dollar (ENDA_XDC_USD_RATE),
employment (LE_PE_NUM), labor force population (LLF_PE_NUM), and unemploy-
ment (LU_PE_NUM). I also obtain annual population (LP_PE_NUM) and convert it
to quarterly series through linear interpolation.26

I also obtain annual national indicators from the World Development Indicator (WDI)
of the World Bank (WB). Indicators I use include real GDP per capita in local currency
unit (NY.GDP.PCAP.KN), consumption (NE.CON.TOTL.ZS), investment (NE.GDI.TOTL.ZS),
government spending (NE.CON.GOVT.ZS), import (NE.IMP.GNFS.ZS), export (NE.EXP.GNFS.ZS),
current account (BN.CAB.XOKA.GD.ZS), population (SP.POP.TOTL), PPP conversion
ratio (PA.NUS.PPPC.RF), nominal GDP in US dollar (NY.GDP.MKTP.CD), and GDP
growth (NY.GDP.MKTP.KD).27 Additionally, I add each country’s annual average night-
time light (NTL) from the Light pollution map.

25I use TWEXBPA for the period before 2006, and RTWEXBGS for the period since 2006. I con-
vert the RTWEXBGS series since 2006 to the TWEXBPA series using the ratio of TWEXBPA to
RTWEXBGS in January 2006.

26Denote annual values as x, with xt−1 as last year’s value, xt as this year’s value, and xt+1 as next
year’s value. For Q1, I use 3

8xt−1+
5
8xt. For Q2, I use 1

8xt−1+
7
8xt. For Q3, I use 7

8xt+
1
8xt+1. For Q4,

I use 5
8xt +

3
8xt+1.

27For each country, when the annual data are not available, I use the quarterly data from IFS and
convert them to annual values, by taking the sum (GDP and its components) or average (population,
rates including exchange rate). When the data are also unavailable in IFS, I use the data from CEIC.
If the data are only available at the quarterly frequency in CEIC, I convert them to annual values
using the same method.

62



A.3.2 Firm Data

For each firm listed in the US, the Analyst-forecast-based Implied Cost of Capital (ICCA)
is based on the values calculated by Lee et al. (2021) at the monthly frequency. Finan-
cial operation information is from Compstat (accessible through WRDS) at an annual
frequency, where I use current assets, current liabilities, EBITDA, and revenue. Firm
ESG records are from Refinitiv (accessible through WRDS) at annual frequency, where
I use the ESG score (including its three components), emission of CO2 equivalent (total,
scope 1, scope 2), environmental expenditure, renewable energy use, hazardous waste,
environmental R&D, percentage of green products, renewable energy supply ratio, NOx
emission, and SOx emission. As the key in Compstat data is gvkey, and the key in the
Refinitiv ESG data is the Stock Exchange Daily Official List (sedol), and each gvkey
can correspond to multiple sedol, I use the first occurrence of sedol (ascending order)
within each gvkey as the representative when joining firm operation information with
ESG records.

A.3.3 Financial Data

The equity data for the firms listed in the US are from Bloomberg Terminal. I use the
daily adjusted closed price as the daily price of stock quotes since 2009. The stock quotes
(indices) that I use include S&P 500, S&P 500 Energy, S&P 500 Financials, S&P Kensho
Clean Energy, S&P Kensho Clean Power, S&P Kensho Cleantech, NASDAQ, NASDAQ
Renewable Energy Equipment, NASDAQ Oil Gas and Coal, NASDAQ Investment Ser-
vices, NASDAQ Financials, and NASDAQ Clean Edge Green Energy.

A.3.4 Power Plant

Power plant data are from the Global Energy Monitor (GEM). The dataset contains the
operation statistics for each power plant, including each phase of each plant. It covers
power plants around the world. Indicators include the operation status, technology used,
commissioned capacity, year of commission, longitude, latitude, and the country and
sub-nation divisions of each plant’s location. I focus on the plants commissioned since
2009.

A.3.5 Carbon Emission

The Carbon emission geospatial data is the publicly accessible Open-Data Inventory for
Anthropogenic Carbon dioxide (ODIAC) provided by the National Institute for Environ-
mental Studies (NIES) of Japan. The dataset is available on a monthly frequency, with
an available period starting in January 2000. The spatial resolution is as high as 1km,
enabling accurate regional identification of carbon emission dynamics. In this study, I
aggregate the geospatial map of carbon emission to national and state levels in the same
way that I aggregate the geospatial maps of air pollution.

A.3.6 Weather

The temperature geospatial data are the publicly accessible Climatic Research Unit
(CRU) gridded time series, Temperature and precipitation gridded data for global and
regional domains derived from in-situ and satellite observations from the Climate Data
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Store (CDS) of the Climate Change Service (CCS) implemented by the ECMWF, Coper-
nicus, the Earth Observation component of the European Union’s space programme. The
data period starts in January 1901 and ends in December 2019 at a monthly frequency.
The spatial resolution is as high as 0.5 degrees (about 50 km at the equator), enabling
accurate regional weather identification. The key indicators in the data include average
temperature, maximum temperature, minimum temperature, wind speed, and precipita-
tion. In this study, I aggregate the geospatial map of the average temperature to national
and state levels in the same way that I aggregate the geospatial maps of air pollution.

A.3.7 Population Density

The population density geospatial data are the publicly accessible Gridded Population
of the World, Version 4 (GPWv4): Population Count, Revision 11. They record the
population in each mesh from 2000 to 2020 with a five-year interval. Each mesh is a 30 arc-
second (about 1 km at the equator) grid cell, enabling the accurate regional identification
of population dynamics. In this study, I match the geospatial map of population density
with each cell of the geospatial map of pollution by cropping the rectangle of the cell
from the map of population density. In this way, I obtain population-weighted aggregated
pollution (mesh average). Since the geospatial pollution series starts from 2003, I use the
population data in 2000. I also aggregate the geospatial map of population density to
overlay the geospatial map of weather (temperature) and obtain the population-weighted
geospatial map of weather.28

A.3.8 Nighttime Light

The nighttime light (NTL) geospatial data is publicly accessible at Earth Observation
Group (EOG), Payne Institute for Public Policy at the Colorado School of Mines. The
group adjusts the original source from NASA by removing ephemeral light and cloud
covers. The default version used in the paper uses the remote-sensing-based Visible
Inferred Imaging Radiometer Suite (VIIRS) instrument, which has a high resolution of up
to 15 arc-seconds (about 500 m at the equator), enabling accurate regional identification.
The specification used in the paper is the vcmslcfg, which corrects for stray lights instead
of removing them, leaving more spaces with available data. The dataset is available
monthly since January 2014. In this study, I aggregate the geospatial map of NTL to the
national level in the same way I aggregate the geospatial maps of air pollution.

For the period before 2014, another instrument, the Defense Meteorological Satellite
Program (DMSP), is less accurate but sufficient for the study. It is also publicly available
from EOG, which revises the original source from NASA. The available period of the
annual and monthly datasets starts in 1992 and has a high resolution of up to 30 arc-
seconds (about 1 km at the equator). However, it is upward censored and is therefore less
accurate in places with high light density. When aggregating data for the same region in
a year-month from different satellites, I take the average of the log NTL before taking the
exponent and converting the data back to level values, as in line with previous literature
(PS2016).

28When I overlay population density to the weather in each year-month, I use the year with popula-
tion density information closest to the year of the year-month.
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To exclude potential outliers in the monthly data, I exclude non-positive NTL values.
For each region, I also remove the data points that are less than 60 percent of the previous
month or more than five-thirds of the previous month. I do this step again after removing
non-positive values.
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Appendix B More Results on Responses
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Figure B.1: Pollution Response to MPs, With Minimum Delay Assumption (GDP and
Pollution)

Notes: The LP specification imposes the minimum delaying assumption with m starting from 1.
MPs is aggregated to the monthly frequencies consistent with the dependent variable. The number
of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria for up
to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on the
Newey-West standard errors.
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Figure B.2: Pollution Response to MPs, Baseline (Longer Horizon)

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Figure B.3: Pollution Response to MPs, Without Lagged MPs

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
dashed ribbons are the 90 percent confidence intervals generated based on the Newey-West stan-
dard errors.
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Figure B.4: Pollution Response to FFR (IV: MPs)

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. In
the first stage, the number of lags of the endogenous variable is selected by the AIC criteria for
up to 4 periods. In the second stage, the number of lags of the dependent variable (Q) and the
endogenous variable (M) are selected by the AIC criteria for up to 4 periods. The dashed ribbons
are the 90 percent confidence intervals generated by bootstrapping with 1,000 draws.
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Figure B.5: Pollution Response to MPs, Using Industrial Production for Output

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Figure B.6: Pollution Response to MPs, Asymmetric Responses

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.

68



Month

0 10 20 30

-6

-4

-2

0

2

4
Without Weather Control

0 10 20 30

-6

-4

-2

0

2

4
With Weather Control

LP SLP

Figure B.7: Pollution Response to MPs, With Weather Controls

Notes: The regression panels are subsampled to the same period for each specification. MPs is ag-
gregated to the monthly frequencies consistent with the dependent variable. The number of lags of
the dependent variable (Q) and the shock (M) are selected by the AIC criteria for up to 4 periods.
The dashed ribbons are the 90 percent confidence intervals generated based on the Newey-West
standard errors.
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Figure B.8: Pollution Response to MPs, Pre-Trend

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
dashed ribbons are the 90 percent confidence intervals generated based on the Newey-West stan-
dard errors.
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Figure B.9: Pollution Response to MPs, QE versus non-QE periods

Notes: The non-QE (CMP) period is from October 29th, 2014 to March 15th, 2020 and from
March 9th, 2022 to late 2023. Correspondingly, the QE (UMP) period is from early 2009 to Octo-
ber 29th, 2014 and from March 15th, 2020 to March 9th, 2022. MPs is aggregated to the monthly
frequencies consistent with the dependent variable. The number of lags of the dependent variable
(Q) and the shock (M) are selected by the AIC criteria for up to 4 periods. The dashed ribbons
are the 90 percent confidence intervals generated based on the Newey-West standard errors.
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Figure B.10: Pollution Response to MPs, ZLB binding versus non-binding periods

Notes: The non-ZLB period is from December 16th, 2015 to March 16th, 2020 and from March
17th, 2022 to late 2023. Correspondingly, the ZLB period is from early 2009 to December 16th,
2015 and from March 16th, 2020 to March 17th, 2022. MPs is aggregated to the monthly frequen-
cies consistent with the dependent variable. The number of lags of the dependent variable (Q) and
the shock (M) are selected by the AIC criteria for up to 4 periods. The dashed ribbons are the 90
percent confidence intervals generated based on the Newey-West standard errors.
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Figure B.11: Pollution Response to MPs, Other MPs

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Figure B.12: Pollution Response to MPs, Other PCA Specifications

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Figure B.13: Pollution Response to MPs, Weekly Series

Notes: MPs is aggregated to the weekly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 20 periods. The dashed ribbons are the 90 percent confidence intervals generated based
on the Newey-West standard errors.
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Figure B.14: Pollution Response to MPs, Aggregated to Quarterly

Notes: MPs is aggregated to the quarterly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Figure B.15: Pollution Response to MPs, Monitor Station-Based Pollution Data

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Figure B.16: Pollution Response to MPs (GDP and Pollution), Add PC2

Notes: The LP specification imposes the minimum delaying assumption with m starting from 1.
MPs is aggregated to the monthly frequencies consistent with the dependent variable. The number
of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria for up
to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on the
Newey-West standard errors.
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Figure B.17: Pollution Response to MPs, US and EU

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Figure B.18: Pollution Response to MPs, US and Japan

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Appendix C More Results on Channel
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Figure C.1: Pollution per Unit of GDP Response to Clean Investment (IV: MPs)

Notes: MPs is aggregated to the quarterly frequencies consistent with the dependent variable. In
the first stage, the number of lags of the endogenous variable is selected by the AIC criteria for
up to 4 periods. In the second stage, the number of lags of the dependent variable (Q) and the
endogenous variable (M) are selected by the AIC criteria for up to 4 periods. The dashed ribbons
are the 90 percent confidence intervals generated by bootstrapping with 1,000 draws.
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Figure C.2: Pollution Response to Clean Investment (IV: MPs), with Manufacturing
and Retail Clean Investment

Notes: MPs is aggregated to the quarterly frequencies consistent with the dependent variable. In
the first stage, the number of lags of the endogenous variable is selected by the AIC criteria for
up to 4 periods. In the second stage, the number of lags of the dependent variable (Q) and the
endogenous variable (M) are selected by the AIC criteria for up to 4 periods. The dashed ribbons
are the 90 percent confidence intervals generated by bootstrapping with 1,000 draws.
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Figure C.3: Fuel Price Response to MPs

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.

Table C.1: Firm Pollution Responses to MPs and Cleanliness: Dummies of Head and
Tail in Distribution

Renewable Energy Ratio Emission Score Resource Use Score
1(Rank ≥ P80) 0.0043 0.0327 0.0057

(0.0577) (0.0260) (0.0238)
1(Rank ≥ P80) ×
MPs

1.5862∗∗ 0.4857∗ 0.5601∗

(0.6901) (0.2689) (0.2789)
1(Rank ≤ P20) 0.0581 -0.0369 -0.0760

(0.0466) (0.0460) (0.0675)
1(Rank ≤ P20) ×
MPs

-0.9768∗ -2.5229∗∗ -3.3422∗∗

(0.4698) (0.9511) (1.1611)
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 1,132 1,132 4,716 4,716 4,716 4,716
Adjusted R2 0.9771 0.9771 0.9802 0.9800 0.9802 0.9801

Notes: Significance levels are based on Firm standard-errors. For specifications with Year FE, they
are based on Firm and Year standard-errors. Significance Codes: ***: 0.01, **: 0.05, *: 0.1, +:
0.2.
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Figure C.4: ICCA Response to Interaction of US MPs and Clean Energy, Firm level

Notes: The dashed ribbons are the 90 percent confidence intervals generated based on standard
errors clustered to firm and year.
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Figure C.5: Average Pollution Response to MPs by State

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. When taking the average across the time horizon from the month the MPs
is realized to 20 months later, insignificant values at a 90 percent confidence level are treated as
zero. If the region has both significantly positive and significantly negative responses, the average
response by the region is interpreted as zero. Extreme values with absolute values greater than
0.25 are winsorized on the map.
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Figure C.6: Pollution Response to Interaction of US MPs and Clean Investment Share
of GDP, State level

Notes: The dashed ribbons are the 90 percent confidence intervals generated based on standard
errors clustered to region and year.
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Figure C.7: Average Renewable Energy Usage Ratio by Mesh in 2022

Notes: Regions with firms but without available data are in gray.
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Figure C.8: Pollution Response to Interaction of US MPs and Firm Indicators, Mesh
level

Notes: The dashed ribbons are the 90 percent confidence intervals generated based on standard
errors clustered to region and year.
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Figure C.9: Average Clean Energy New Commission Share by Mesh

Notes: The plants include all power plants commissioned since 2009 and are still operating in
2024.
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Figure C.10: Pollution Response to Interaction of US MPs and Clean Energy New
Commission Share, Mesh level

Notes: The dashed ribbons are the 90 percent confidence intervals generated based on standard
errors clustered to region and year.
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Appendix D Model Details
D.1 Derivation
D.1.1 First Order Conditions

From the household utility maximization problem, set the Lagrangian:

L =
C̃1−σ
t

1− σ
+

γ

1− b

(
Mt

Pt

)1−b

− χ
L1+η
t

1 + η

λt

[
Mt

Pt
+
Bt

Pt
+ Ct +

Kt

1− g
+

Φ

2(1− g)2

(
Kt

Kt−1

− 1

)2

Kt−1 + ϕ1U
ϕ2
t (1− Γ)AtK

α
t−1L

1−α
t

−Mt−1

Pt
− Bt−1Rt−1

Pt
− wtLt −

(
rt +

1− δ

1− g

)
Kt−1 − Πt

]
(D.1)

Here, the capital adjustment cost is:

Φ

2

(
It

Kt−1

− δ

1− g

)2

Kt−1 =
Φ

2

(
Kt − (1− δ)Kt−1

(1− g)Kt−1

− δ

1− g

)2

Kt−1

=
Φ

2(1− g)2

(
Kt

Kt−1

− 1

)2

Kt−1

(D.2)

Derive the FOC w.r.t. Ct, Lt,
(
M
P

)
t
, Bt, and Kt.29

C̃−σ
t [wt − (1− α)ϕ1U

ϕ2
t (1− Γ)AtK

α
t−1L

−α
t ] = χLηt (D.3)

γ

C̃−σ
t

(
Mt

Pt

)b
=
Rt − 1

Rt

(D.4)

C̃−σ
t = βC̃−σ

t+1Rt
Pt
Pt+1

(D.5)

C̃−σ
t

[
1

1− g
+

Φ

(1− g)2

(
Kt

Kt−1

− 1

)]

= βC̃−σ
t+1

(rt+1 +
1− δ

1− g

)
+

Φ

2(1− g)2

(
Kt+1

Kt

− 1

)(
Kt+1

Kt

+ 1

)
︸ ︷︷ ︸

A

−αϕ1U
ϕ2
t+1(1− Γ)At+1K

α−1
t L1−α

t+1︸ ︷︷ ︸
B


(D.6)

29The direct FOC w.r.t. C̃t is C̃−σ
t = −λt dCt

dC̃t
. Therefore, the FOC w.r.t. Ct is linearly convertible

to the FOC w.r.t. C̃t with a factor of dCt

dC̃t
. This property simplifies the household FOC conditions, as

other FOC conditions are based on C̃t instead of Ct.

83



The relationship between R and r is:

Rt

[
1

1− g
+

Φ

(1− g)2

(
Kt

Kt−1

− 1

)]
=
Pt+1

Pt

[(
rt+1 +

1− δ

1− g

)
+

Φ

2(1− g)2

(
Kt+1

Kt

− 1

)(
Kt+1

Kt

+ 1

)
− αϕ1U

ϕ2
t+1(1− Γ)At+1K

α−1
t L1−α

t+1

]
(D.7)

From the firm profit maximization problem, derive the FOC w.r.t. wt, rt, and Ut.

wt = (1− α)MCP t
Yt
Lt

(D.8)

rt = αMCP t
Yt
Kt−1

(D.9)

ϕ1ϕ2U
ϕ2−1
t = τφt ⇒ Ut =

(
τφt
ϕ1ϕ2

) 1
ϕ2−1

(D.10)

The New Keyesian Price Curve (NKPC) is:

π̂t = βπ̂t+1 + κM̂CP t, κ =
(1− ω)(1− βω)

ω
(D.11)

D.1.2 Steady State

To my knowledge so far, the steady state has no analytical solution. I use function
iteration method with r starting from

(
1
β
− (1− δ)

)
1

1−g and φ starting from φf .30

From the TFP dynamics:
A = 1 (D.12)

At the steady state, price does not change:

πt :=
Pt
Pt−1

⇒ π = 1 (D.13)

From the household FOC w.r.t. Bt:
R =

1

β
(D.14)

From the firm FOC w.r.t. Ut:

U =

(
τφ

ϕ1ϕ2

) 1
ϕ2−1

(D.15)

30From the relationship between R and r, R( 1
1−g ) =

1
β(1−g) = r+ 1−δ

1−g −αϕ1U
ϕ2 Y

K . Ignoring the cost

of abatement effort, r =
(

1
β − (1− δ)

)
1

1−g . As 1
β(1−g) = r + 1−δ

1−g − ϕ1U
ϕ2

MCP r = r + 1−δ
1−g −

ϕ1

(
τφ

ϕ1ϕ2

) ϕ2
ϕ2−1

MCP r,
the actual r should be greater than the starting value.
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From the competitive market equilibrium:
(1− Γ)KαL1−α = rK + wL+ τ(1− U)Y + ϕ1U

ϕ2Y

⇒ {(1− Γ)(1− τ(1− U)φ− ϕ1U
ϕ2)}︸ ︷︷ ︸

Friction

KαL1−α − wL− rK = 0

⇒ {· · · }
(
K

L

)α
L = r

(
K

L

)
L+ w

(D.16)

From the firm FOC w.r.t. wt and rt:

w = (1− α)MCP
Y

L

r = αMCP
Y

K

⇒ w =
1− α

α
r
K

L

⇒ {· · · }
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L
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) 1
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, knofric
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) 1
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α
r

(
α{· · · }
r

) 1
1−α

= (1− α)
(α
r

) α
1−α {· · · }

1
1−α

(D.17)

From traditional capital dynamics:

I =
δ

1− g
K

def
= sIY ⇒ K =

(1− g)sI
δ

Y ⇒ L =
(1−g)sI

δ
Y

kl
=

(1− g)sI
δ

(
α{· · · }
r

)− 1
1−α

Y

⇒ Y = (1− Γ)KαL1−α = (1− Γ)
(1− g)sI

δ

(
α{· · · }
r

)−1

Y

⇒ sI =
αδ{· · · }

r(1− g)(1− Γ)
(D.18)

From the goods market clearing condition:
Y = C + I + ϕ1U

ϕ2Y

⇒ C = (1− sI − ϕ1U
ϕ2)Y

(D.19)

By the definition of C̃:

C̃ =
[
aC1−ϕ + (1− a)(Z−1)1−ϕ

] 1
1−ϕ (D.20)

From the household FOC w.r.t. Lt:

Z = (1− U)φY =
(1− U)φC

1− sI − ϕ1Uϕ2

L =
(1− g)sI

δ

(
α{· · · }
r

)− 1
1−α

Y =
(1− g)sI

δ

(
α{· · · }
r

)− 1
1−α C

1− sI − ϕ1Uϕ2


⇒

[
aC1−ϕ + (1− a)

(
1− sI − ϕ1U

ϕ2

(1− U)φC

)1−ϕ
] −σ

1−ϕ

[w − (1− α)ϕ1U
ϕ2(1− Γ)kαl ]

= χ

[
(1− g)sI

δ

(
α{· · · }
r

)− 1
1−α C

1− sI − ϕ1Uϕ2

]η
(D.21)
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Solve the C.

Obtain other steady state values subsequently.

L =
(1− g)sI

δ

(
α{· · · }
r

)− 1
1−α C

1− sI − ϕ1Uϕ2

Y =
C

1− sI − ϕ1Uϕ2

Z = (1− U)φY

C̃ =
[
aC1−ϕ + (1− a)(Z−1)1−ϕ

] 1
1−ϕ

I = sIY

(D.22)

N =
T + gI

δN
=

τ

δN
(1−U)φY+

gI

δN
=

τ

δN

1−

τφf
(

µ
µ+N

)h
ϕ1ϕ2


1

ϕ2−1

φf
(

µ

µ+N

)h
Y+

gI

δN

(D.23)
Solve the N .

φ = φf
(

µ

µ+N

)h
(D.24)

Compare the implied φ with the starting value, iterate until convergence.

From the relationship between R and r:

r =
1

1− g

(
1

β
− (1− δ)

)
+ αϕ1U

ϕ2(1− Γ)kα−1
l (D.25)

Compare the implied r with the starting value, iterate until convergence.

D.1.3 Log Linearlization

From the household FOC w.r.t. Bt, Kt, and Ct:

R̂t − π̂t+1 = σ( ̂̃Ct+1 − ̂̃Ct) (D.26)

R̂t − π̂t+1 +
Φ
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Φ
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A

−αϕ1U
ϕ2
Y

K
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B


r + 1−δ

1−g − αϕ1Uϕ2 Y
K

(D.27)

ηL̂t + σ ̂̃Ct

=
w
(
M̂CP t +

α
1−α(K̂t−1 − Ŷt)

)
− ((1− α)ϕ1U

ϕ2(1− Γ)kαl )(ϕ2Ût + At + αK̂t−1 − αL̂t)

w − (1− α)ϕ1Uϕ2(1− Γ)kαl
(D.28)
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From the firm production function:

Ŷt = Ât + αK̂t−1 + (1− α)L̂t (D.29)

From traditional capital dynamics:

K̂t = (1− δ)K̂t−1 + δÎt (D.30)

From the goods market clearing condition:

Ŷt =
(1− sI − ϕ1U

ϕ2)Ĉt + sI Ît
1− ϕ1Uϕ2

(D.31)

NKPC:
π̂t = βπ̂t+1 + κM̂CP t (D.32)

From the household FOC w.r.t. (M
P
)t:

b(M̂t − P̂t) = σ ̂̃Ct −
β

1− β
R̂t (D.33)

Monetary policy:
R̂t = ρRR̂t−1 + (1− ρR)(ψππ̂t + ψY Ŷt) + εR,t (D.34)

TFP:
Ât = ρAÂt−1 + (1− ρA)εA,t (D.35)

From the firm FOC w.r.t. Ut:
(ϕ2 − 1)Ût = φ̂t (D.36)

From the pollution factor as a function of environmental capital, with sticky technology:

φ̂t = ωφ

(
−h N

µ+N
N̂t

)
+ (1− ωφ)φ̂t−1 (D.37)

From the environmental capital dynamics:

N̂t =
(1− δN)NN̂t−1 + T T̂t + gIÎt

(1− δN)N + T + gI
(D.38)

From the pollution determination:

Ẑt = φ̂t + Ŷt −
U

1− U
Ût (D.39)

From the pollution tax as a function of pollution, with linearly proportional relationship:

T̂t = Ẑt (D.40)

By the definition of C̃:

̂̃Ct =
aC1−ϕĈt + (1− a)(Z−1)1−ϕ(−Ẑt)

aC1−ϕ + (1− a)(Z−1)1−ϕ
(D.41)
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Since the model-generated elasticity of environmental capital to MPs, εNI relative to
that of traditional capital, εKI , does not match the empirical results, I adjust the response
dynamics of the two types of capital with a difference operator ∆ε.

K̂t = (1− δ)K̂t−1 + (δ −∆ε)Ît

N̂t =
(1− δN)NN̂t−1 + T T̂t + gIÎt

(1− δN)N + T + gI
+
K

N
∆εÎt

(D.42)

The magnitude of the difference operator depends on the relative elasticity, εNI

εKI
.

εNI =
gI

(1− δN)N + T + gI
+
K

N
∆ε

εKI = δ −∆ε


⇒ εNI

εKI
=

gI
(1−δN )N+T+gI

+ K
N
∆ε

δ −∆ε

⇒ ∆ε =
δ
(
εNI

εKI

)
− gI

(1−δN )N+T+gI

K
N
+ εNI

εKI

(D.43)

From above, when the relative elasticity is 1, ∆ε < 1 because the government partly funds
the clean investment. The model assumes that only firms maximize marginal discounted
cash flow and match the relative elasticity with the relative duration. εNI

εKI
is only for

firms’ private investment and ignores government behavior. Therefore, I have to multiply
a factor, ξ, when obtaining the difference operator. As the difference operator should be
zero when εNI

εKI
= 1, I have:

ξ =
gI

δ[(1− δN)N + T + gI]

⇒ ∆ε =
δξ
(
εNI

εKI

)
− gI

(1−δN )N+T+gI

K
N
+ ξ εNI

εKI

(D.44)

The difference operator is partially tuned down because of government involvement
in clean investment.

D.1.4 Relative Elasticity

This part derives the relative elasticity of environmental versus traditional capital after
a MPs.

Πt = PtYt − wtLt − rtKt − Tt − CAt

=
[
Pt − τ(1− Ut)φt − ϕ1U

ϕ2
t

]
Yt − wtLt − rtKt

=

[
Pt − τ

(
1−

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t

)
φt − ϕ1

(
τ

ϕ1ϕ2

) ϕ2
ϕ2−1

φ
ϕ2

ϕ2−1

t

]
Yt − wtLt − rtKt

(D.45)
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From the relationship between φ̃ and N :

dφ̃t
dNt

= φfh

(
µ

µ+Nt

)h−1

µ
−1

(µ+Nt)2
=

−φfhµh

(µ+Nt)h+1

⇒ dφ̃t+n
dNt+n

=
−φfhµh

(µ+Nt+n)h+1

(D.46)

φt = ωφφ̃t + (1− ωφ)ωφφ̃t−1 + (1− ωφ)
2ωφφ̃t−2 + · · ·+ (1− ωφ)

nωφφ̃t−n + (1− ωφ)
n+1φt−n−1

⇒ φt+n = ωφφ̃t+n + (1− ωφ)ωφφ̃t+n−1 + · · ·+ (1− ωφ)
nωφφ̃t + (1− ωφ)

n+1φt−1

= ωφ

n∑
i=0

(1− ωφ)
n−iφ̃t+i + (1− ωφ)

n+1φt−1

⇒ dφt+n
dNt

= ωφ

n∑
i=0

(1− ωφ)
n−idφ̃t+i

dNt

= ωφ

n∑
i=0

(1− ωφ)
n−i dφ̃t+i

dNt+i

dNt+i

dNt

(D.47)

A simplification here is:
dNt+1

dNt

= 1− δN (D.48)
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While the complete form should be:

dNt+1

dNt

= 1− δN +
dτ(1− Ut+1)φt+1Yt+1

dNt

= 1− δN + τYt+1
d(1− Ut+1)φt+1

dNt

= 1− δN + τYt+1

(
(1− Ut+1)

dφt+1

dNt

+ φt+1
d(1− Ut+1)

dNt

)
= 1− δN + τYt+1ωφ

(
1−

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t − φt+1

(
τ

ϕ1ϕ2

) 1
ϕ2−1 1

ϕ2 − 1

)

×
(
dφ̃t+1

dNt

+ (1− ωφ)
dφ̃t
dNt

)
= 1− δN + τYt+1ωφ

(
1−

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t − φt+1

(
τ

ϕ1ϕ2

) 1
ϕ2−1 1

ϕ2 − 1

)
φfhµh

×
(

−1

(µ+Nt+1)h+1

dNt+1

dNt

+ (1− ωφ)
−1

(µ+Nt+1)h+1

)
⇒dNt+1

dNt

=
1− δN + τYt+1ωφ[· · · ]φfhµh(1− ωφ)

−1
(µ+Nt)h+1

1− τYt+1ωφ[· · · ]φfhµh −1
(µ+Nt+1)h+1

,

· · · =

(
(1− ωφ)φt + ωφφ

f

(
µ

µ+Nt+1

)h) 1
ϕ2−1

+

(
(1− ωφ)φt + ωφφ

f

(
µ

µ+Nt+1

)h)
1

ϕ2 − 1

= 1− δ∗N
(D.49)

The result above implies the actual δ∗N > δN . Therefore, the duration will be slightly
overestimated using the simplification. However, my numerical simulation of up to 1,200
months’ horizon under baseline calibration implies the impact is trivial.

dφt+n
dNt

= ωφ

n∑
i=0

(1− ωφ)
n−i dφ̃t+i

dNt+i

dNt+i

dNt

= ωφ

n∑
i=0

(1− ωφ)
n−i −φfhµh

(µ+Nt+i)h+1

(
dNt+1

dNt

)i
= ωφφ

fhµh
−(1− ωφ)

n

(µ+Nt)h+1

n∑
i=0

(
1− δN
1− ωφ

)i
= −ωφφ

fhµh((1− δN)
n+1 − (1− ωφ)

n+1)

(µ+Nt)h+1(ωφ − δN)
< 0

(D.50)

as ωφ > δN
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Look back at the firm’s profit:

Πt =

[
Pt − τ

(
1−

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t

)
φt − ϕ1

(
τ

ϕ1ϕ2

) ϕ2
ϕ2−1

φ
ϕ2

ϕ2−1

t

]
Yt − wtLt − rtKt

(D.51)
Then, derive the MPI of two capital types:

MPIKt =
∞∑
n=1

1

(1 + rt)n
dΠt+n

dKt+n−1

dKt+n−1

dKt−1

=
∞∑
n=1

1

(1 + rt)n
([...]t+n

αYt+n
Kt+n−1

− rt)(1− δ)n
(D.52)

MPINt =
∞∑
n=1

1

(1 + rt)n
dΠt+n

dφt+n

dφt+n
dNt

=
∞∑
n=1

1

(1 + rt)n
dφt+n
dNt

d

dφt+n

[
τ

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1
+1

t+n − τφt+n − ϕ1

(
τ

ϕ1ϕ2

) ϕ2
ϕ2−1

φ
ϕ2

ϕ2−1

t+n

]

=
∞∑
n=1

1

(1 + rt)n
dφt+n
dNt

[
τ

ϕ2 − 1

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t+n + τ

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t+n − τ

− ϕ1ϕ2

ϕ2 − 1

(
τ

ϕ1ϕ2

) ϕ2
ϕ2−1

φ
1

ϕ2−1

t+n

]

=
∞∑
n=1

1

(1 + rt)n
dφt+n
dNt

[
ϕ2τ

ϕ2 − 1

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t+n − τ − τ

ϕ2 − 1

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t+n

]

=
∞∑
n=1

1

(1 + rt)n
dφt+n
dNt

((
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t+n − 1

)
︸ ︷︷ ︸

<0

τ

=
∞∑
n=1

τ

(1 + rt)n

(
1−

(
τ

ϕ1ϕ2

) 1
ϕ2−1

φ
1

ϕ2−1

t+n

)
ωφφ

fhµh

(µ+Nt)h+1(ωφ − δN)
((1− δN)

n+1 − (1− ωφ)
n+1)

(D.53)

Calculate the durations:31

DurKt =

∞∑
n=0

n
(

1−δ
1+rt

)n
∞∑
n=0

(
1−δ
1+rt

)n
=

1−δ
1+rt

1− 1−δ
1+rt

=
1− δ

rt + δ

(D.54)

31Here I use the property:
n∑

k=0

kak = a
1−a (

1−an+1

1−a − (n+ 1)an) ∀0 < a < 1.
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DurNt =

∞∑
n=0

n

((
1−δN
1+rt

)n+1

−
(

1−ωφ

1+rt

)n+1
)

∞∑
n=0

((
1−δN
1+rt

)n+1

−
(

1−ωφ

1+rt

)n+1
)

=

∞∑
n=0

(n+ 1)

((
1−δN
1+rt

)n+1

−
(

1−ωφ

1+rt

)n+1
)

∞∑
n=0

((
1−δN
1+rt

)n+1

−
(

1−ωφ

1+rt

)n+1
) − 1

=

1−δN
1+rt

(
rt+ωφ

1+rt

)2
− 1−ωφ

1+rt

(
rt+δN
1+rt

)2(
ωφ−δN
1+rt

)(
rt+δN
1+rt

)(
rt+ωφ

1+rt

) − 1

=
(1− δN)(rt + ωφ)

2 − (1− ωφ)(rt + δN)
2

(ωφ − δN)(rt + δN)(rt + ωφ)
− 1

=
1

ωφ − δN

(
(1− δN)(rt + ωφ)

rt + δN
− (1− ωφ)(rt + δN)

rt + ωφ

)
− 1

(D.55)

Then, the relative sensitivity is:(
εNI
εKI

)
t

=
DurNt
DurKt

(D.56)

D.1.5 Duration and Technology Adaption

For the duration of environmental capital:

DurNt =
1

ωφ − δN

(
(1− δN)(rt + ωφ)

rt + δN
− (1− ωφ)(rt + δN)

rt + ωφ

)
− 1 (D.57)
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Take derivative w.r.t. ωφ:

∂DurNt
∂ωφ

= − 1

(ωφ − δN)2

(
(1− δN)(rt + ωφ)

rt + δN
− (1− ωφ)(rt + δN)

rt + ωφ

)
+

1

ωφ − δN

(
1− δN
rt + δN

− (rt + δN)
−(rt + ωφ)− (1− ωφ)

(rt + ωφ)2

)
=

1

ωφ − δN

(
− (1− δN)(rt + ωφ)

(rt + δN)(ωφ − δN)
+

(1− ωφ)(rt + δN)

(rt + ωφ)(ωφ − δN)
+

1− δN
rt + δN

+
(rt + δN)(1 + rt)

(rt + ωφ)2

)
=

1

ωφ − δN

(
(1− ωφ)(rt + δN)

2 − (1− δN)(rt + ωφ)
2

(rt + δN)(rt + ωφ)(ωφ − δN)
+

(rt + δN)(1 + rt)

(rt + ωφ)2
+

1− δN
rt + δN

)
=

1

ωφ − δN

(
(1− ωφ)(rt + δN)

2(rt + ωφ)− (1− δN)(rt + ωφ)
3 + (rt + δN)

2(1 + rt)(ωφ − δN)

(rt + δN)(rt + ωφ)2(ωφ − δN)

+
1− δN
rt + δN

)
=

1

(rt + δN)(rt + ωφ)2(ωφ − δN)2
(
(1− ωφ)(rt + δN)

2(rt + ωφ)− (1− δN)(rt + ωφ)
3

+(rt + δN)
2(1 + rt)(ωφ − δN) + (1− δN)(rt + ωφ)

2(ωφ − δN)
)

=
(1− ωφ)(rt + δN)

2(rt + ωφ) + (1 + rt)(rt + δN)
2(ωφ − δN)− (1− δN)(rt + δN)(rt + ωφ)

2

(rt + δN)(rt + ωφ)2(ωφ − δN)2

=
(1− ωφ)(rt + δN)(rt + ωφ) + (1 + rt)(rt + δN)(ωφ − δN)− (1− δN)(rt + ωφ)

2

(rt + ωφ)2(ωφ − δN)2
< 0

(D.58)

Look at the numerator, which determines the sign of the first-order derivative:

(1− ωφ)(rt + δN)(rt + ωφ) + (1 + rt)(rt + δN)(ωφ − δN)− (1− δN)(rt + ωφ)
2

= (rt + δN)rt + (rt + δN)(1− rt)ωφ + (rt + δN)(−ω2
φ) + (1 + rt)(rt + δN)ωφ

− (rt + δN)(1 + rt)δN − (1− δN)r
2
t − (1− δN)ω

2
φ − (1− δN)2rtωφ

= −(1 + rt)ω
2
φ + 2δN(1 + rt)ωφ − δ2N(1 + rt)

(D.59)

Let f(x) = −(1 + rt)x
2 + 2δN(1 + rt)x − δ2N(1 + rt), x ∈ (0, 1). Take derivative

of f(x) w.r.t x, obtain: f ′(x) = −2(1 + rt)x + 2δN(1 + rt). Therefore, x∗ = δN , and
f(x∗) = f(δN) = 0. Then, f(x) ≤ 0 ∀x ∈ (0, 1).

Since ∂DurNt
∂ωφ

≤ 0 as ωφ ∈ (0, 1), when ωφ decreases, DurNt increases.

Then, look at the difference between DurN and DurK :

DurNt −DurKt =
1

ωφ − δN

(
(1− δN)(rt + ωφ)

rt + δN
− (1− ωφ)(rt + δN)

rt + ωφ

)
− 1 + rt
rt + δ

(D.60)

When ωφ = 1:

DurNt −DurKt = (1 + rt)(
1

rt + δN
− 1

rt + δ
) (D.61)
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Therefore, if δN < δ, DurNt − DurKt > 0 ∀ωφ ∈ (δN , 1). If δN > δ, the break
point will be x∗ = x∗(rt, δN) =

−b−
√
b2−4ac
2a

s.t. a = (1 − δN)(rt + δ) − (1 + rt)(rt + δN),
b = 2(1− δN)(rt + δ)rt + (rt + δN)

2(rt + δ)− (1 + rt)(rt + δN)(rt − δN), c = (1− δN)(rt +
δ)r2t − (rt+ δN)

2(rt+ δ) + (1+ rt)(rt+ δN)δNrt, and DurNt −DurKt > 0 ∀ωφ ∈ (δN , x
∗).32

D.1.6 Pollution and Clean Investment Share

From the log linearlized equations, obtain:

Ẑt =

(
1− U

1− U

1

ϕ2 − 1

)
φ̂t + Ŷt (D.62)

After several months, the output gradually recovers, and the impact of pollution
mainly comes from the changed pollution technology. Therefore:

∂Ẑt
∂φ̂t

∣∣∣∣∣
Ŷt=0

= 1− U

1− U

1

ϕ2 − 1
(D.63)

For simplicity, I do not incorporate the gradual technological adoption here. The
dynamics of the case with such gradual adoption are qualitatively identical.

From the log linearlized equation of φ̂t w.r.t. N̂t and that of N̂t w.r.t. N̂t−1, T̂t, and
Ît:

N̂t =
(1− δN)NN̂t−1 + T T̂t + gIÎt

(1− δN)N + T + gI
+
K

N

δξ
(
εNI

εKI

)
− gI

(1−δN )N+T+gI

K
N
+ ξ εNI

εKI

Ît (D.64)

combine with that of T̂t w.r.t. Ẑt and that of Ẑt w.r.t φ̂t and Ŷt:

T̂t = Ẑt =

(
1− U

1− U

1

ϕ2 − 1

)
φ̂t + Ŷt (D.65)

Therefore:(
1 + h

T

(1− δN)N + T + gI

(
1− U

1− U

1

ϕ2 − 1

)
N

µ+N

)
N̂t

=
(1− δN)N

(1− δN)N + T + gI
N̂t−1 +

 gI

(1− δN)N + T + gI
+

(
εNI

εKI

)
− 1

N
δK

(
εNI

εKI

)
+ (1−δN )N+T+gI

gI

 Ît
(D.66)

32Using the parameter estimates by the gradient algorithm, x∗ = 0.1804. Using the Bayesian opti-
mum, x∗ = 0.2716.
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Obtain:

∂Ẑt

∂Ît

∣∣∣∣∣
Ŷt=0

=

(
1− U

1− U

1

ϕ2 − 1

)(
−h N

µ+N

) gI
(1−δN )N+T+gI

+

(
εNI
εKI

)
−1

N
δK

(
εNI
εKI

)
+

(1−δN )N+T+gI

gI

1 + h T
(1−δN )N+T+gI

(
1− U

1−U
1

ϕ2−1

)
N

µ+N

s.s.
=

(
1− U

1− U

1

ϕ2 − 1

)(
−h N

µ+N

) gI
N
+

(
εNI
εKI

)
−1

N
I

(
( εNI
εKI

)
1−g

+ 1
g

)

1 + h T
N

(
φ
φf

) 1
h
(
1− U

1−U
1

ϕ2−1

)

= −h N

µ+N

gI
N
+

(
εNI
εKI

)
−1

N
I

(
( εNI
εKI

)
1−g

+ 1
g

)

1
1− U

1−U
1

ϕ2−1

+ h T
N

(
φ
φf

) 1
h

(D.67)

When g increases, φ decreases, U = ( τφ
ϕ1ϕ2

)
1

ϕ2−1 decreases, U
1−U decreases, (1− U

1−U
1

ϕ2−1
)

increases. As Z decreases after g increases, T = τZ decreases. As N increases when g
increases, T

N
decreases when g increases. At s.s., δN = T+gI

N
. Therefore, when g increases,

gI
N

increases. The first fraction increases as N increases. For the second fraction, the
denominator decreases as all components that vary with g decrease. For the numerator,
it increases when εNI

εKI
is unity as only the first term is non-zero, and it increases with g.

When εNI

εKI
> 1, the second term cannot dominate with g when εNI

εKI
is not far away from

1.33 Therefore,
∣∣∣∣ ddg [ ∂Ẑt

∂Ît

∣∣∣
Ŷt=0

]∣∣∣∣ > 0, and pollution increases more after a positive MPs if
the clean investment share increases.

33Look at the term gI
N +

(
εNI
εKI

)
−1

N
I

(
εNI
εKI

)
1−g + 1

g

 . Numerically, for the initially calibrated parameters, when

g increases by 0.0001 (step), the term increases by 0.0049 times step. For the parameters estimated by
the gradient algorithm, the increase is 0.0008 times step. For the parameters of the Bayesian optimum,
the increase is 0.0032 times step.
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D.2 Estimation
Generated chains of parameters
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Figure D.1: Bayesian Estimation of the Model: Statistics

Notes: (a) I apply the Metropolis-Hastings algorithm with Random Walk draws. The first 100,000
draws use the identity matrix to draw shifts from a multivariable normal distribution. After the
100,000 draws, I calculate the covariance matrix of the generated chains of parameters and use it
as the covariance matrix of the random draw for the next 250,000 draws.
(b) As in Uribe and Schmitt-Grohe (2017), I assign each estimated parameter a uniform prior with
an upper bound and a lower bound using reasonable values, and I skip a draw if any of the result-
ing parameter is out of the boundary, or if there is no stable steady state based on the generated
parameters.
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Table D.1: Bayesian Estimation Statistics

Variable Distribution Prior Posterior

Mean Min Max SD Min 5th
PercentileMedian 95th

Percentile Max

Parameters
a Uniform 0.75 0.5 1 0.08333 0.5423 0.7368 0.7747 0.8092 0.9189
δN Uniform 0.0055 0.001 0.01 0.0015 0.0014 0.0075 0.0085 0.0093 0.0100
h Uniform 0.55 0.1 1 0.15 0.3903 0.8586 0.9245 0.9667 1.0000
µ Uniform 5.5 1 10 1.5 1.0001 1.5797 2.3921 3.7892 9.9975
ωφ Uniform 0.505 0.01 1 0.165 0.0263 0.3391 0.5618 0.7816 1.0000
τ Uniform 0.255 0.01 0.5 0.08167 0.0100 0.1012 0.2049 0.3319 0.4999
g Uniform 0.255 0.01 0.5 0.08167 0.0100 0.0788 0.1351 0.2041 0.4997
Derived Variables
ε
IN ,MP

ε
IK,MP

1.9082 1.9377 2.0377 2.2753 3.3900

Notes: (a) I apply the Metropolis-Hastings algorithm with Random Walk draws. The first 100,000
draws use the identity matrix to draw shifts from a multivariable normal distribution. After the
100,000 draws, I calculate the covariance matrix of the generated chains of parameters and use it
as the covariance matrix of the random draw for the next 250,000 draws.
(b) The posterior statistics shown are for the last 250,000 draws.

D.3 Comparative Statics
Response to MPs, Varying g,  = 0.2
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Figure D.2: IRF, by Environmental Capital Share

Notes: For the parameters to be estimated, the steady-state values are the initial values in the
estimations.
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Response to MPs, Varying 
Z,mp

,  = 0.2, g = 0.2, a = 0.9, 
Z
 = -3
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Figure D.3: IRF, by MP Response Coefficient to Pollution

Notes: For the parameters to be estimated, the steady-state values are the initial values in the
estimations.
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Response to MPs, Varying 
Z
,  = 0.2, g = 0.2, a = 0.9
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Figure D.4: IRF, by Pollution Tax Response Coefficient to Pollution

Notes: For the parameters to be estimated, the steady-state values are the initial values in the
estimations.
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Appendix E More Results on Extension

Figure E.1: Global Pollution Dyamics

Notes: The lambda parameter of the HP filter is 14,400. The gray rectangle represents the period
from December 2007 to June 2009, corresponding to the Global Financial Crisis (GFC).

Figure E.2: Pollution Change from 2009 to 2023 by Country and Region

Notes: Log change in pollution is the change in PC1. Extreme values with absolute values greater
than 0.5 are winsorized on the map.
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Figure E.3: Ratio of Clean Energy in Newly Commissioned Power Plant Capacity from
2009 to 2023 by Country and Region

Notes: The ratio is calculated based on the cumulative new commission from 2009 to 2023 by
technology.
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Figure E.4: Pollution Response to MPs, Baseline (US and EM)

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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Figure E.5: Average NTL Response to MPs by Country and Region

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. When taking the average across the time horizon from the month the MPs
is realized to 20 months later, insignificant values at a 90 percent confidence level are treated as
zero. If the region has both significantly positive and significantly negative responses, the average
response by the region is interpreted as zero. Extreme values with absolute values greater than 2
are winsorized on the map.
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Figure E.6: Exchange Rate Response to MPs

Notes: MPs is aggregated to the monthly frequencies consistent with the dependent variable. The
number of lags of the dependent variable (Q) and the shock (M) are selected by the AIC criteria
for up to 4 periods. The dashed ribbons are the 90 percent confidence intervals generated based on
the Newey-West standard errors.
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