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Abstract

This paper examines the spillover effects of weather events on inflation via commod-
ity prices, utilizing a bottom-up approach enhanced by forward-looking Monte Carlo
simulations. The SERENA methodology, developed for this study, facilitates the inte-
gration of geospatial climate models into economic analysis. By leveraging Represen-
tative Concentration Pathways (RCP) scenarios and data from the Atmosphere-Ocean
General Circulation Models (AOGCMs), we assess how climate-induced fluctuations in
commodity prices affect inflation. The inclusion of Monte Carlo simulations captures
the dynamic and uncertain nature of weather patterns, enabling robust forecasts un-
der varying climate scenarios. Our findings indicate significant spillover effects, with
extreme weather driving commodity price shocks of up to 100% by 2040. These price
shocks, in turn, exert upward pressure on inflation, with a 1% rise in commodity prices
leading to an average 2% increase in US CPI inflation. These results provide valu-
able insights for policymakers and investors aiming to understand the economic and
financial impacts of climate change.
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1 Introduction

Anthropogenic climate change and its influence on extreme weather events have been ev-
ident for several decades, in particular in the slowing down of production and agriculture
(Ortiz-Bobea et al., 2021). In France, for instance, climate change has manifested in rising
temperatures, more frequent heatwaves, intense rainfall, floods, rising sea levels, and severe
storms (World Bank, 2021). Notably, extreme heatwaves have exacerbated the occurrence of
wildfires, causing widespread destruction of infrastructure. According to Abatzoglou et al.
(2019), the frequency of fire-favorable weather is projected to increase globally due to cli-
mate change, a trend also confirmed for France (Barbero et al., 2020; Fargeon et al., 2020).
Furthermore, the risk of fire weather doubles when global temperatures exceed 3°C compared
to 2°C above pre-industrial levels. Among various sectors, including industry and tourism,
agriculture is particularly vulnerable to the impacts of climate change.

This paper examines the transmission of climate-related shocks to inflation and fixed
income markets, with significant implications for financial decision-making by portfolio and
asset managers. The modeling framework, inspired by Le Guenedal et al. (2022), follows a
multi-step process that maps the transmission channels of climate variables from CMIP mod-
els1 to financial asset prices. Initially, representative variables of abnormal (and extreme)
climate conditions are constructed. As illustrated in Figure 1, the first step involves extract-
ing signals from climate models that capture extreme events. The second step assesses the
impact of these events on agricultural production. Production shocks subsequently lead to
price shocks in commodity markets, influencing inflation and emerging market bond spreads.
The study integrates both historical data calibration and future simulations using climate
models.

Figure 1: Propagation of climate to bond spreads

1The Coupled Model Intercomparison Project (CMIP) facilitates comparison and harmonization of out-
puts from climate models, such as atmosphere and ocean general circulation models (AOGCMs), and helps
estimate future climate conditions under various Representative Concentration Pathways (RCPs).
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Climate data Previous studies have demonstrated the utility of these geospatial datasets
for economic and financial research, supporting the integration of climate data into broader
economic analyses. Specifically, ERA5 global daily dataset is used by Hogan and Schlenker
(2024), where the authors explain non-linear relationships between daily temperature ex-
tremes and US agricultural yields. The results indicate that the non-linear temperature
relationship with yields is correctly predicted with ERA5 daily data, and more so when
transforming the data into daily temperature extremes than when using average tempera-
tures. Moreover, the authors suggest that correctly capturing the effects of daily extremes
is more important for a good model than the choice of weather data.

Other examples include Kotz et al. (2023) where ERA5 reanalysis of historical observa-
tions is used to define the implications of climate change for past and future inflation. The
authors find that increasing average temperatures result in non-linear upwards inflationary
pressures that last for over 1 year. Also, future warming might cause a spike of 0.92-3.23
and 0.32-1.18 for food and headline inflation with respect with different climate scenarios. A
similar result with the same climate data is found by Ciccarelli et al. (2023), precisely that
increases in monthly mean temperatures have inflationary pressures in summer and autumn
for a study of four EU economies, and the response was the strongest in the warmest coun-
tries. Stone et al. (2008) report that global reanalysis datasets are useful for climate risk
management.

Pagani et al. (2017) forecast sugarcane yields using agroclimatic indicators in the largest
sugarcane-producing country, Brazil. The study uses linear regressions where agroclimatic in-
dicators and outputs of the sugar Canegro model are fitted with historical yields. The results
indicate that agroclimatic indicators explain 38% of yield variability during the growth phase
from January to April, and 73% during the the harvesting period in September–October.
Tigchelaar et al. (2018) quantify how yield variability will change for major corn producing
countries under 2 °C and 4 °C of global warming. Although the results do not take into
account potential breeding innovations, the authors find that as the global mean tempera-
ture increases, coefficient of variation (CV) of corn yields increases significantly due to the
increase in volatility and decrease of mean in yields, and the probability of production losses
increases exponentially with temperature rise.

Pricing The consequences of weather extremes having an impact on agricultural produc-
tion and its transmission to agricultural commodity prices have been explored by several
branches of literature. There is much evidence that temperature anomalies create significant
volatility in agricultural markets. Makkonen et al. (2021) show based on a quantile regres-
sion methodology that there is a decrease in futures returns of soybean, corn and cotton in
low quantiles (bullish markets), and positive impact on the returns soybean, corn, wheat,
cocoa, and cotton in high quantiles (bearish markets). Cai and Sakemoto (2022) show that
El Niño Southern Oscillation1 has a strong relationship with agricultural, food, beverages
and raw material commodity prices.

Faccia et al. (2021) demonstrate that extreme temperatures impact inflation, as well as
consumer and producer prices, including food prices, across a panel of 48 advanced and
emerging economies. However, while the inflationary pressures on food from hot summers
are evident in the short term, they tend to dissipate in the medium term. Additionally,
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extreme climate change presents significant tail-risk spillover effects on commodity futures
markets, particularly affecting agricultural commodities and energy sectors (Jia et al., 2023).

Kitsios et al. (2022) leverage climate model forecasts of the El Niño Southern Oscillation
(ENSO) to predict commodity prices. Their findings suggest that spot price returns perform
better and surpass models that do not account for ENSO factors. This highlights the added
value of integrating climate insights into investment decisions. Moreover, another study on
the El Niño phenomenon and agricultural commodity markets reveals that, although El Niño
can sometimes reduce commodity production, leading to price hikes, this is not always the
case (Sun et al., 2023). The study suggests that agricultural commodity markets can, at
times, preemptively reflect extreme global climate conditions.

Spillover Commodity price spikes have long been recognized as contributors to inflationary
pressures. De Gregorio (2012) highlights that food inflation exerts a stronger influence on
core inflation than energy inflation. A similar finding is presented by Gelos and Ustyugova
(2017), showing that economies with a higher weight of food in their consumption baskets
experience more pronounced inflation increases from commodity price shocks. Further, an
IMF study (Celasun et al., 2012) suggests that oil and food prices significantly influence
mid-term U.S. inflation (0-5 years), with a direct pass-through from commodity prices to
headline inflation.

Commodity prices are especially important for commodity-dependent economies, serving
as critical determinants of bond spreads for commodity exporters. Bastourre et al. (2012)
examines emerging countries specializing in commodity production and confirms the hy-
pothesis that commodity prices are negatively correlated with bond spreads. Arezki and
Brückner (2012) presents an intriguing finding that commodity price booms lower sovereign
bond spreads in emerging democracies, while raising spreads in autocratic regimes. This
result is linked to real GDP per capita growth, which increases in democracies but decreases
in autocracies when commodity prices rise.

In fact, Drechsel and Tenreyro (2018) provide a detailed explanation of how emerging
economies experience more volatile economic cycles. By modeling an economy where rising
commodity prices reduce interest rate spreads, they demonstrate positive effects on GDP,
consumption, and investment, along with higher volatility in consumption and investment,
and adverse effects on the trade balance. This model is empirically validated using Argentine
data, which shows that commodity price increases not only have a significant impact on
spreads but also amplify output shocks, thereby exacerbating economic cycles in emerging
markets.

Summary This paper aims to develop and validate a methodology for processing climate
model data to detect both positive and negative weather extremes. This approach is designed
to accommodate different types of data, including reanalysis, climate models, and meteo-
rological observations, which have distinct characteristics. We propose an advanced signal
that can be applied across these data types, enhancing the detection of extreme weather
events. Specifically, we utilize ERA5 monthly reanalysis data (Muñoz Sabater, 2019) and
agroclimatic indicators from 1951 to 2099, derived from Copernicus climate projection data
(Nobakht et al., 2019), to predict the impact of climate variability on agricultural produc-
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tion and commodity prices. The resulting production and price shocks are further analyzed
for their effects on financial markets, with particular attention to the propagation of these
shocks to inflation.

Our contributions to the literature are threefold. First, we introduce a novel methodolog-
ical framework that enables the processing and comparison of results across different climate
databases. This framework is then applied to assess the market and investor implications,
particularly by examining the effects on CPI inflation. Second, to our knowledge, this study
represents one of the first attempts to extend climate modeling to the pricing of emerging
market bonds, exploring the effects of climate-induced spread changes and their implications
for asset managers.

Our findings reveal that climate variables negatively affect crop yields, leading to in-
creased commodity prices. These effects are more pronounced when using reanalysis data
compared to climate models, due to differences in their construction. While commodity
prices are sensitive to various climate scenarios, the differences between scenarios remain
marginal before 2040. This results from the fact that CO2 emissions require decades to
manifest their full effects, meaning economies will continue to experience the consequences
of past emissions until 2040, regardless of future emission trajectories. Additionally, we find
that a 1% increase in commodity prices, driven by yield disruptions, results in an approxi-
mate 2% rise in US CPI inflation.

The paper is organized as follows. In Section 2 we present the SERENA data processing
methodology for geospatial climate data, which can be adapted for economic analysis across
various climate databases. We then propose models to measure the transmission of climate
impacts to crop yields, commodity prices, and financial markets. Section 3 provides a de-
scription of the results, followed by a discussion on the challenges portfolio managers face in
accounting for the future risk of more severe climate events in present-day decision-making.

2 Methodology

Extreme event impacts commodity prices as illustrated by Faccia et al. (2021) and Hogan and
Schlenker (2024). In this section, we describe the process to model the transmission channels
from raw climate variables to production and commodity prices, and then to inflation and
bond spreads. The first step is to process the climate metrics and reiterate them on different
climate data (from climate models or reanalysis). We reconsider some of the approaches
introduced in the literature and illustrate the construction of a climate signal.2 Then, we
estimate the impact of our signal on production (Pagani et al. (2017), Sun et al. (2023),
and Tigchelaar et al. (2018)), and the impact of change in production on commodity prices.
Finally, we model the propagation of climate to inflation and sovereign spread following
Hilscher and Nosbusch (2010) with synthetically constructed commodity sensitivity index.

2In the paper, we focus on climate models, but we also introduce processes based on the reanalysis in
the appendix. The data coming from reanalysis had advantage to be more consistent with meteorological
records, and mid-term projections have interesting applications in operational trading.
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2.1 Data

ERA5 reanalysis One of the climate datasets utilized in this study is the ERA5 reanal-
ysis at a monthly frequency (Muñoz Sabater, 2019). Reanalysis data, derived from actual
meteorological records, is crucial for establishing realistic connections between weather and
production before applying tests on climate models. This provides a robust foundation for
comparison. To ensure consistency, we selected similar weather variables available across
all datasets under consideration, focusing on average temperatures and total precipitation.
However, average weather parameters typically lack statistical significance when correlated
with economic data. Therefore, we transformed these variables into extremes or anomalies,
using the SERENA methodology, which is outlined in the following section.

Climate Models Reanalysis data are only available for the past, as they rely on mete-
orological observations. In order to predict future climate, we use athmosphere and ocean
general circulation model (AOGCM). These models provide information about the future
conditions (sea-surface temperature, air temperature, humidity, precipitation, etc.) on grids
pof several resolution, for different altitude (or pressure levels).

From these models, we focus on the Agroclimatic indicators database (Nobakht et al.,
2019) allows to model climate impact on commodities in the future, in this case we use the
range 2011-2040. It is important to consider that as of today, there are several scenarios -
Representative Concentration Pathways (RPC) that project future concentration of green-
house gases (Table 1), and the names of these scenarios represent radiative forcing targets for
2100 in watts per square mettre (W.m−2): 2.6, 4.5, 6.0 and 8.5. The scenarios reflect possible
development trajectories based on social, economic and technological criteria (Copernicus
Climate Change Service, 2021; Met Office, 2018). In this paper, we will only focus on two
scenarios - 2.6 and 8.5 to identify differences in patterns before 2040.

Table 1: Representative Concentration Pathways (RCPs)

RCP 2.6 W.m−2

The most sustainable scenario. CO2 emissions are expected to go to zero by 2100, which requires
negative CO2 emissions coming from, for example, tree absorption. The global warming is
expected to increase by 1°C by the mid-century. This scenario is also associated with massive
decrease in methane emission and increased usage of biofuels.

RCP 4.5 W.m−2

In this scenario, the emissions will peak by 2045 but decline steadily until 2100, and the tem-
perature increase by 2050 is expected to be 1.4°C. In this middle scenario, there is no deviation
from historical socioeconomic trends. Reforestation is possible due to higher yield from cropland
and reduced meat consumption.

RCP 6.0 W.m−2

The emissions peak by 2080, and decline until 2100, and the temperature increase is expected
to be 1.3°C by 2050.

RCP 8.5 W.m−2

The worst case scenario where the emissions continue to rise. While this scenario is unrealistic
until 2100, it is well representative for more recent analysis and the projections until mid-century.
However, this scenario assumes non-implementation of climate policies.

7



System for Evaluating Risks from Extreme Natural Activity on Agriculture

For the main part of the analysis, we use IPSL-CM5A-LR Model (IPSL, France) model
origin which provides a generalized approach to simulating climate dynamics. We also verify
robustness using the MIROC-ESM-CHEM model with (JAMSTEC, Japan) origin in the
Appendix. Again, we focus on average 2-meter temperatures and precipitation sum variables.

Plantation area and production Additionally, we use gridded crop area data for 2020
from newly constructed CROPGRIDS dataframe which is a comprehensive global geo-
referenced dataset containing information about the growth and harvest of crops at 0.05°
resolution in 2020 (Tang et al., 2024) as illustrated in Figure 2.

Figure 2: Crop areas (ha) of corn, cotton, and wheat in 2020
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We merge both datasets (climate raw variables and crop area) by latitude and longitude
a 1° resolution to accommodate the computational limitations of available resources where 1°
of latitude is equal to approximately 111 kilometers at the equator. Figure 2 represents the
crop area of corn, wheat and cotton extracted from CROPGRIDS database. For instance,
corn production is visibly diversified globally, and the areas of intense production are the
United States, Ukraine, China, Brazil, Argentina, Mexico, European Union, India, and
several African countries.

As we further aim to estimate the impact of climate on production or yields, we use
PSD (Production, Supply and Distribution) database (U.S. Department of Agriculture,
Foreign Agricultural Service, 2024) where variables on production, yield, stocks, imports
and exports are available at the country level. Crop yield is a measure of agricultural
production harvested per hectare. This variable is often used in literature as it efficiently
captures the production efficiency related to available harvest.

Remark 1 In this process, we assume that planted areas will not change geographically
for the whole period 2011-2040. This assumption is unrealistic, as the plantations usually
change from year to year only if the weather/soil or even economic conditions make it no
longer profitable to exploit that area and it becomes abandoned. In fact, many areas for
certain crops might become not fertile which will even further push up the prices. We leave
the question of crop areas rotation for further research and focus on the extraction of a
significant econometric signal in this paper.

2.2 SERENA process

Agroclimatic signal processing In this section, we transform weather variables (Nobakht
et al., 2019) described in the paragraph above into extremes, and we test their impact on
production of commodities and crop yield. The transformation is happening in three main
steps. Before the transformations we merge the variables with gridded data of the crop
and harvest area in 2020 (CROPGRIDS) (Tang et al., 2024) assuming that geographical
distribution of cropland remains largely unchanged year over year. We then associate each
coordinate with a country as production database - PSD database (U.S. Department of
Agriculture, Foreign Agricultural Service, 2024) is available at the country level.

As first transformation step, we calculate the weight of each crop area for each coordinate
per country, so that the weighted weather variables Ww

t is:

Ww
t = C(country) × (Wt −W0,t

(country, month))
2

(1)

whereWt is the weather variable, C(country) is the weighted crop area by country, andWt is the
average value until today’s date per country for each month. Then the values are aggregated
by country and average value is taken. Secondly, the weather values are discounted at r=1%
on a rolling window for the past 4 months which allows to efficiently capture the past effects
of extreme weather on today’s yields or prices:

W d
t =Ww

t (country, commo) +
4

∑
i=2

W
w,(country, commo)
i

(1 + r)i−1
(2)
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Last, the Z-score for the most recent value in an expanding window for each country, com-
modity and season is computed as:

Z = ∣W
d
t (country, commo, season) − µ0,t ∣

σ0,t
(3)

Z-score allows us to transform the variables in a form of statistical distribution where higher
values indicate extreme events both on the right and left tails as we take the absolute value
of the variables. This processing does not allow differentiation between extreme high and low
temperatures but it provides a parameter that detects extremes in general since we assume
that all types of anomalies are destructive for crops in this context. However, this constraint
can easily be relaxed if one wishes to differentiate between the tails.

Yield-weather relationship Crop yield is an important measure that allows to track the
amount of agricultural production harvested per hectare, it is measured in MT/HA (Metric
ton/hectare). This metric allows to better understand land efficiency that can depend on
many factors including amount and quality of fertilizers and pesticides used, soil quality, age,
technology, crop genetic modifications and also weather variables. Yield is closely linked to
production as it is its derivative variable, but the yield also impacts the prices of commodities.

We use the PSD database (U.S. Department of Agriculture, Foreign Agricultural Service,
2024) to first test the impact of weather variables on yield. We first define the yield return
as:

RY
t =

Yt − Yt−1
Yt−1

(4)

We assume a relative change in yield as a finite difference approximation of R ∼ δY .
However, given that shocks in yield production may exhibit acceleration effects, we also
consider a second-order approximation:3

δY 2 = 1 + βZ (5)

where the impact of weather variables is proportional to the Z-score of weather anomalies.
To account for the effect of weather shocks, we propose the following non-linear model:4

RY
t = RY

t−1 × (1 + β × (ZTemp +ZPrec)) (6)

3The term ‘1’ in 1+ βZ is included to account for a baseline level of yield return independent of weather
anomalies. If removed, the model would assume that without extreme weather events, yield return would
approach zero, which might not be realistic. If we instead fit β1 +β2Z, it might lead to numerical instability
when β1 + β2Z becomes small or negative, causing unrealistic fluctuations in yield.

4In this paper, although we use sensibly the same impact variable (temperature), we differ from the
approach used in Moore et al. (2017), where the response function is estimated with data from a meta-
analysis of 56 studies analyzing yield-temperature relationships between 1997-2012:

∆Yijk = β1j∆Tijk ×Cropj + β2j∆T 2
ijk ×Cropj + β3j∆Tijk ×Cropj ∗ T̄jk

+ β4j∆T 2
ijk ×Cropj × T̄jk + β5f1(∆CO2ijk) ×C3j

+ β6f2(∆CO2ijk) ×C4j + β7∆Pijk + β8∆Tijk ×Adaptijk + β9Adaptijk + εijk
where ∆Yijk is the change in yield for crop j in country k (in %). ∆Tijk - changes in temperature, ∆CO2ijk
- CO2 concentration , and ∆Pijk - rainfall. T̄jk is the baseline temperature for crop j in country k, C3j and
C4j , and Adaptijk are control dummy variables. We base the construction of our model on this Equation with
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where Yt is the commodity yield at time t and ZTemp and ZPrec are the transformed weather
variables of Temp - mean temperature and Prec - mean precipitation sum. Based on that, it
is possible to capture the sensitivity of weather variables to yield. We present the sensitivity
of CMIP to yield in Table 2. First, it is observable that the joint combination of temperature
and precipitation extremes negatively affects the crop yield. That is, the production worsens
when weather anomalies are present where 1 unit increase in Z-score of weather extremes
results in around 60% decrease in yields for corn, cotton and wheat. Figure 3 also suggests
evidence of a negative relationship between climate shocks and yields, represented by high
Z-score for temperatures and precipitation and relative yield degradation.

Table 2: Non-linear model for yield sensitivity to model variables (IPSL AOGCM)

Commodity Estimate Std. Error Statistic Signif.
Corn -63.15 % 5.6 % -11.30 ⋆⋆⋆

Cotton -58.70 % 6.2 % -9.48 ⋆⋆⋆

Wheat -66.25 % 6.0 % -11.05 ⋆⋆⋆

Figure 3: Relationship between grouped production yield z-scores and average temperatures
and precipitation z-score – NLS Curve Fit with Bootstrapped Confidence Interval

The results are also replicated with ERA5 reanalysis and MIROC model variables and
the detailed description of it is available in the Appendix.

Price-yield relationship Existing literature has a wide branch related to modeling of
commodity prices. The efficient market hypothesis suggests that the expectation of the

a focus on extreme conditions impact on shock - throuhg the use of the acceleration - on yield variation. For
example, in this reference model Crop×∆T captures the sensitivity of a location to a temperature variation
while we focus on macro sensitivity of extreme conditions with ZTemp and ZPrec. Another difference is that
while the authors fit a linear model, we fit a non-linear least squares.
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next period realization is the information available at the previous period as no information
is neglected in efficient markets, and the estimate of value will only change with income of
unanticipated information (Roll, 1970). However, while being too simplistic, this also implies
zero net profit. Chambers and Bailey (1996) propose a simple model of commodity prices that
is in addition based on supply and demand shocks where the authors relax the assumption
that the shocks are independently and identically distributed, contrary to the earlier famous
of work of Danthine (1977). Deaton and Laroque (1991) estimate a commodity price model
with demand, supply shocks and speculative storage. Although we cannot introduce storage
in our equation, we include supply shocks approximated by sensitivity to change in yields.

Commodity prices have a cyclical nature. Kabundi et al. (2022) explain that the cycles
can either be transitory or permanent, and the permanent component prevails in agricultural
prices. Agnello et al. (2020) show that inflation, economic uncertainty, interest rates, oil
prices, and environmental conditions affect the duration of commodity price cycles, where a
rise in average temperature increases the lengths of the cycles, and the rise in precipitation
sum reduces them.

To model the relationship between yield and prices, we use the monthly commodity prices
from the World Bank (Bank, 2024a). The yield database and prices start in 1960 and while
some crops have less data points than others, we use the entire available period for each
commodity as the goal is to detect the presence of a general significant relationship. Since
the PSD database provides country-level data, and World Bank provides global prices, we
sum all yields in all countries to aggregate at a global level. The choice of commodities was
limited by the availability of data in both data bases. However, it is still possible to generalize
the case of few commodities as all the prices are heavily correlated (Appendix B).5. However,
we adopt a simplified model to focus on first-order effects and avoid overparameterization:

RP
t = RP

t−1 × (1 + βyield ×RY
t ) (7)

RP
t =

Pt − Pt−1
Pt−1

(8)

where RP
t represents the price returns at time t and RY

t represents the yield returns at time t.
We estimate β parameter using a simple Nonlinear least squares regression. The equation of
yield-price relationship yields results displayed in Table 3. The results for most commodities
except for palm oil are significant and all coefficients are negative. The weaker significance
of results for sorghum and palm oil might be explained not by the absence of the dependency
but by the quality of the data where a lot of gaps are present for yield variables.

Negative results indicate that prices decline with a higher yield, and the decline is most
pronounced for wheat, corn, and rice. This relationship makes economic sense since higher
yield essentially means that it is cheaper to produce the crop. For example, efficient produc-
tion of sugar in Brazil with highest yields allows their sugar prices to be the cheapest in the
world.

5A report by the World Bank Bank (2024b) suggests that supply factors are responsible for approximately
20% of commodity price fluctuations.
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Table 3: The impact of change variation in yield on price returns (Equation (7))

β Std. Error Statistic Signif. Commodity

-0.10 0.03 -3.22 *** Barley
-0.28 0.05 -5.51 *** Corn
-0.02 0.01 -2.34 ** Cotton
-0.06 0.03 -1.65 Palm Oil
-0.17 0.06 -2.95 *** Rice Thai 5%
-0.08 0.04 -1.86 * Sorghum
-0.34 0.07 -4.80 *** Wheat

Statistical analysis In this section, we perform a statistical analysis of model scenarios
to assess if differences between RCPs are to be expected before 2040. This exercise allows
us to determine if the actual difference between the 2.6 and 8.5 RCP scenarios can result
in a different impact on commodity prices. Therefore, there is a need to test whether the
difference in the same variables of the two scenarios is statistically significant. For each
group, indexed by crop c, latitude lat, and longitude lon, we apply a paired t-test between
the two related variables Xc,lat,lon = Value 2.6 and Yc,lat,lon = Value 8.5 for periods before
and after 2024.

The paired t-test formula for the group indexed by crop c, latitude lat, and longitude lon
is given by:

tc,lat,lon =
d̄c,lat,lon
sdc,lat,lon√

n

Where d̄c,lat,lon = 1
n ∑

n
i=1 (Xi,c,lat,lon − Yi,c,lat,lon) is the mean difference between paired values

Xi,c,lat,lon and Yi,c,lat,lon, and sdc,lat,lon =
√

1
n−1 ∑

n
i=1 ((Xi,c,lat,lon − Yi,c,lat,lon) − d̄c,lat,lon)

2
is the

standard deviation of the differences.

The paired t-test is applied separately for each group before and after 2024, and t-test
statistics and p-value are calculated between the two series at 5% significance. The results are
displayed in Table 4. It is observable that the significance of the difference between scenarios
increases for sum of precipitation for coffee and sugarcane, and only slightly for cotton, corn
and wheat. It is surprising that the statistical significance decreases for the future compared
to historical periods for rapeseed and soybeans. This indicates that the difference in total
precipitations is expected to not differ significantly for two scenarios until 2040 which still
indicates that the precipitation levels will decrease for the majority of commodities.

Nevertheless, the results are completely different for mean temperatures. The percentage
of significant series increases for all commodities and is the increase is very strong. The mean
temperatures will rise significantly more in the next decades under the 8.5 climate scenario.
This shows that when performing further analysis one can expect to see a difference between
the scenarios which might not be very pronounced, however, because the statistical difference
with precipitation is not strong, and also not for all coordinates for temperature.

Concerning the distribution, Table 5 shows the mean of temperature or precipitation for
all coordinates for each commodity, 25th and 75th percentiles. For precipitation, the values
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Table 4: Statistical significance of the difference between TG 2.6, TG 8.5 and RR 2.6 and
RR 8.5

Before 2024 After 2024

Significant Non-S % Signif Significant Non-S % Signif

Precipitation sum (RR)

Cocoa 4 79 5% 4 79 5%
Coffee 34 200 15% 78 156 33%
Cotton 11 385 3% 14 382 4%
Maize 189 1557 11% 235 1511 13%
Rapeseed 59 489 11% 54 494 10%
Soybean 84 442 16% 45 481 9%
Sugarcane 25 351 7% 56 320 15%
Wheat 121 1053 10% 126 1048 11%

Mean Temperature (TG)

Cocoa 45 38 54% 81 2 98%
Coffee 60 174 26% 197 37 84%
Cotton 107 289 27% 264 132 67%
Maize 309 1437 18% 1179 567 68%
Rapeseed 40 508 7% 296 252 54%
Soybean 100 426 19% 266 260 51%
Sugarcane 81 295 22% 298 78 79%
Wheat 209 965 18% 728 446 62%

increase for the worst scenario for cocoa, cotton, corn, rapeseed, soybean and wheat, where
for cotton and wheat the values are smaller for the 25th percentile and larger for the 75th
percentile indicating that the mean increases due to an increase in extremely high values
- possibly associate with floods or heavy rains. The mean values decrease for sugarcane
and coffee, and it is surprising to notice that the higher percentiles also decrease for these
commodities in case of higher carbon emissions scenario. This indicates that there is no
homogeneous effect of climate change on precipitation: yes, more extreme values are expected
along with more frequent droughts. Coffee and sugarcane grow in tropical regions with
already heavy precipitation and climate change might prolong the rainy periods even further.

In case of temperature, the impact is more evident: the temperatures increase for all
commodities and for all percentiles in case of RCP 8.5 scenario. That means that the
temperature measure is a more suitable comparable when measuring global impact on prices.
Nevertheless, it might not be immediately apparent since mean temperature increases do not
harm the growth of commodities, but these are the temperature extremes that can disrupt
production. Conversely, milder winters may have benefits, such as for corn planting.

Table 6 shows the percentage difference between two climate scenarios for a summer
month - July and a winter month - January for the period after 2024. The table confirms
that the rise in temperatures will be expected for both winter and summer months for all
commodities. In fact, the warming in winter can even be more pronounced than in summer.
However, this still does not deny the presence of low temperature anomalies than can disrupt

14



System for Evaluating Risks from Extreme Natural Activity on Agriculture

Table 5: Descriptive statistics for precipitation and temperature (2.6 and 8.5 RCP) across
crops

2.6 8.5

Precipitation Mean 25-th 75-th Mean 25-th 75-th

Cocoa 51.39 16.98 72.59 51.49 17.30 72.92
Coffee 47.26 9.88 69.01 46.32 9.35 68.83
Cotton 23.03 0.96 33.67 23.88 0.90 34.74
Maize 28.71 3.94 41.23 29.14 3.97 41.60
Rapeseed 24.09 6.32 28.22 24.17 6.38 28.75
Soybean 32.09 5.08 44.85 33.63 5.96 47.15
Sugarcane 34.88 2.73 55.10 34.08 2.81 52.77
Wheat 17.50 4.78 22.12 17.90 4.65 22.68

Temperature

Cocoa 27.13 25.91 28.39 27.38 26.16 28.64
Coffee 24.57 22.27 27.45 24.83 22.46 27.75
Cotton 22.50 17.10 28.87 22.84 17.65 29.06
Maize 19.02 13.93 26.73 19.32 14.29 27.03
Rapeseed 14.61 7.08 22.54 15.02 7.66 23.11
Soybean 18.79 13.62 26.66 19.00 14.03 26.95
Sugarcane 25.50 22.86 28.84 25.83 23.13 29.16
Wheat 13.65 6.08 22.13 14.08 6.57 22.49

crop growth - especially combined with droughts.

Table 6: The percentage difference between RCP 8.5 and RPC 2.6 for Temperature (TG)
variable for the future period after 2024 for July and January

July January
Crop Mean 25-th 75-th Mean 25-th 75-th
Cocoa 0.68% 0.78% 0.81% 0.57% 0.68% 0.37%
Coffee 0.66% 0.63% 0.75% 1.14% 1.17% 0.85%
Cotton 0.66% 0.53% 0.83% 1.01% 6.25% 0.76%
Maize 0.98% 1.13% 1.39% 2.47% -35.40% 1.19%
Rapeseed 1.71% 3.86% 0.91% 5.52% -13.33% -1.52%
Soybean 0.52% 0.31% 0.73% 2.98% -23.34% 1.13%
Sugarcane 0.73% 0.30% 0.86% 1.11% 2.97% 1.49%
Wheat 0.98% 1.16% 0.94% 4.29% -0.36% 2.37%

The stress tests with Monte-Carlo simulations methodology are used to project how
potential climate extremes could make commodity prices evolve. To perform the simulations,
the Z-score of weather variables calculated in Equation 3 smoothes the differences that might
arise across RCP scenarios, and we provide an alternative calculation of Z-score that allows
to compare the future variables with a historical mean and standard deviation:

Z = ∣W
d
t (country, commo, season) − µ0,2024 ∣

σ0,2024
(9)
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This ensures a better capturing of the climate change in the future compared to historical
period than in case of Z-score with expanding adaptation as in equation 3.

However, it is important to keep in mind that while the raw weather variables for two
scenarios are statistically different, the transformation methodology might reduce this differ-
ence as the Z-score is calculated relative to the same series and extremes can appear for both
scenarios at their own scale. Indeed, it is evident that the difference between two scenarios
is not statistically significant (Table 7). The table shows if the difference of the transformed
weather variables series is statistically different for two climate scenarios, where high positive
t-statistics value suggests that the mean of the 2.6 RCP scenario is greater than the 8.5 RCP
scenario.

Table 7: Significance of the difference between Z-score series of 2.6 RCP and 8.5 RCP

Z-score with Adaptation (expanding) Z-score

Before 2024 After 2024

T-stat P-value T-stat P-value T-stat P-value

Corn
Precipitation 1.45 0.15 1.11 0.27 -0.78 0.43

Temperature 1.37 0.17 0.16 0.88 -1.24 0.22

Cotton
Precipitation -2.16 0.03 -0.12 0.91 -0.21 0.84

Temperature 3.16 0.00 0.79 0.43 -0.44 0.66

Wheat
Precipitation -0.44 0.66 1.11 0.27 0.31 0.75

Temperature -2.09 0.04 1.14 0.26 1.29 0.20

It is, nevertheless, possible to detect a difference in Z-scores calculated with different
methodologies, as well as the mean values for the 8.5 RCP scenario are often higher compared
to lower emission scenarios.

Monte Carlo simulations To conduct Monte Carlo simulations modeling the spillover
effects from weather to yield and prices, we use the betas from previous paragraphs as a
sensitivity parameter. The algorithm of the simulation is shown in Algorithm 1. Here, as
defined,W

(s)
i,1 , W

(s)
i,2 are actual weather variables (Z-scores) at time step i; µW1 , µW2 are means

of the respective weather variable distributions, and σW1 , σW2 are standard deviations of the
respective weather variable distributions. βweather is the coefficient for the weather impact
W
(s)
i on yield that was estimates earlier with a non-linear model, βyield is the coefficient for

the yield impact ∆Y
(s)
i+1 on the price return, ϵ

(s)
y and ϵ

(s)
p are Gaussian noise terms specific to

each simulation.
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Algorithm 1 SERENA: Simulation of Log-Return of Yield and Price with Weather Impact

Input: Weather variables W
(s)
i,1 , W

(s)
i,2 , parameters µW1 , σW1 , µW2 , σW2 , µ∆Y , σ∆Y , µ∆P ,

σ∆P , βweather, βyield

for each time step i do
for each simulation s do

Compute the combined weather impact:

W
(s)
i ← 0.6 ×W (s)

i,1 + 0.4 ×N (µW1 , σW1) + 0.6 ×W
(s)
i,2 + 0.4 ×N (µW2 , σW2)

if i < July 2024 then
Compute log-return of yield:

∆Y
(s)
i+1 ← µ∆Y + βweather ×W (s)

i + ϵ
(s)
y , ϵ

(s)
y ∼ N (0, σ∆Y )

Compute price log-return:

R
(s)
i+1 ← µ∆P + βyield ×∆Y

(s)
i+1 + ϵ

(s)
p , ϵ

(s)
p ∼ N (0, σ∆P )

else
Compute moving average log-return of yield:

∆Y
(s)
i+1 ←

1

20

i

∑
k=i−20

∆Y
(s)
k + βweather ×W (s)

i + ϵ
(s)
y , ϵ

(s)
y ∼ N (0, σ∆Y )

Compute moving average price log-return:

R
(s)
i+1 ←

1

20

i

∑
k=i−20

R
(s)
k + βyield ×∆Y

(s)
i+1 + ϵ

(s)
p , ϵ

(s)
p ∼ N (0, σ∆P )

end if
end for

end for
Output: Simulated log-returns ∆Y

(s)
i+1 and R

(s)
i+1 for all i and s

This algorithm allows us to combine the weather-yield and yield-price relationships to
simultaneously solve for the price.6

2.3 Application

Propagation to inflation As illustrated in the introduction, commodity price increases
can be advantageous for asset managers as they allow asset managers to benefit from invest-
ments in commodity indices. However, it might come at the cost of inflationary pressures
that are detrimental to any returns.

6Of course, the propagation demonstrates how prices would behave in a world of constant climate extremes
ignoring other price formatting factors. The approach provides a visual demonstration of destructive event
on future price evolution while it is by no means a realistic commodity price forecast.
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We construct our own commodity price index accounting for sensitivity of commodity
yield to commodity prices:

CSIt =
n

∑
i=1
∣βi∣ ⋅

P
(i)
t − P

(i)
t−1

P
(i)
t−1

× 100 (10)

Where CSIt is the commodity synthetic index, ∣βi∣ is the absolute value of the yield sensitivity

for commodity i, P
(i)
t is the price of commodity i at time t. βi coefficients are extracted

from the estimation described above.

CSI is well correlated with delta of Reuters commodity index that is used in Le Guenedal
et al. (2022), and the correlation is 65% that underlines that our commodity index is robust.
The time evolution of two indexes is comparable (Figure 4). It is visible that the periods of
higher commodity prices were 2012, 2018-19 and 2021.

Figure 4: Price evolution of Synthetic Commodity Index and Reuters Commodity Index

We propose a simple linear regression to the impact of synthetic commodity index on US
CPI inflation:

US CPIt = β0 + β1CSIt + β2TEDt + β3r
10Y
t + β4VIXt

+β5r
FED
t + β6NYMEX oilt + ϵt

(11)

Where US CPIt is Consumer Price Index at time t, TEDt is the difference between the 3-
month Treasury bill and 3-month LIBOR, r10Yt is 10-year US Treasury yield. VIXt is CBOE
Volatility Index, rFED

t is the Federal funds target rate. NYMEX oilt is NYMEX crude oil
futures price.

Weather weighted commodity index to bond spreads In this step, we measure the
impact of commodity index for a panel of 73 countries. In this case, emerging bond spread
refers to the yield difference between a risky security and a risk-free asset such as an AAA-
rated bond. We use the option-adjusted spread (OAS) relative to the U.S. 10-year Treasury
bond. The OAS is a measure of the spread that accounts for embedded options in fixed-
income securities. Following the approach of Hilscher and Nosbusch (2010), we develop a
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cross-sectional econometric model for the option-adjusted spread using annual end-of-year
data.

OASt = α + β1CSIt + β2Dt + β3VIXt + β4r
10Y
t + β5TEDt

+ β6
Lt

GDPt

+ β7
reservest
GDPt

+ β8Rt + β9Kt + ϵt,
(12)

Where OASt is the end-of-year option-adjusted spread, obtained from the JP Morgan EMBI
position report in BarraOne. CSIt is the constructed yield sensitivity-weighted commodity
synthetic index. Dt is the average duration of the bonds (JP Morgan EMBI report). VIXt

is the CBOE volatility index (LSEG), r10Yt is the 10-year U.S. Treasury bonds rate (LSEG).
TEDt is the difference between the three-month U.S. Treasury bill rate and the three-month
LIBOR (LSEG), Lt

GDPt
is the ratio of total external debt stocks (Lt) to GDP, (World Bank).

reservest
GDPt

is the ratio of total reserves, including gold, to GDP (World Bank). Rt is a credit
rating dummy variable, which takes a value depending on the country’s credit rating, andKt

is a country-specific dummy variable. Le Guenedal et al. (2022) reports that this relationship
has a strong significance when using the change in LSEG commodity price index.

3 Results and simulations

Observation of climate change evolution from models First, we introduce the changes
in raw climate data observable directly in climate models. Figure 5 is constructed using the
Agroclimatic indicators derived from climate projections Copernicus data (Nobakht et al.,
2019) which are used to describe plant-climate interactions for agriculture. The Figure shows
the average of the consecutive dry days for the summer months over a period from 3 to 5
years.

This parameter takes into account days where the daily precipitation sum is less than
1mm. Having a precise look, at, for example, France, it is possible to see that even though
2020-2023 were years of abnormal levels of drought (EM-DAT: The International Disaster
Database, 2024), the number of consecutive dry days is projected to increase until 2040,
particularly in the North-West of France and the French Riviera. The duration of consecutive
dry days ranges from 15 to 45 days. Other countries at risk are United Kingdom, Denmark,
Sweden, and all countries across Southern Europe.

According to the National Integrated Drought Information System Portal (2024), the
drought is third among climate disasters for financial losses behind tropical cyclones and
severe storms and its costs average at $9 billion per year. The drought of 2012 impacted 80%
of agricultural land in the US, and affected all corn, soybeans, and wheat which accounted
for $14.5 billion loss for the federal crop insurance program. In fact, the spread of drought
impacts means crop failure and pasture losses. They are aggravated by increasing cases of
pests and diseases that are caused by droughts. In addition, there are also indirect impacts
such as reduced supply to food processors and lower demand for fertilizers.

Similarly, Figure 6 shows the evolution of the average number of consecutive summer days
for the summer season over the years. That is, it shows the longest period, on average, of
consecutive days with maximum temperatures exceeding 25°C. This indicator is correlated
with drought and might be informative of the optimal growth conditions for crops. The
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Figure 5: Mean of maximum number of Consecutive Dry Days for summer season

graph highlights that, in major parts of France, more than 60 consecutive summer days with
temperatures exceeding 25°C are expected by 2040. While during 2020-2023 this parameter
was around 15 for Northern France, Belgium, Germany, Netherlands and Poland, by 2040 it
is projected to be as high as 40 days.

Simulated impact on global prices (by 2030/35/40) We plot the mean value of 1000
Monte Carlo simulations (Figure 7) longside 95% confidence intervals. It is directly evident
that weather Z-score without expanding adaptation results in higher sensitivity hence higher
prices for commodities. The scenario with more emissions - 8.5 - results in slightly higher
price returns for all commodities, while this result depends on the particular simulation
and should be interpreted with caution: there are no large differences between the emission
scenarios until 2040 as regardless of the socio-economic development path pursued from this
point forward, the effects of previously emitted CO2 will continue to influence the planet.
In general, the results of both scenarios do not differ significantly before 2040.
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Figure 6: Mean of maximum number of Consecutive Summer Days for summer season

Figure 7: Mean and 95% confidence intervals of Monte Carlo price shock simulations under
RCP 2.6 and 8.5 for historical and time-adjusted Z-scores
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This analysis stresses the fact what no matter how much the emissions will be cut in
the future, investors and producers will already bear negative climate externalities as more
frequent extreme weather events will result in increasing expected jumps magnitude of com-
modity prices.

Inflationary Implications A simple model of the impact of yield-weighted commodity
index on US CPI inflation is displayed in Table 8. The results suggest that an average 1%
increase in commodity prices is followed by a 2% increase in inflation. The only variable
that has a negative effect on inflation is the market volatility index VIX. This result confirms
previous studies that commodity prices drive up inflationary pressures (Celasun et al., 2012;
Ciccarelli et al., 2023; De Gregorio, 2012; Faccia et al., 2021; Gelos & Ustyugova, 2017; Kotz
et al., 2023).

Table 8: The impact of synthetic commodity index on US inflation

Dependent variable:

US CPI

(1) (2) (3)

CWI 0.013∗∗∗ (0.005) 0.014∗∗∗ (0.005) 0.020∗∗∗ (0.006)
TED 0.002∗∗ (0.001) 0.003∗∗∗ (0.001) 0.003∗∗∗ (0.001)
US10YTBYC 0.001∗∗∗ (0.0002) 0.001∗∗∗ (0.0002) 0.002∗∗∗ (0.0003)
VIX −0.007∗∗ (0.003) −0.009∗∗ (0.003)
FED target −0.019 (0.020)
NYMEX crude 0.008∗∗∗ (0.001)
Constant −0.373∗∗ (0.169) −0.332∗ (0.168) −1.645∗∗∗ (0.277)

Observations 151 151 100
R2 0.127 0.153 0.416
Adjusted R2 0.109 0.130 0.378

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4 Discussion and conclusion

This section connects the study’s findings to existing literature and proposes actionable
solutions for investors and policymakers. The paper focuses on the analysis of gridded global
weather models, evaluating their strengths and limitations for use in economic studies. We
present a data transformation methodology, applying it to selected models to assess the
impact of weather on crop yields, commodity prices, and inflation7.

7Global weather datasets, designed using varying methodologies, exhibit significant differences in temporal
frequency and spatial resolution. Ideally, high-resolution, high-frequency data should be used to maximize
precision, but the sheer volume of such data often requires substantial computational power. Therefore, a
balance must be struck between resolution, frequency, and statistical significance. In our analysis, we average
the data to a 1° resolution (approximately 111 kilometers at the equator) and choose monthly frequency
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Our results indicate that crop yields, measured in metric tons per hectare, are negatively
impacted by extreme temperatures and precipitation, on average, across global regions.
This finding supports the assertion by Hogan and Schlenker (2024) that the accuracy of
data transformation into extreme events is more critical than the selection of specific vari-
ables. However, these results should not be misinterpreted to suggest that every increase in
temperature uniformly leads to lower yields.

Ritchie (2024) states that some crops, especially wheat and rice, can benefit substantially
from higher C02 in the atmosphere, though higher temperatures might also increase yields.
This depends on whether the commodity is already grown in optimal climate conditions or if
the conditions are lower than optimal. However, water scarcity, such as during droughts, or
excess, such as in floods, is always destructive for crops. It is therefore important to be aware
that mild climate change can benefit some crops in some geographical areas. Nevertheless,
our study focuses on extreme events that are the consequence of higher average temperatures,
and they are always destructive for yields on average.

To look deeper into that, we perform a meta study that allows us to track the evolution
of return periods of extreme precipitation events (Figure 8). Return period is a statistical
measure that permits to estimate the average time between two extreme weather events of a
certain intensity. Figure 8 assembles the results of 11 studies that use years 1960/70-1990 as
a base historical period, and simulate the changes for the period 2071-2100 in Europe. The
results depend on the exact methodology to calculate return period, the climate model used
and the scenario, and on precise geographical locations that we divide into three categories:
Southern, Central and Northern Europe. For example, (Semmler & Jacob, 2004) use REMO
5.1 climate model, high emissions SRES-A2 scenario, and find that return periods for pre-
cipitation events increase by 50% for most European regions and by 100% in Baltic Sea.
The result of higher extreme events frequency in Northern Europe compared to Southern
Europe is also found in Beniston et al. (2007), Larsen et al. (2009), and Nikulin et al. (2011).
May (2008) explain this result with the fact that Mediterranean region sees fewer wet days
since it will also have higher frequency of droughts, but extreme precipitation events will,
however, appear with higher intensity.

Kyselỳ et al. (2011) finds that increases in return periods of precipitation events are
particularly pronounced in winter compared to summer. In addition, the magnitude of the
increases in average duration between two events also depends on climate scenario, where
high emission scenarios might have the double of the change with low emission scenario
(Hosseinzadehtalaei et al., 2020; Rajczak & Schär, 2017). Last, the change in return period
will be higher for more rare high intensity events (Fowler et al., 2007; Sedlmeier et al., 2018).
In general, Figure 8 shows with linear regression analysis that high emission scenarios will
indeed result in more frequent extreme events by the end of the century.

On another note, biodiversity loss due to climate change negatively impacts pollination
of crops like coffee, soybeans, oil crop and others (Gallai et al., 2009; Potts et al., 2010).

for consistency. The data sources used include ERA5 climate reanalysis and the MIROC climate model.
Climate reanalysis integrates historical observations with models to generate consistent climate time series,
offering a detailed account of observed conditions in recent decades. In contrast, climate models like MIROC
simulate the entire climate system, making them suitable for future weather predictions. Robustness checks
for these models are provided in the Appendix.
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Figure 8: The expected change in return period of precipitation events

Artificial pollination increases production costs, potentially leading to project abandonment
or adverse price shifts. However, new crop-breeding technologies make plantations more
resistant to drought and heavy rains, thereby improving yields.

Our finding of price spikes is straightforward: lower yields mean higher prices due to
supply shocks. However, the propagation to financial markets may not always be evident
in particular cases. First, crop stocks can offset poor harvests in any given year, and some
crops are harvested multiple times per year. Also, the production does not always match
the demand as the demand for certain crops also depends on consumer preferences, and the
demand for, for example, cotton might decline as the preferences towards cheaper synthetic
fabrics increase. Therefore, we find an overall negative propagation of yield to prices, but the
analysis of commodity stock levels could enrich and provide more details into the price-yield
relationship, although this is beyond the scope of this study.

Next, our analysis focuses on the transmission of price shocks to the broader economy,
with particular emphasis on US CPI inflation. As discussed in the introduction, commodity
shocks are known to create inflationary pressures (De Gregorio, 2012; Faccia et al., 2021;
Gelos & Ustyugova, 2017), and our result confirms that the index weighted by yield sensitiv-
ities to prices is relevant, and it is possible to assume that the inflationary pressures indeed
comes from physical markets disruptive processes such as climate change. While inflation is a
macroeconomic phenomenon, investors should be aware of the fact that higher temperatures
can thus not only decrease the attractiveness of commodity index investing strategies, but
financial returns overall. Indeed, agricultural commodity markets are know to be connected
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to energy markets, currency, equity and bonds (Nekhili et al., 2021; Wang & Wang, 2019).

Last, we provide the results of the EMEA bond spreads panel regression in the Appendix.
Similarly as in Le Guenedal et al. (2022) we find that increase in synthetic commodity index
decreases the spreads. Much of previous literature confirms this result Arezki and Brückner
(2012) and Bastourre et al. (2012). While this is insightful for asset managers who engage
in speculative spread strategies, this result does not mean that emerging countries benefit
from extreme climate events. Although there is a slight fall in sovereign spreads, the decline
in yields and following supply shock might erode revenues, and the costs of debt needed will
exceed any financial benefits of the spread.

On that note, it is important to stress the differences between market actors. Climate
change is a hazardous process that in most cases brings extreme unpredictable events that
cause harm to plantations and farmers. Of course, the effects are transmitted to local
economies and inflation is expected to remain elevated until the mid-term. Nevertheless,
where there are losers there are also winners: first, some crops already need warmer con-
ditions, and Scandinavian countries and Russia will certainly benefit from milder climate
change. Secondly, a poor harvest in one country might increase demand for imports from
other countries that were not affected by weather, and these exporting countries will only
benefit from higher commodity prices. Thirdly, the predictions of prices and spread will
allow investors to take advantage of speculative strategies in some cases. Nonetheless, asset
managers should remain cautious, as while higher returns may appear favorable, the broader
economic consequences—such as inflationary pressures—are likely to have more widespread
negative effects.

25



System for Evaluating Risks from Extreme Natural Activity on Agriculture

References

Abatzoglou, J. T., Williams, A. P., & Barbero, R. (2019). Global emergence of anthro-
pogenic climate change in fire weather indices. Geophysical Research Letters, 46 (1),
326–336. https://doi.org/https://doi.org/10.1029/2018GL080959

Agnello, L., Castro, V., Hammoudeh, S., & Sousa, R. M. (2020). Global factors, un-
certainty, weather conditions and energy prices: On the drivers of the duration of
commodity price cycle phases. Energy economics, 90, 104862.

Arezki, R., & Brückner, M. (2012). Resource windfalls and emerging market sovereign
bond spreads: The role of political institutions. The World Bank Economic Review,
26 (1), 78–99. https://doi.org/https://doi.org/10.1093/wber/lhr015

Bank, W. (2024a). Commodity Markets. https://www.worldbank.org/en/research/commodity-
markets

Bank, W. (2024b). Commodity Price Cycles: Causes and Consequences. https ://blogs .
worldbank.org/en/developmenttalk/commodity-price-cycles-causes-and-consequences

Barbero, R., Abatzoglou, J. T., Pimont, F., Ruffault, J., & Curt, T. (2020). At-
tributing increases in fire weather to anthropogenic climate change over France. Fron-
tiers in Earth Science, 8, 104.

Bastourre, D., Carrera, J., Ibarlucia, J., & Sardi, M. (2012). Common drivers in
emerging market spreads and commodity prices. Working Paper. https://doi.org/
https://hdl.handle.net/10419/126243

Beniston, M., Stephenson, D. B.,Christensen, O. B., Ferro, C. A., Frei, C.,Goyette,
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A Robustness to climate data

Climate yield relationship with ERA5 reanalysis data The methodology of the
results below is described in Section 2. The results of the non-linear regression for ERA5
reanalysis are presented in Table 9. The estimates show more variation between themselves
and the coefficients are larger. This may be due to differences in data construction, as
reanalysis uses real data, which can capture greater variability and extreme weather events.
Furthermore, the impact of weather variables on yield appears to be stronger than the
influence predicted by climate models.

Commodity Estimate Std. Error Statistic Signif.
Corn -0.982 0.0986 -9.95 ***
Cotton -2.87 0.293 -9.78 ***
Wheat -1.58 0.195 -8.11 ***

Table 9: Coefficients of the joint impact of temperature and precipitation on yield

It is noteworthy to observe the response of weather to yield for individual weather pa-
rameters - temperature and precipitation (Table 10). The coefficients increase in magnitude
even further, and this is possible because the impact of temperature and precipitation on
yields is not the strongest when combining the variables: extreme temperatures are usually
associated with drought while extreme precipitation events usually decrease mean daily tem-
peratures. Nevertheless, these results prove the point that we detect the same patterns for
different types of weather data.

Commodity Var Estimate Std. Error Statistic Signif.
Corn temp -1.89 0.202 -9.35 ***
Cotton temp -6.64 0.659 -10.1 ***
Wheat temp -2.71 0.341 -7.94 ***
Corn prec -1.78 0.191 -9.35 ***
Cotton prec -4.72 0.532 -8.87 ***
Wheat prec -3.54 0.448 -7.91 ***

Table 10: Coefficients of weather variables temperature and precipitation impact on yield

Climate yield relationship with MIROC model data As in the main analysis using
the IPSL climate model, we employ the MIROC-ESM-CHEM model, developed by JAM-
STEC, Japan. Compared to the French model, the Japanese is more focused on atmospheric
chemistry which also allows its usage to test for aerosols, gases, and other chemical processes
(Watanabe et al., 2011). Aside from these differences, both models are similar and use
low-resolution configurations, and their results are expected to be comparable.

As shown in Table 11, all coefficients are negative and significant similarly to the case
of IPSL and ERA5 tests. It is, however, interesting to observe that while with ERA5 the
largest negative coefficient is for cotton, here, the cotton coefficient is smaller (in absolute
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values) in comparison to corn and wheat. In general, the coefficients are very similar to
those from the IPSL model, with IPSL showing only slightly higher magnitudes.

Commodity Estimate Std. Error Statistic Signif.
Corn -0.625 0.05505 -11.35 ***
Cotton -0.5655 0.0607 -9.32 ***
Wheat -0.6175 0.0565 -10.9 ***

Table 11: Averaged regression results across commodities

Similarly, Figure 9 shows that the price evolution in the future is comparable to the
IPSL model. However, the expected return increases with MIROC are smaller for cotton
and wheat, and slightly larger for corn. This analysis estimates the approximate impact on
prices caused by yield disruptions. Similarly, there is not much difference between socio-
economic development scenario outcomes before 2040.

Figure 9: Mean and 95% confidence intervals of Monte Carlo price simulations under RCP
2.6 and 8.5 for historical Z-score and time-adjusted; Robustness check

B Complementary materials

Implications for bond spreads The results of the panel regression are displayed in Table
12. The synthetic commodity index is significant at 1% for both models. In comparison to
the results of Le Guenedal et al. (2022), our results show a better R2 for the last two models
(0.542 vs 0.55 and 0.723 vs 0.729 respectively) indicating that the synthetic commodity price
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index explains the OAS even better. Indeed, the index is negative - hence when commodity
prices increase the spread decreases suggesting that emerging country risk decreases as higher
commodity prices are beneficial to some commodity exporters. The adjustment for yields
allows for the identification of commodities whose yields are especially sensitive to prices,
and thus the accuracy of the model improves.

Table 12: Weather propagation to Option-Adjusted-Spread model

Dependent variable:

OAS (bp)

(1) (2) (3) (4)

CSI −6.620∗∗∗ −6.126∗∗∗
(0.931) (0.747)

Duration 8.834∗∗∗

(1.640)
VIX 31.346∗∗∗ 28.771∗∗∗

(3.164) (2.582)
TED 381.969∗∗∗ 334.421∗∗∗

(131.378) (104.728)
US,10y −17.040∗∗∗ −14.998∗∗∗

(2.481) (1.988)
L/GDP 367.461∗∗∗ 229.629∗∗∗ 339.893∗∗∗ 425.952∗∗∗

(26.060) (21.319) (25.548) (78.158)
reserves/GDP −247.038∗∗∗ −1,047.854∗∗∗

(40.635) (184.851)
Rating < B- −1,692.843∗∗∗ −1,693.795∗∗∗ −1,389.004∗∗∗

(42.121) (41.326) (35.894)
Countries No No No Yes
Constant 207.254∗∗∗ 1,915.443∗∗∗ 3,838.487∗∗∗ 3,586.721∗∗∗

(15.583) (44.361) (340.932) (292.239)

Observations 2,212 1,860 1,832 1,832
R2 0.083 0.509 0.550 0.729
Adjusted R2 0.082 0.509 0.549 0.721

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

It is important to note that, due to data availability, we only use seven commodities
- barley, corn, cotton, palm oil, rice, sorghum and wheat - and the list does not contain
important for emerging markets commodities - sugar, coffee, cocoa, cotton etc. On the other
side, the model’s significance confirms the usefulness of adjusting prices for yield impacts,
even with a limited selection of commodities.

Interactions with other commodities This paper concentrates of three commodities:
corn, wheat and cotton due to data availability. However, we want to assess if this study
is expected to show similar results with other agricultural crops. Indeed, most World Bank
commodity prices show a strong correlation with corn, cotton, and wheat prices (Table
13). For corn, the lowest correlation is with EU sugar of 24% and there is more than
90% correlation with soybean oil, barley, sorghum and wheat. Cotton shows slightly lower
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correlations on average, with the lowest at 33% for EU sugar and the highest at 80% for
palm kernel oil.

Index Corn Cotton Wheat
Coffee Arabica 0.69 0.76 0.67
Coffee Robusta 0.34 0.51 0.32
Coconut oil 0.78 0.71 0.75
Palm oil 0.89 0.76 0.88
Palm kernel oil 0.72 0.80 0.68
Soybean oil 0.93 0.74 0.92
Soybean meal 0.89 0.66 0.89
Rapeseed oil 0.86 0.73 0.88
Sunflower oil 0.86 0.68 0.85
Barley 0.92 0.61 0.92
Corn 1.00 0.75 0.94
Sorghum 0.98 0.70 0.93
Rice thai 5% 0.81 0.63 0.79
Rice thai 25% 0.83 0.54 0.76
Rice thai A.1 0.84 0.52 0.78
Rice vietnam 5% 0.65 0.46 0.55
Wheat US HRW 0.94 0.73 1.00
Orange 0.69 0.50 0.73
Sugar EU 0.24 0.33 0.34
Sugar US 0.73 0.73 0.71
Sugar World 0.67 0.64 0.64
Cotton A index 0.75 1.00 0.73

Table 13: Correlation Matrix of World Bank monthly commodity prices 1960-2024

The same is also observable in the price evolution plot (Figure 10. This shows that
agricultural commodity markets are closely linked and that increases of one asset price due
to weather extremes might put upward pressure on other prices via spillovers. A more
profound study of spillover effects is beyond the scope of this research.
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Figure 10: Price evolution of World Bank commodity prices
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