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Abstract

How does risk perception in credit markets change after observing a nearby catas-
trophic event? We combine detailed geospatial data on ex-ante flood risk of German
firms with credit register data and show that after a major flood in 2021, loan rates
decrease for high-flood risk firms that were not directly affected. This negative indirect
effect is strongest for banks with a large loan portfolio exposure to the flood. Firms
that were affected by earlier, but similar floods do not experience rate reductions. The
decrease is also strongest in areas with low climate change belief, while high climate
change belief areas experience rate increases. Overall, our evidence points to a novel
near-miss effect in lending markets after natural disasters, where a close disaster “miss”
may be misinterpreted as a reduction in fundamental risk.
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1 Introduction

The frequency of natural disasters is likely to increase due to climate change (IPCC, 2023).
While the direct consequences of natural disasters on financial markets are relevant and seri-
ous, disasters may also change risk perception in financial markets in high-risk but not (yet)
affected areas. And while the direct effects of natural disasters are often regionally contained,
such indirect consequences can affect a large number of financial market participants. Conse-
quently, investigating the reaction of financial markets in high-risk, but not directly affected
areas after a nearby salient disaster is important to understand the aggregate implications
of climate-change related natural disasters.

To shed light on this question, we use extremely granular flood risk maps and link them
to firms’ addresses in Germany via their geographical coordinates. We then combine this
ex-ante firm-level flood risk data with supervisory credit register data that covers the near-
universe of lending to businesses in Germany. We exploit a significant flooding event in
Germany — the 2021 “Ahrtal Flood” — as an exogenous shock to banks’ risk perception of
firms with high ex-ante flood risk. The credit register data allows us to investigate banks’
lending reactions in detail, including changes to interest rates, loan volumes, collateral and
the estimated probability of default. The data also allows us to control for an extensive set of
fixed effects, ruling out alternative explanations, such as the proximity of certain industries
to riverbanks.

Using this novel data, we show that interest rates on loans to unaffected firms with high
ex-ante flood risk decrease after the flood. We also present evidence of increases in loan
volumes and decreases in collateral and the probability of default. We find that this effect
follows a slight U-shape: banks with a small or medium share of disaster-exposed loans
decrease rates most, while an extremely large exposure is associated with smaller decreases.
This suggests that our results are partially consistent with papers that find an overestimation
of ex-post flood risk, stemming from increased disaster salience (Alok et al., 2020). We also

provide evidence that the reduction in post-disaster, high-risk interest rates is experience-



dependent. As opposed to firms without any disaster experience, loans to firms who have
experienced a previous significant flood in 2002 or 2013 do not experience a rate reduction.
This is in line with existing research using ex-post disaster risk measures, which finds a small
and positive shock to interest rates (Correa et al., 2022). Overall, our results suggest that
while there are positive effects on risk perception of natural disasters under certain conditions
as the literature suggests, a much larger negative shock might exist in parallel that has not
been previously explored.

We propose three different mechanisms to explain our results and test them against our
data. First, we hypothesize that banks rationally update disaster risk, which could be due
to unexpectedly high recovery payments from insurance companies and governments. If
this were the case, we would expect firms in directly affected areas to experience a similar
decrease in rates. Yet, our results document the opposite: directly affected firms pay a
larger post-flood loan spread. This potential mechanism is also difficult to square with non-
linear effects on banks’ disaster exposure described above. Second, we hypothesize that
banks might induce changes in non-affected firms’ ex-ante flood risk. For example, banks
could condition post-flood lending on firms purchasing flood insurance or implementing other
preventive disaster measures. To validate the plausibility of this mechanism, we test if rates
decrease more, where implementation of flood risk measures may prove easier: areas with
high climate and environmental consciousness, which we proxy by the degree of support in
the local population for the German “Green” party. However, we find the opposite effect:
rates decrease less in regions with high support for climate-friendly policies.

Instead, our evidence is most consistent with a third mechanism: lowered risk perception
after a near-miss event. The extant literature on this phenomenon mostly concerns self risk
perception (Dillon and Tinsley, 2008; Arias et al., 2017; Gao et al., 2020). It suggests that
after close, but not-too-close disaster misses, agents may perceive a decrease in risk, despite
no changes in underlying risk. Our results are consistent with the interpretation that such a

near-miss change in disaster risk perception may also apply to banks extending credit. This



mechanism is consistent with a non-linear effect of loan portfolio exposure and a decreased
effect in climate-conscious regions.

Our paper contributes to a growing literature that investigates the effects of climate-
change related physical risk. In general, investors are aware of such climate related physical
risk (Krueger et al., 2020) and it is generally priced in financial markets (Huynh et al., 2020;
Acharya et al., 2022).! This is also true for lending markets. For example, Giglio et al. (2021)
and Bernstein et al. (2019) show that long-term physical climate risk from natural disasters
is generally priced in the housing market,? with expected implications for mortgage lending
(Nguyen et al., 2022) and bank returns (Schubert, 2021). Similar findings apply in the case
of corporate loans (Javadi and Masum, 2021). Our results are consistent with this cross-
sectional view outside of flooding events. Conditional on many observables, higher flood risk
is associated with higher interest rates in our setting, indicating that lending markets charge
an interest rate premium for physical flood risk.

Beyond the pricing of disaster risk in normal times, our paper relates to papers researching
the direct impact of disasters and abnormal weather events on banks and the loans they
extend.? Disasters have been shown to affect lending volumes (Cortés and Strahan, 2017;
Koetter et al., 2020; Blickle et al., 2021; Meisenzahl, 2023), collateral (Garbarino and Guin,
2021) and banks’ financial stability (Schiiwer et al., 2019). The effects on interest rates,
in particular for small- and medium-sized enterprises have received less attention. Brown
et al. (2021) is one of the few papers using credit register data to investigate the effect
of unexpected snowfall on bank lending and interest rates.* In the Appendix, we conduct
an analysis of the direct impact of natural disasters on interest rates that largely confirms
the findings of this extant literature: natural disasters lead to higher loan rates for directly

impacted borrowers.

!There is a vast literature discussing the effects of climate risk more generally on various asset classes
(Bolton and Kacperczyk, 2023; Pdstor et al., 2022; Goldsmith-Pinkham et al., 2022). See Giglio et al. (2021)
for a review of this literature.

20n the other hand, Murfin and Spiegel (2020) finds no effects of projected sea level rise on house prices.

3de Bandt et al. (2024) provide an overview.

4Barth et al. (2022) and Barth et al. (2024) also investigate interest rates following natural disasters.



Instead of focusing on the direct effects of disasters, we propose a different, indirect effect
of disasters on other high-risk firms, following a major disaster in nearby areas. Closest to
our paper in this question is Correa et al. (2022), who use past natural disasters to proxy
for disaster risk and find small positive indirect effects on interest rates following a renewed
disaster. Our paper contrasts with their approach in several significant areas. First, our
granular loan-level data has much larger coverage. In particular, it focuses on lending to
small and medium-sized enterprises. This larger sample also allows us to control for a more
granular set of fixed effects. Most importantly, we use a detailed ex-ante flood risk measure
that is based on predicted flood-risk exposure at the firm level.® As our results demonstrate,
this is significant because past disasters may mask a substantial negative effect of initial
disasters on interest rates (see section 4.4). And while our results are consistent with their
finding once accounting for past floods, our novel finding of a negative indirect effect on high-
disaster risk firms allows us to uncover and investigate significantly different mechanisms.

Furthermore, we expand on evidence suggesting that managers react to salient events
that do not reflect changes in underlying risk. For example, Dessaint and Matray (2017)
show that managers temporarily increase corporate cash holdings after a hurricane, even
though the future risk is unchanged. Because we do not investigate the direct impact of
disasters, our results are closely related to a strand of literature studying “near-misses”,
complementing existing literature researching the effect of close-call misses of disastrous
events. Bernile et al. (2017) show, for example, that CEOs who experience fatal disasters
without extremely negative consequences lead riskier firms, while extreme disaster experience
leads to reduced risk taking. Tinsley et al. (2012) show that near-misses from disasters are
often not interpreted as signals that they might occur in the future, but instead as a signal
that they did not occur, leading people to underestimate the resulting risk. Further, when
disasters are interpreted as events that almost happened, the reverse effect can be observed.

The lines of thought in this literature align well with our result that extremely large disaster

5Due to data limitations the set of papers using firm-level forward-looking measures of physical risk is
very limited (Ginglinger and Moreau, 2023; Faiella and Natoli, 2019).



exposures are related to increases in interest rates (higher risk perception), but medium
exposures are related to decreases in interest rates.

We suggest that such near-miss experiences might extend to financial intermediaries such
as banks. This finding has important implications because it could suggest that banks con-
sistently underestimate their exposure to climate-change related physical risk from natural

disasters, even in the presence of good risk modeling.

2 The Ahrtal Flood in Germany

On the 14th and 15th of July 2021, a massive flood struck Western Europe causing widespread
devastation in Germany, Belgium, the Netherlands, France, and Luxembourg. In Germany,
particularly the western and southern parts were affected. In some areas of Rhineland-
Palatinate and North Rhine-Westphalia, up to 94.5 liters of rainfall per square meter were
recorded within 24 hours—an amount exceeding the region’s typical total rainfall for the
entire month of July. This heavy rainfall combined with already saturated soil and steep
topography intensified the destructive force of the floodwaters (BMI (2021), WDR (2024)).

In the German public discourse, the event is often referred to as the “Ahrtal (Ahr Valley)
flood”, in recognition of the extreme devastation that occurred in the region around the river
“Ahr”. Within a few hours, the usually calm Ahr river rose by at least five meters above
its typical depth of less than one meter. At that point, the power supply for the equipment
measuring the water level failed. Despite warnings from the national weather service of
heavy rainfall, many residents were not alerted in time by the authorities. As a result, more
than 183 people lost their lives and 800 were injured (WDR (2024)). In addition to the
west German Ahr Valley region, widespread damage was also reported in the southern and
eastern parts of the country. Over 18,000 emergency personnel were mobilized to support
the catastrophe management (BMI (2021)). Although, Germany had already experienced

the 2002 and 2013 Elbe river floods, which had previously ranked among the country’s most



severe natural disasters, an event of such a scale and intensity of the 2021 flooding was still
largely unforeseen (GDV (2013)).

In the affected area, roads, bridges, and other critical infrastructure were destroyed, and
reconstruction efforts remain ongoing more than three years after the event. The monetary
costs of the damage by far surpassed that of earlier events: the 2002 and 2013 floods caused
losses of about €11 billion and €6-8 billion, respectively (GDV (2013)). The overall damages
from the Ahr Valley flood to households, businesses, and public infrastructure are estimated
at €33 billion—equivalent to nearly 1% of Germany’s 2021 GDP (BMI (2021), Destatis
(2024)). Despite the experience gained from earlier major floods, only €8.75 billion of these
recent losses were covered by insurance, leaving a significant gap to be addressed through
government aid and private funding (GDV (2024)).

In response, the German federal and state governments created a special €30 billion
relief fund (BMF (2021)). This allocation involved maneuvering around Germany’s well-
established fiscal orthodoxy—embodied by the “debt brake” (Schuldenbremse)—to secure
urgent reconstruction financing. Affected individuals, companies, and other institutions were
eligible to apply for compensation covering up to 80% of documented damages, with the pos-
sibility of receiving full (100%) reimbursement in cases of severe hardship (Bundesregierung
(2023)). Despite the substantial size of the relief fund, only €3.3 billion of the allocated
amount had been approved as of the latest reports. A lack of expert professionals for eval-
uating damages, complicated planning and application procedures, as well as a shortage of
skilled labor, slowed down the disbursement of relief funds (Capital (2024)). As a result, even
this generously funded program fell short, leaving many victims to rely on private savings
or take on debt to cover the costs of rebuilding.

The 2021 flood disaster underscored Germany’s ongoing vulnerability to large-scale nat-
ural catastrophes, in spite of the lessons learned from the 2002 and 2013 Elbe floods. While
some flood protection measures have been improved over the years, the widespread de-

struction caused by the 2021 floods highlighted weaknesses in infrastructure resilience and



emergency communication systems. Additionally, inadequate insurance coverage continues
to be a major issue and slow approval processes for government aid have hindered timely

assistance across the affected regions.

3 Data and Empirical Estimation

We combine geolocalized data on river flood risk from the European Commission’s Joint
Research Centre (JRC) with confidential loan-level data on bank lending to firms from
AnaCredit, the euro-area credit register. To calculate interest rate spreads, we merge in-
formation on loan-level interest rates with risk-free interest rates derived from government
bonds provided by the European Central Bank (ECB). Additionally, we enhance our dataset
with bank-level balance sheet data from the confidential Bundesbank monthly balance sheet
statistics (BISTA). Our sample period ranges from June 2019 to July 2023, such that we
have a symmetric window around the treatment event in July 2021 (with 2 years of observa-
tions each before and after). All variables and sources are described in detail in the following

section.

3.1 Flood risk data
3.1.1 Granular flood risk maps

To capture ex-ante flood risk of individual firms, we obtain flood risk maps from the European
Union Joint Research Centre (JRC). JRC data files are available in geospatial format and
contain geographic features in the form of coordinates (longitude, latitude) and the locations’
level of inundation (in meters) in case of a flood event. The data have an extremely granular
resolution of 100 x 100 meters, allowing a precise identification of firms’ ex-ante exposure
to potential flooding. For example, the data allow to differentiate between risks of a firm
located directly at the riverbank and those of another firm located in a distance of 100 meters

from the river. Inundation levels are reported for several hazard return periods, reflecting



the likelihood of a flood event occurring in the following intervals: 10, 20, 50, 100, 200 and

500 years.

3.1.2 Firm-level flood risk

To derive ex-ante firm-level flood risk, i.e. the level of inundation per hazard return period
for each firm, we use information on firms’ registered addresses (city, postal code, street
address) from the Register of Institutions and Affiliates Database (RIAD), a confidential
business register maintained by the European Central Bank in cooperation with EU central
banks. The geocoding of firms’ individual addresses (i.e. the transformation into geographic
coordinates) and linking them to the flood risk maps has been conducted by the European
Central Bank (ECB) and has been made available to ECB member institutions, including
the Bundesbank, see ECB (2023).

The merged data provides us with information on each individual firm’s ex-ante exposure
to flooding at various hazard return periods. In other words, the data allow us to identify
which firms are likely to be flooded in a flood event that occurs on average at return periods
of 10, 20, 50, 100, 200 and 500 years. Finally, we translate inundation levels into damage
costs (damage as a share of tangible fixed assets) via damage functions Huizinga et al.
(2017). Based on reported damages in past flood events, damage functions allow us to link
the severity of flooding (in terms of meters of water depth) to the average severity of damage
(normalized to a share between 0 and 1). See figure A1l in the Appendix for a representative
visualization of the damage function.

The final risk measure used in our analysis is the variable expected annual losses, which
takes a value between 0 and 1 and represents a firms’ share of tangible assets that is at risk
of being destroyed by river floods in a given year. The measure is computed by combining
damage costs and the annual probability of a river flood hazard to occur at a certain intensity.

More specifically, the variable expected annual losses (EAL) of firm i, expressed as a share



of total tangible assets, is computed using the following formula:

EAL; = dmf; X pby, (1)

TP

where dm f,,; is firm ¢’s value of the damage function by return period and pb,,, is the annual
hazard probability for each return period, measured as the inverse ratio of the return period

(e.g. 1/500 for the 500 years hazard frequency).
— Figure 1 around here —

Figure 1 provides an illustrative example of the flood risk data based on firms located in
an anonymous German city. Each node in the figure represents one firm, where node size is
proportional to the expected annual losses from river flooding. Thus, a large node indicates
that the corresponding firm has a relatively higher flood risk compared to smaller nodes.
The figure highlights that granularity is key when it comes to investigating flood risk, as
variations in the locations as small as 100 meters may alter the outcome drastically. While
proximity to a river is an important criterion for overall flood risk, it is not the only one.
Other geological features, including the slope and material of the surface in the area, are all

relevant factors for determining overall flood risk.

3.2 Credit register data
3.2.1 Sample and main variables

We use confidential loan-level data on German banks’ domestic lending to businesses from
AnaCredit, the European credit register maintained by the ECB and euro area national cen-
tral banks (Bundesbank (2024)). The minimum reporting threshold for loans in AnaCredit is
set to 25,000 euros. We restrict the sample to newly originated loans from German banks to

German business borrowers in non-financial sectors.® Data are reported at instrument-level

SHence, we exclude all interbank-loans or loans between banks and other financial intermediaries. We
filter out loans to financial companies by excluding borrowers in the NACE sectors 64, 65 and 66.



in monthly frequency and a large number of loan characteristics are available. We exclude
loan instruments related to credit card debt, overdrafts, reverse repurchase agreements, trade
receivables, finance leases and interbank deposits. Hence, our loan data set focuses on the
main categories of business loans, which are credit lines, revolving credit and term loans.
We include only loans with either fixed or variable rates, omitting loans with hybrid rate
terms.” We exclude loans originated by banks owned primarily by state authorities, e.g.
public mortgage banks or special purpose banks, and by branches of foreign banks. More-
over, we require banks to have issued new loans in at least three consecutive months during
both the pre- and post-window periods.

We derive loan spreads by deducting from each loan-specific interest rate the correspond-
ing risk-free rate. Our source of risk-free rates is the ECB database on euro area yield curves,
which provides average yields (in per cent) by maturity (in months) across all euro area gov-
ernment bonds traded in the spot market. Our key variable for identifying the maturity of
a loan is the legal final maturity of each instrument as reported in AnaCredit. We drop
all loans with missing information on the legal maturity. We also drop loans with missing
information or implausibly low values (smaller or equal to zero) for agreed interest rates.
We use the maximum maturity of risk-free rates (360 months) as a reference for all loans
exceeding this duration, and rely on 3 month risk-free rates for all loans below 3 month
maturity or with flexible interest rates.

In addition to interest rates, we examine the lending volume, which represents the nominal
amount granted to the counterparty at the time of origination. Furthermore, we analyze the
impact on the share of collateral. The collateral share is defined as the protection value
assigned to the loan divided by the lending volume.® Lastly, we investigate the probability

of default (PD), as determined by banks’ risk models. It refers to the likelihood that a

"In a few cases, single loans are reported in multiple instruments, i.e. there are several instruments
with identical loan terms from one bank to the same borrower reported in one month. To prevent that
this may have any impact on our estimation results, we aggregate multiple instruments to one if several
characteristics are identical: inception date, bank id, firm id, instrument type, interest rate level, interest
rate type, maturity, protection value.

8We winsorize this variable at the 1% and 99% level, as we observed a few implausibly high outliers.
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counterparty will default within a one-year period.’
We are able to merge loan data and flood risk data based on a common identifier (the
firm ID both used in AnaCredit and RIAD), resulting in the successful joining of 94.6% of

observations.?

3.2.2 Loan-level control variables

We control for observable loan characteristics based on information in AnaCredit. The type
of instrument may influence the determination of loan conditions, which we capture by
including dummy variables for credit lines and revolving credit (term loan is the baseline).
We also include the dummy variable variable rate, which equals one if the loan has a variable
rate and zero if the loan has a fixed interest rate. To absorb any influence of loan size on
loan conditions, we include the logarithm of the loan amount committed at inception (in
Euros) in all regressions, where loan size is not the dependent variable. Finally, the amount
of collateral deposited for a loan may have an impact, e.g. a loan with low collateral may be
regarded as more risky, translating into higher spreads. We therefore include the collateral
ratio in all regressions where it is not the dependent variable. We calculate the collateral ratio
by using the loan-level share of the total sum of collateral in total loan volume committed

at inception and then take the natural logarithm.

3.2.3 Bank control variables

To control for observable bank-specific characteristics, we include several bank balance sheet
variables at monthly frequency in our empirical model. Specifically, we control for the size
of banks by considering banks’ log of total assets. Banks’ abundance of liquidity is proxied

by the liquidity ratio, which reflects the share of liquid assets in total assets. We capture

9PDs are only reported by banks that use an Internal Ratings-Based Approach (IRB). Banks report PDs
either based on the loan or based on the counterparty. In case the PDs are produced at the loan level, the
counterparty’s PD at the reporting reference date is the exposure-weighted average PD. If both counterparty-
level PDs and loan-level PDs are estimated, the counterparty-level PD is reported to AnaCredit.

10The reason why a complete merge was not possible is that address information are incomplete for some
firms, which precludes the estimation of the flood risk measure.
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banks’ solvency by means of the equity ratio, i.e. the proportion of equity relative to total
assets. Banks’ portfolio quality is reflected in the sum of impairments and provisions over
total assets. Finally, we control for the influence of banks’ funding structure by including
the ratio of deposits over total assets. The source for all of the balance sheet indicators is

the confidential Bundesbank database BISTA (’Monthly balance sheet statistics’).

3.3 Descriptive statistics

Our monthly sample spans from June 2019 - July 2023 and contains 2,872,638 observations at
the loan-level, reflecting 369,547 distinct bank-firm relationships, 766 unique creditors, and
267,761 unique borrowers, indicating that our sample includes many small- and medium-
sized enterprises. For all variables used in the analyses, table Al provides the variable
definitions and sources, while table 1 presents summary statistics. Our main dependent
variable, the interest rate spread, has a mean of 3.01%. The average log loan amount is
10.42 or 771,147€ in absolute terms, while the average log collateral ratio is 2.76 or 53.1%.
For the probability of default, we have observations for only half of the sample. The mean

log probability of default is -4.14 or 0.027.
— Table 1 around here —

2% of firms are located in flood-affected counties where a disaster alert was issued during
the flood. Figure A2 displays these German counties graphically. Firms with a positive flood
risk across Germany, which were not directly impacted by the Ahrtal flood, account for 22%
of observations. We depict the cumulative distribution of ex-ante flood risk in figure A3,
which shows that most firms are not subject to any significant flood risk. Regarding loan
types, 81% of the loans are term loans, 18% are revolving credits, and 1% are credit lines.
In 29% of the cases, these loans have a variable interest rate, while the rest are fixed interest

rate loans.

— Figure 2 around here —
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Figure 2 shows the distribution of flood risk across Germany, by plotting the share of
firms with positive flood risk in each county. Figure A4 alternatively plots the average
expected annual loss from flooding. As opposed to the U.S., flood risk in Germany is largely
centered around rivers. For example, flood risk is highest in the lower-Rhine and Mosel
valleys (western corner of the map) and the Main around Frankfurt (west-middle of the
map). Flood risk is also large in individual cities close to the Saale river (Jena and Dessau;
yellow spots in the middle-eastern part of the map). In general, flood risk is regionally
heterogeneous across Germany, making it unlikely that our analysis is driven by regional

specificities.

3.4 Main specification

We assess the indirect impact of looding on post-disaster lending patterns for firms with high
flood risk. Specifically, we analyze the effect of the “Ahrtal” flood event on loan terms of firms
located in at-risk areas that were not directly impacted by the flood event. For this purpose,
we estimate the following difference-in-difference regression over the sample period from July
2019 to July 2023. We use detailed firm-level flood risk calculated from geospatial data (see
section 3.1) and combine it with loan level data to quantify banks’ lending adjustments after
the occurrence of a major flood with respect to other high-disaster-risk firms. Because we are
interested in the indirect effect of the disaster, we exclude regions that are directly affected

by the disaster for this analysis. Concretely, we implement the following regression:

Yipre = B1-Flood risks + B, - Flood risky x post, + Xyt + Zip s4 (2)

TV + Gir(s) + My T+ ELprit
where Y, ¢+ are loan characteristics of loan [ from bank b to firm f in month ¢. Our
focus is on investigating the effect of the flood on the interest rate spreads, the volume of
lending, the share of collateral and the probability of default (PD) from banks’ risk models.

Flood risky is our novel firm-level indicator of ex-ante exposure to flooding hazards. Post,

13



is an indicator variable equal to one starting in August 2021, i.e. after the flood disaster
on 14 and 15 July 2021, and zero otherwise. Our main coefficient of interest is (5, which
captures any change in banks’ lending behavior vis-a-vis high-risk borrowers after the flood
disaster.

We include a rich set of control variables and fixed effects in our models. X is a vector of
bank-time-varying control variables, containing the following variables: bank size, liquidity
ratio, equity ratio, portfolio quality and funding structure. We add instrument type (credit
line, revolving credit or term loans) and interest rate type as loan-level control variables in
the vector Z;4 ;. To control for unobserved supply-side effects we account for bank fixed
effects (75) in all regressions. We also include industry-location-time or industry-location-
size-time fixed effects (¢; 1, (s)¢) to account for demand-side factors (Degryse et al., 2019).

We additionally account for firm fixed effects (1¢) in several specifications.

4 Baseline, Exposure and Experience: Main Results

How does lending to high-flood-risk firms change after a major flood has occurred elsewhere?
One argument might be that a distant flood makes flood risk elsewhere more salient and
thus interest rates are likely to increase. On the other hand, banks might learn that disaster
payments by insurance companies and the government are sufficient to cover flood risk and
thus bank rates do not need to account for this risk. Banks might also induce their customers
to take flood prevention measures. Overall, the effect is theoretically ambiguous.

In this section, we show that loan spreads significantly decrease for firms with high ex-
ante flood risk after the “Ahrtal” flood. This decrease is persistent, robust, and is stronger
for banks” with a larger share of directly flood-affected borrowers. We also show that this

effect is largely absent when banks had experience with significant prior flooding.
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4.1 Baseline results

We estimate equation 2 and provide the results in table 2. First, we note that in general,
higher flood risk appears to be reflected in loan terms in the expected directions. Higher ex-
ante flood risk is associated with higher interest rates (see Flood risk coefficient in column
(1)). In terms of economic magnitude a 1 percentage-point increase in expected annual
flood losses (as a share of tangible assets) is associated with an increase in 4.7 basis points.
Or put differently, a one standard deviation (1.11 pp) higher flood risk is associated with
an increase in the loan spread by about 5 basis points. Higher ex-ante flood risk is also
associated with larger collateral requirements (column (5)) and higher estimated probability
of default (column (7)), while the loan volume is unaffected (column (3)).

Next, we document a surprising effect of the “Ahrtal” flood on ex-ante high-flood-risk
firms located outside of the disaster area. We find that for such directly unaffected, but high-
risk firms, loan spreads decrease significantly (see coefficient for the interaction term Post X
Flood risk in column (1)). Here, a one percentage-point increase in expected annual flood
losses is associated with a decrease in interest rates by about 3.7 basis points. This post-flood
effect thus erases a large part of the flood-risk premium that firms pay on their loans before
the “Ahrtal” flood. This finding is statistically robust when accounting for firm fixed effects
(column (2)), although the economic magnitude is smaller. This result is counterintuitive,
since we might expect banks and firms to update their (perceived) flood risk upwards, after
a major flood has occurred elsewhere. Indeed, the extant literature seems to document
upwards updating (Dessaint and Matray, 2017; Correa et al., 2022), potentially conflicting
with our results. However, in contrast to this literature our measure of flood risk is not based
on flood-experience, but instead on future projections, a difference we will highlight later in
section 4.4. In addition, our large credit register data allows for the inclusion of stringent
industry-location-size-time fixed effects to control for changes in loan demand following the
disaster.

We suggest three potential explanations for this negative result. First, banks might adjust

15



their rates downward, because they learn that dealing with the ramifications of a flood is not
risky after all. Post-disaster recovery funds from insurance, government and other sources
may be large enough to cover most losses, consequently banks bear little ultimate risk.
Second, it could be that banks condition post-disaster credit on flood-prevention measures
at firms, or push them to take up insurance, thus removing concerns about future flood risk
to bank lending. Third, it might be the case that near-miss disaster experiences lead banks
to underestimate future disaster risk (Tinsley et al., 2012; Bernile et al., 2017). We try to

disentangle these potential mechanisms in section 5.

— Table 2 around here —

In addition to lowering spreads, banks also provide a larger volume of loans to high-
disaster-risk firms (column (3)). Yet, this increased lending to post-disaster risk firms dis-
appears when we account for firm fixed effects in more stringent specifications (column (4)).
Nevertheless, we do not find evidence that banks adjust their lending downward, as might be
expected if banks think disaster strikes have become more likely for at-risk firms. We also do
not find that banks require more post-disaster collateral (columns (5) and (6)). Instead, the
coefficient for Postx Flood risk is negative, but statistically insignificant. A similar finding
applies to banks’ estimated probability of default, where we find negative, but statistically
insignificant coefficients (columns (7) and (8)). Given the decrease in spreads, this finding is
somewhat surprising and suggests that changes in post-disaster risk are not so fundamental
that they enter banks probability of default models. On the contrary, it makes it likely that
changes in spreads stem from loan officers using some discretion in setting interest rates,
either accounting for difficult-to-observe changes in disaster adaptation measures, or loan

officers being subject to a near-miss bias.
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4.2 Persistence, placebo and robustness

Persistence and Placebo Ex-ante, it is unclear whether changes in risk perceptions will
be permanent or transitory. For example, Dessaint and Matray (2017) suggest that risk
perception among CEOs after hurricanes is more likely to be transitory and Correa et al.
(2022) similarly find evidence of a transitory effect that disappears over time. Kong et al.
(2021) also find a transitory effect for analysts. Consequently, we test whether our effect
is transitory or persistent, by varying the Post; dummy in our regression across different
quarters. Specifically, we re-estimate our regression using Post, ;, where k varies between
-4 and 4 and denotes quarters relative to the “Ahrtal” flood in July 2021. We display the

coefficient of our difference-in-difference effect using these dummies in figure 3.
— Figure 3 around here —

The figure demonstrates that the effect of the disaster on spreads of high-disaster-risk
firms is only measurable after the disaster has occurred. This placebo-type regression in-
dicates that our results are unlikely to be the result of a violation of the parallel trends
assumption. Importantly, the figure also shows that the negative effect on high-disaster-risk
firms that occurs after the flood is persistent over the 4 quarters after the disaster. While the
effects are strongest one quarter after the disaster, the effects are still statistically significant
one year after the flood has occurred. Thus, as opposed to the extant literature, we show

that banks persistently adjust their spreads downwards for ex-ante high risk clients.

Robustness We show that these findings are robust in several different ways. First, the
results remain unchanged when including bank x year fixed effects as demonstrated in table
A2. Additionally, since flood risk is zero for a large share of the firms in our sample (see
figure A3), we show in table A3 that our results remain when using an indicator variable
instead of a continuous measure. The results are also unchanged when using the same sample

across regressions to ensure comparability (table A4).
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4.3 Disaster exposure

Exposure to disaster-affected firms In principle, banks can learn lessons from the
2021 “Ahrtal” flood in two different ways. First, they can learn through publicly available
information. For example, they might learn from the media that disaster relief was stronger
than expected. Second, they may learn through their own experience with disaster-affected
customers. Consequently, before investigating the mechanism, we investigate how banks
learn about the (perceived) change in disaster risk, by interacting our difference-in-difference
coefficient with banks’ loan exposure share to the disaster region. This exposure share is
the ratio of all business lending of each bank going to disaster-affected firms relative to all

business loans.
— Table 3 around here —

The results of this triple interaction on loan spreads are displayed in table 3.'' The
negative interaction coefficients of Post x Flood risk x Ezxposure share in columns (1) and (2)
indicate that banks with a larger exposure to the disaster area are the main driver of the
observed decrease in spreads for high-disaster-risk firms after the “Ahrtal” flood. For easier
interpretation, we split the exposure variable into tercile dummies and interact our difference-
in-differences coefficient with these dummies. Column (3), using industry-location-time fixed
effects, indicates that there is a statistically significant negative effect on spreads for high ex-
ante flood-risk firms. Spreads decrease by about 2 basis points for a firm with a one-standard
deviation higher ex-ante flood risk after the occurrence of the “Ahrtal” flood. This effect
changes to a decrease of 7 basis points for lending from banks with a medium exposure share
and a decrease of 8.6 basis points from banks within the top exposure tercile.!? Different
sets of fixed effects largely confirm these findings (column (4)).

Next, we test if this effect might be non-linear and include an interaction with the squared

exposure share in our regression. The positive coefficient estimate of this interaction with

HThe results are robust to using a harmonized sample (table A5).
12_1.83%1.11 4+ (—4.70 % 1.11 % 1) = —7.24; —1.83 % 1.11 + (—5.88 x 1.11 x 1) = 8.55
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the squared term suggests that there might be a non-linear effect of disaster exposure on post
“Ahrtal” interest rates to non-affected but high-disaster risk firms (column (5)). However,
the effect is very small and practically irrelevant in the reasonable range of the exposure

distribution. Certainly, the effect never turns positive.

4.4 Experience with prior disasters

If banks permanently update their perceptions about disaster risk after a natural disaster,
the effect should be limited to one significant disaster. After disaster expectations have
adjusted, banks should show little change after subsequent disasters. To see if this might be
the case, we turn to previous disasters. Conveniently for our analysis, Germany was hit with
three once-in-a-century'® flooding events since the turn of the millenium. The first major
flood occurred in 2002 and was focused around southern and eastern Germany. The second
major flood occurred in 2013 and happened mostly in eastern Germany. The “Ahrtal” flood
constitutes the third major flood. We obtain data on firms affected by these floods from
Noth and Rehbein (2019) and Koetter et al. (2020) and merge them with our credit register
data.'* Next, we interact this dummy of firms being affected by a prior flood with our

difference-in-differences interaction.
— Table 4 around here —

The results are displayed in table 4. First, independent of the 2021 “Ahrtal” flood,
firms with higher flood risk that have been subject to a previous flood (coefficient of Flood
Risk x Past Flood) are charged lower interest rates relative to firms without such prior
disaster experience. This suggests that at-risk firms subject to past disasters are generally
not charged higher rates, indicating that disaster risk is not systematically underestimated.

Similarly to the baseline, loans to high disaster-risk firms have reduced loan spreads after

the “Ahrtal” flood. Column (1) indicates 6.8 basis points lower spreads for a one percentage

13Based on the historical hydrological frequency of river flood levels.
14Rehbein and Ongena (2022) also use the 2013 flood data.
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point increase in annual expected flood losses after the “Ahrtal” flood.

Interestingly, this effect is essentially reduced to 0 for loans to firms who have experienced
the 2002 flood, because the coefficient of Post x Flood risk x Past flood is positive, significant
and of almost the same size as the baseline difference-in-differences effect. This finding is
similar when including firm fixed effects (column (2)). For the 2013 flood, we also find a
similar pattern: loans to firms who have not been affected by the 2013 flood experience
a significant reduction in credit spreads, while this effect is not present in firms who have
experienced the 2013 disaster (column (3)). In this case however, the post-disaster positive
effect does not remain significant when using firm fixed effects (column (4)). Combining
both disasters reveals similar results: Spreads are significantly lower for high-flood-risk firms
after the “Ahrtal” flood, but this effect cancels out when the firm has been subject to a prior
disaster in 2002 or 2013 (column 5). When including firm fixed effects in this regression, the

effects are economically smaller, but remain statistically significant (column 6).
— Figure 4 around here —

Reactions in interest rates of high ex-ante flood risk firms significantly differ between
firms who have experienced previous floods and those who have not. Spreads of loans to firms
located in regions which have experienced a significant previous flood generally have increased
after the “Ahrtal flood”. This is evidenced by the positive — although only marginally
significant — coefficient estimates of Post x Past Flood in table 4. This result is consistent
with findings in Correa et al. (2022), who similarly show an increase in spreads in high-
disaster-experience regions after another salient disaster has taken place. As we show in
figure 4, this positive effect on spreads also disappears over the medium term. This is also
in line with results from Correa et al. (2022) and Dessaint and Matray (2017) and suggest
that firms with previous flood experience receive a short term increase in rates after another
flood that does not directly affect them, perhaps stemming from increased disaster salience.
At the same time, while this flood ezperience effect is positive, a negative and much larger

ex-ante flood risk effect exists in parallel. This negative effect is the focus of our analysis.
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Generally speaking these results indicate two key findings: interest rates on loans for
high-flood-risk firms adjust significantly downward after a natural disaster. This effect is also
present when looking at previous disasters, i.e. high-disaster-risk firms with previous disaster
exposure are charged relatively lower rates. More importantly, the downward adjustment
in interest rates is limited to firms that have not experienced a prior disaster. Firms with
prior disaster experience get lower rates from their exposure to the prior disaster, but do not

experience a further decline after the 2021 “Ahrtal” flood.

5 Mechanisms

We propose three potential mechanisms that might explain the decrease in interest rates on
high-flood risk loans following a major flood in other areas. First, observing the reaction of
insurance companies and governments, banks learn that they bear less risk than anticipated
and reduce risk premiums. Second, the disaster induces flood-risk adaptation measures at
the local or firm level that result in reductions of risk premiums. Third, banks interpret the
flood as a near miss event, falsely thinking that non-flooded customers are at lower risk than
previously thought simply because they were not affected by this particular flood (Dillon
and Tinsley, 2008; Arias et al., 2017; Gao et al., 2020).

5.1 Climate change beliefs

Because interest rates decrease after a disaster once, but do not change in subsequent disas-
ters (see section 4.4), one might hypothesize that banks generally observe that they overesti-
mated losses from flood risk in affected areas. One implication of this hypothesis is that rates
may also decrease in flood-affected areas. We investigate this question in detail in Appendix
A1l and find that rates increase in flood-affected areas after the disaster (as indicated by the
positive and significant coefficient for Disaster region x Post in column (1) of table A6).

Nevertheless, there might be different reasons other than changed expectations about future
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losses (such as the loss of collateral) that may explain this change in premiums.

Consequently, we expand our analysis by asking whether the effects are heterogeneous
with respect to climate change beliefs in the population. If interest rates are rationally
updated, climate change beliefs should not play a large role. On the other hand, if stronger
climate change beliefs are related to stronger reductions in interest rates, this might be an
indication that changes in post-disaster flood prevention mechanisms play a role.

We implement this test using the share of voters for the Green party in the general election
in September 2021 as a proxy for climate change beliefs. Climate change beliefs should be
larger in counties with a higher share of Green voters. As an alternative, we rely on the share
of right-wing voters, i.e. voters for the party “Alternative fiir Deutschland” (AfD), which is
a party openly denying the existence of human-made climate change. Climate change beliefs
should thus be low in counties with a high share of voters for the right-wing party. We
then interact these respective voter shares with our difference-in-difference coefficient from
equation 2 and present the results of this implementation in table 5.

Table 5 column (1) shows that in counties with higher share of Green votes in the 2021
general election, spreads are adjusted less after the flood compared to counties with low shares
of Green votes. At the median of the share of Green party votes (18.67), the combined effect
is very close to zero. In other words, we observe decreases in spreads on high-flood-risk loans
mainly for areas with low green party support. We find a similar pattern when splitting the
Green party vote into terciles (column (2)). In areas with high-green party support, interest
rates on high-flood-risk loans increase.

The pattern is also similar for the share of AfD votes. While we do not find any evidence
for a differential effect in continuous interactions (column (3)), we find a strong negative
interaction effect when splitting the distribution into terciles (column (4)). Here, we find
clear indication that interest rates increase, when the support for the AfD is relatively low
(positive postxflood risk coefficient), but is negative when the AfD vote share is in the

median tercile or the top tercile, where the effect is most strongly negative.
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These results provide evidence against both a rational updating hypothesis (where we
would expect null results) and against the future prevention hypothesis, where we would ex-
pect the strongest decreases to occur in areas where flood-adaptation measures are perhaps
most likely to be undertaken — areas with high Green party support. Instead, rates increase
when climate-change beliefs are strong. The finding is consistent with the near-miss hypoth-
esis, where Green areas are less likely to interpret the flood as a near-miss and instead as an
indication of higher future flood risk. This interpretation is also consistent with evidence in
Correa et al. (2022) that interest rates rise most when attention to climate change is high. It
also aligns well with findings from Baldauf et al. (2020) which show that houses at flood-risk

sell at a discount only in high climate-change belief areas.

6 Conclusion

This paper investigates how bank lending changes after a major flood event, in particular
to firms unaffected by the disaster but with high future flood risk. Using detailed firm-
level ex-ante flood risk data combined with confidential and granular loan-level data from
AnaCredit, we document a surprising post-disaster decrease in lending rates to high-risk firms
in areas unaffected by the Ahrtal flooding in 2021 in Germany. Specifically, a one standard
deviation higher flood risk is associated with a 4.1 basis point reduction in interest rates.
We additionally present evidence of higher loan volumes, reduced collateral requirements,
and lower probabilities of default for high risk but not directly affected firms.

The decrease in interest rates is robust and persistent, with the results remaining statis-
tically significant even one year later. Banks, which initially had a large exposure to directly
affected borrowers in the disaster region, lower interest rates most to the unaffected, yet
high-flood risk borrowers after the flood. We also demonstrate that firms affected by prior
disasters are not affected by this significant decrease in post-flood interest rates and that

decreases in interest rates are centered in climate-denying regions.
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We propose three mechanisms that could explain our results. First, one possible expla-
nation for banks lowering their rates is the recognition that dealing with the aftermath of a
flood carries negligible risk. This could be due to substantial recovery funds from insurance,
government, and other sources, which may absorb most losses and limit the risk borne by
banks. We show that this is unlikely to be the case, as directly affected firms pay a larger
post-flood loan spread. Moreover, such an explanation is inconsistent with our finding that
climate-change aware regions show the least strong decreases in interest rates.

Second, banks might require firms to adopt flood-prevention measures or take out in-
surance after a disaster, reducing concerns about future flood risks for lending. We show
that this is unlikely to be the case, as interest rates increase in counties with strong climate
and environmental awareness, measured by election results for the Green party. If, instead
bank-induced flood prevention measures were the culprit, we would expect the reverse effect:
rates would decrease most when the willingness to implement protective measures is highest.

Third, we propose a “near-miss” channel; a cognitive bias where an event that was almost
experienced alters the perception of risk. Instead of recognizing the event as a warning of
potential future danger, banks may interpret the near-miss as evidence that the risk is less
than previously assumed. We suggest that such a near-miss change in disaster risk perception
also takes place in credit markets and that such an effect might lead banks to underestimate
future disaster risk. Consequently, examining how financial markets respond with respect to
high-risk but unaffected firms following a nearby salient disaster is crucial for understanding

the aggregate implications of climate-change related natural disasters.
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Figures & Tables

Figure 1: Illustration of firm-level flood risk data

Note: The figure illustrates the firm-level flood risk data based
on observations for an anonymous German city. Each node rep-
resents one firm. Node size is proportional to flood risk exposure:
large nodes indicate large expected losses in the event of flooding,
small nodes reflect small or no losses.
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Figure 2: Distribution of ex-ante firm-level flood risk across Germany
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Note: This map displays the share of firms in each county with a positive expected flood damage in the
sample period from June 2019 to July 2023. The share of firms is determined by dividing the number of
firms in a county that have a positive flood risk by the total number of firms in that county. Flood damage
is defined as individual firms’ expected annual losses from river floods per year. Expected annual losses are
calculated by multiplying each firm’s damage function by its tangible assets and the probability of flood risk
(see section 3.1.2 for further details).
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Figure 3: Persistence of Flood Risk Perception: Effects on spreads over time
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Note: The figure plots the results when the interaction term flood risk x post is allowed to vary in each quarter
around the disaster event. Specifically, we amend our baseline regression in equation (2) by adding separate
dummies for each quarter after the disaster and for each of the four quarters prior to the disaster. In formula
notation, the regression is as follows: Spready .+ = 51 - floodrisky + 222_4 Ba.k - floodrisky s X postiyy +
Xot+ Zipfe+%+ Gine + 1f +€ip, 5., where k denotes the quarter relative to the July 2021 Ahrtal flood.
The figure shows the quarterly point estimates for the main coefficient of interest, 82 i, together with 5-95%
confidence intervals Standard errors are clustered at the firm-time level.
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Figure 4: Dynamics of spread pricing around flood event for past flood events interaction
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Note: The figure plots the quarterly point estimates for the interaction coeflicient of Post, and Past floody,
Ba.k together with 5-95% confidence intervals from the following regression: Spread; s s+ = 1 - Pastflood s+
222_4 Ba.i - Pastfloods x Postiyr)+ Xpt+ Zip 0+ + Gi,n,t + [4f + €1, 5,4, Where k denotes the quarter
relative to the July 2021 Ahrtal flood. Post;4 ) is a dummy variable, capturing each of the quarters between
four quarters prior to the Ahrtal flood until 7 quarters after the event. Pastfloods is a dummy variable
indicating if firm f has been affected by any of the previous flood events in 2002 and 2013. X, is a vector of
bank-time-varying control variables, Z; ¢ includes loan-level controls, -, represent bank fixed effects, ¢; ;¢

are industry-location-time fixed effects and s represent firm fixed effects. Standard errors are clustered at
the firm-time level.
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Table 1: Descriptive statistics

N Mean SD 5th 25th Median 75th 95th
Spread (%) 2,872,638 3.01 248 1.15 1.88 249 3.29 5.66
Loan amount (log) 2,872,638 10.42 1.69 7.99 9.68 10.35 10.95 13.74
Collateral ratio (log) 2,872,638 2.75 2.15 0 0 4.35  4.44 4.67
PD (log) 1,546,842 -4.14 1.10 -6.03 -5.09 -3.78 -3.44 -3.00
Post 2,872,638 0.49 0.50 O 0 0 1 1
Flood risk (x100) 2,872,638 0.22 1.11 0 0 0 0 0.65
Disaster region 2,872,638 0.02 0.14 0 0 0 0 0
Term loan 2,872,638 0.81 0.39 0 1 1 1 1
Revolving credit 2,872,638 0.18 0.39 0 0 0 0 1
Credit line 2,872,638 0.01 0.08 0 0 0 0 0
Variable rate 2,872,638 0.29 045 0 0 0 1 1
Bank size 2,872,638 16.97 1.26 14.45 17.05 17.14 17.70 18.15
Funding structure 2,872,638 0.59 0.19 0.33 0.44 0.62 0.75 0.84
Equity ratio 2,872,638 0.08 0.03 0.04 0.06 0.07 0.08 0.12
Portfolio quality 2,872,638 0.01 0.01 0.01 0.01 0.01 0.01 0.02
Liquidity ratio 2,872,638 0.16 0.13 0.02 0.06 0.11 0.28 0.38
Exposure share 2,872,638 2.27 339 0 2.05 208 2.58 2.83
Green voting share 2,864,416 18.43 7.28 6.5 13.10 18.67 23.80 30.05
Right-wing voting share 2,826,373 7.52 4.78 2.83 4.54 6.10 8.29 18.30
Flood 2002 2,872,638 0.26 0.44 0 0 0 1 1
Flood 2013 2,872,638 0.19 0.39 O 0 0 0 1
Past flood 2,872,638 0.36 0.48 0 0 0 1 1

Note: The table shows the descriptive statistics for all variables used in the analyses, i.e. the number of
observations, mean, standard deviation (SD), 10th percentile, 25th percentile, median , 75th percentile,
and 90th percentile for each variable. Detailed definitions for each of these variables can be found in
table Al.
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Table 2: Indirect effects: Loans to firms outside disaster regions

Spreads Volumes Collateral ratio PDs
(1) (2) (3) (4) (5) (6) (7) (8)

Flood risk 4.7k %* -0.59 2.13%%* 5.28%*

(0.73) (0.38) (0.62) (2.29)
Post x flood risk -3.73***  _1.55%** 1.52%** -0.50 -1.29 -0.33 -2.42 -0.55

(0.85) (0.36) (0.53) (0.48) (0.84) (1.90) (2.62) (1.12)
Bank controls Yes Yes Yes Yes Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes Yes Yes Yes Yes
ILT FE No Yes No Yes No Yes No Yes
ILST FE Yes No Yes No Yes No Yes No
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes No Yes
No. of obs. 2,276,389 2,532,713 2,276,389 2,532,713 2,276,389 2,532,713 1,357,505 1,450,964
Adj. R? 0.93 0.94 0.67 0.71 0.73 0.71 0.89 0.90

Note: This table shows the results from estimating equation (2). The dependent variable is the interest rate
spread. Flood risk is a continuous variable reflecting the exposure to flood risk at the individual firm. Post
is a dummy variable equal to one for the period after the July 2021 flood in Germany and zero otherwise.
Industry-location-time (ILT) fixed effects are used based on firms’ 2-digit NACE code, their NUTS region (level
3) and monthly time period. For ILST (industry-location-size-time) fixed effects we additionally capture firm
size based on deciles of firms’ total assets. Observations from borrowers and banks located in disaster regions
have been omitted from the analysis. We take logs of the variables volumes, collateral ratio and PDs. *** **
and * denote significance at the 1%, 5%, and 10 %-level, respectively. Standard errors clustered at the firm-time
level are shown in parentheses.
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Table 3: Influence of banks’ exposure to flood regions on loan pricing

Dependent variable: Spread

(1) (2) (3) (4) (5) (6)

Post x Flood risk -1.70%* -0.05 -1.83* -0.26 0.06 0.24
(0.96)  (0.70)  (1.05)  (0.50)  (1.21)  (1.01)
Post x Flood risk x Exposure share -1.01FFF _0.67** -2.07FFF  _0.87*
(0.29) (0.28) (0.58) (0.47)
Post x Flood risk x Med. exposure share -4 TOFRR 2 Rk
(1.71)  (0.64)
Post x Flood risk x Top exposure share -5.88%*  _4.46**
(2.29) (2.10)
Post x Flood risk x Exposure share? 0.05%** 0.02
(0.01) (0.01)
Bank controls Yes Yes Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes Yes Yes
ILT FE No Yes No Yes No Yes
ILST FE Yes No Yes No Yes No
Bank FE Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes
No. of obs. 2,276,389 2,532,713 2,276,389 2,532,713 2,276,389 2,532,713
Adj. R? 0.92 0.94 0.92 0.94 0.93 0.94

Note: The dependent variable is the interest rate spread. Flood risk is a continuous variable reflecting the
exposure to flood risk at the individual firm. Post is a dummy variable equal to one for the period after
the July 2021 flood in Germany and zero otherwise. The variable Exposure share captures bank-level
exposures (as a % of total exposures) in June 2021 to firms located in counties subject to disaster alert
during the July 2021 flood. We obtain information on the residency of firms from the credit register,
allowing us to identify firms in counties with disaster alert based on zip codes. We then aggregate for
each bank the loan volumes granted to these identified firms and divide it by each bank’s total business
lending amount. The dummy variables Med. exposure share and Top exposure share indicate if a bank
belongs to the medium or top percentile, respectively, of all banks in terms of Ezposure share. Industry-
location-time (ILT) fixed effects are used based on firms’ 2-digit NACE code, their NUTS region (level
3) and monthly time period. For ILST (industry-location-size-time) fixed effects we additionally capture
firm size based on deciles of firms’ total assets. Observations from borrowers and banks located in disaster
regions have been omitted from the analysis. *** ** and * denote significance at the 1%, 5%, and 10
%-level, respectively. Standard errors clustered at the firm-time level are shown in parentheses.

35



Table 4: Influence of previous flood events on risk pricing adjustment

Flood 2002 Flood 2013 2002 and 2013 combined
(1) (2) (3) (4) (5) (6)

Flood risk x Past flood -3.51%%* -4 . 8TF** S3.TTRRR

(1.36) (1.29) (1.38)
Post x Past flood 0.13* -0.03 0.13 0.23%** 0.14* -0.04

(0.07) (0.04) (0.12) (0.07) (0.07) (0.04)
Post x Flood risk -6.81F¥F  _9 Zoxkk -4.00%**  _] 54rE* S7A2%FFF L9 11REE

(1.22)  (0.41) (0.92)  (0.38) (1.38)  (0.42)
Post x Flood risk x Past flood 6.97***  3.86*** 3.54%* -0.16 T.34%FF 2 JgHkx

(1.61) (0.83) (1.61) (1.13) (1.62) (0.78)
Bank controls Yes Yes Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes Yes Yes
ILT FE No Yes No Yes No Yes
ILST FE Yes No Yes No Yes No
Bank FE Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes
No. of obs. 2,276,389 2,532,713 2,276,389 2,532,713 2,276,389 2,532,713
Adj. R? 0.93 0.94 0.93 0.94 0.93 0.94

Note: The dependent variable is the interest rate spread. Flood risk is a continuous variable reflecting the
exposure to flood risk at the individual firm. Post is a dummy variable equal to one for the period after
the July 2021 flood in Germany and zero otherwise. Past flood represents a dummy variable that captures
firms located in counties affected by the 2002 flood (columns (1) and (2)), the 2013 flood (columns (3) and
(4)) or either of them (columns (5) and (6)). Our identification relies on the methodology used in Noth
and Rehbein (2019) and Koetter et al. (2020), which defines counties as affected if the percentage of flood
insurance contracts activated during the flood period is above or equal 0.24 percent. Industry-location-time
(ILT) fixed effects are used based on firms’ 2-digit NACE code, their NUTS region (level 3) and monthly
time period. For ILST (industry-location-size-time) fixed effects we additionally capture firm size based on
deciles of firms’ total assets. Observations from borrowers and banks located in disaster regions have been
omitted from the analysis. *** ** and * denote significance at the 1%, 5%, and 10 %-level, respectively.
Standard errors clustered at the firm-time level are shown in parentheses.
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Table 5: Influence of green and right-wing voter shares on spreads

Dependent variable: Spreads

Green Party vote share AfD Party vote share
(1) (2) (3) (4)
Post x flood risk -5.19%** -2.13 -0.02 1.72%%*
(0.73) (1.54) (0.61) (0.40)
Post x flood risk x vote share 0.31%** -0.02
(0.04) (0.06)
Post x flood risk x Med. tercile vote share 0.30 -2.65%**
(2.22) (0.60)
Post x flood risk x Top tercile vote share 5.01*** -3.54%**
(1.74) (0.67)
Bank controls Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes
IST FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
No. of obs. 2,460,465 2,465,124 2,460,465 2,466,693
Adj. R? 0.90 0.90 0.90 0.90

Note: The dependent variable is the interest rate spread. Flood risk is a continuous variable reflecting
the exposure to flood risk at the individual firm. Post is a dummy variable equal to one for the period
after the July 2021 flood in Germany and zero otherwise. The variable Vote share for Green and AfD
party at 2021 general election is measured at the county-level ("Landkreis’) of the borrower to account for
the fact that business loans are typically channeled via banks’ local branches. Med. exposure share and
Top exposure share indicate if a firm belongs to the medium or top percentile, respectively, of all firms
in terms of Vote share. Regressions include industry-size-time (IST) fixed effects, while location fixed
effects (NUTS3 regions) are omitted due to collinearity with the county-level vote share. Observations
from borrowers and banks located in disaster regions have been omitted from the analysis. *** ** and *
denote significance at the 1%, 5%, and 10 %-level, respectively. Standard errors clustered at the firm-time
level are shown in parentheses.
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Appendix

A1l Direct Effects of Flooding

In this section, we estimate the direct effect of flooding on post-flood lending patterns. To
this end, we estimate the following regression equation for the sample period July 2019 -
July 2023:

Yipse = Pi- Disaster region, + (3, - Disaster region; x Post; + Xp; + Zip p4 (A1)
Y + Gir(s) T Myt ELp gt

where Y, ¢+ are loan characteristics of loan f from bank b to firm f in month ¢. Specifi-
cally, we investigate the direct effect of the flood on the interest rate spread, the volume of
lending, the share of collateral and the probability of default (PD) from banks’ risk mod-
els. The interest rate spread is calculated by deducting from each loan-specific interest rate
the corresponding risk-free rate (see 3.2.1). Volume of lending corresponds to the nominal
amount granted to the counterparty at the date of inception. Collateral ratio is the protec-
tion value allocated to the respective loan divided by the volume of lending. The Probability
of Default (PD) is defined as the counterparty’s probability of default over one year.

Our main independent variable, Disaster region, is a dummy variable indicating if a
borrower is located in a county in which the state of emergency was declared after the 2021
“Ahrtal” flood. In Germany, any county administration can declare a state of emergency if
the disaster damages severely affect daily life or lives are threatened. The precise conditions
for issuing such an alert are set by the civil protection laws of the federal states. We obtain
the information about the counties that declared a state of emergency from the Ministry
of Internal Affairs (BMI (2021)). Fig. A2 shows all counties that declared the state of
emergency in July 2021.

Post; is an indicator variable equal to one from August 2021, i.e. after the flood disaster
on 14 and 15 July 2021, and zero otherwise. X, is a vector of bank-time-varying control
variables, containing the following variables: bank size, liquidity ratio, equity ratio, portfolio
quality and funding structure. We also include instrument type (credit line, revolving credit
or term loans) and interest rate type as loan-level control variables in the vector Z;, ;.

All regressions include bank fixed effects () to control for unobserved supply-side effects.
We also add industry-location-time fixed or industry-location-size-time fixed effects (¢; 1(s)+)
to account for demand-side factors (Degryse et al., 2019). We additionally account for firm

fixed effects (11r) in several specifications. In the extant literature, Brown et al. (2021) is
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one of the few papers that uses credit register data to investigate the effect of unexpected
snowfall on bank lending and interest rates. While we also use credit register data, our
data is monthly and covers an even broader sample of firms. Consequently, the data allows
us to account for bank and industry-location-sector-time fixed effects, allowing for a better
separation of demand- vs. supply-side effects. Our data also allows us to investigate two
novel dependent variables that have been neglected in the literature so far: collateral and
default probabilities.

We estimate equation Al using OLS and report the results in table A6. Firms in the dis-
aster regions have lower spreads (column (1)), despite having a higher probability of default
(column (7)). Columns (3) and (5) might provide some indication for this discrepancy: dis-
aster region firms’ credit volumes are lower and they provide larger collateral. Because only
relatively few regions are affected (see figure A2), it is difficult to exclusively attribute any of
these ex-ante differences purely to disaster risk. The difference-in-difference estimates pro-
vides a picture that is largely in line with prior results. Consistent with Brown et al. (2021),
disaster-affected firms charge higher spreads (column (1)), although these effects become
statistically insignificant once accounting for firm fixed effects (column (2)). This might be
an indication that the effect of direct natural disaster impact on loan spreads might not be as
strong as previously suspected. For loan volumes, we also find evidence generally consistent
with prior studies. In specifications without firm fixed effects, the difference-in-difference
coefficient is positive but insignificant (column(3)). Once we control for firm fixed effects,
the effect is statistically significant (column (4)). For the “Ahrtal” flood, loan volumes are
22% higher in disaster regions after the occurrence of the flood compared with unaffected
regions. This result is generally in line with the findings from prior literature, but much
larger in size. While the prior literature suggest an effect on lending volumes of around 3%
(Brown et al., 2021; Koetter et al., 2020), our effect is 7 times larger, perhaps owing to the
very localized and intense flooding experienced in the Ahrtal region (see section 2).

Next, we ask whether banks’ collateral requirements change after disaster-impact. Pre-
sumably due to the lack of data, this question has not received much attention in the lit-
erature so far. We find that generally collateral requirements decrease after the disaster
(columns (5) and (6)). One simple explanation for this finding is that firms’ collateral in the
flooded regions is destroyed and thus it cannot be pledged as collateral. Further, government
aid payments may serve as implicit collateral, replacing the need for collateralization using
other assets. Insofar as the increased lending to disaster areas is difficult to be supported
with destroyed collateral, these results are in line with the literature documenting positive
effects of post-disaster lending volumes. Finally, we estimate the effect of the disaster on

banks’ estimated probability of default. Surprisingly, we find that the probability of default
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is not changed, or even decreases slightly, although the effect is only marginally significant
(columns (7) and (8)).

Overall the results are in line with the existing literature documenting that disasters
generally impact lending into the disaster area with more lending at higher rates (Brown
et al., 2021; Koetter et al., 2020). In addition to this literature, we provide novel evidence
that loans into disaster regions require significantly less collateral, while the probability of

default from banks’ internal models is not much affected by the disaster.
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A2 Appendix Tables & Figures

Figure Al: Damage function for commercial buldings (Huizinga et al., 2017)
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Note: This figure depicts the damage function for commercial buildings in Europe as calculated by Huizinga
et al. (2017), which is used in the calculation of our ex-ante firm-level flood risk measure (Eq. 1). Based on
reported damages in past flood events, damage functions allow us to link the severity of flooding (in terms
of meters of water depth) to the average severity of damage (normalized to a share between 0 and 1).
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Figure A2: Counties with state-of-emergency declaration
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Note: This map shows all Counties that declared a state of emergency after the flood.
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Figure A3: Cumulative distribution of ex-ante flood risk
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Note: The figure displays the cumulative distribution of flood risk for firms included in AnaCredit. Flood
risk is defined as individual firms’ expected annual losses from river floods per year. Expected annual losses
are calculated by multiplying each firm’s damage function by its tangible assets and the probability of flood
risk.
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Figure A4: Average expected flood damage per county
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Note: This map shows the average of firms’ flood damage per county. Flood damage is defined as individual
firms’ expected annual losses from river floods per year. Expected annual losses are calculated by multiplying
each firm’s damage function by its tangible assets and the probability of flood risk. The mean loss per county
is calculated for the sample period from June 2019 to July 2023
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Table Al: Variable definitions and sources

Variable Definition Source

Spread Difference between loan interest rate and maturity-matched AnaCredit/ECB
risk free rate (in %)

Loan Volume Natural logarithm of loan volume committed by bank at the AnaCredit
inception of the loan

Collateral ratio Loan-level share of collateral over total loan volume (in %)  AnaCredit

PD Natural logarithm of probability of default AnaCredit

Post Dummy variable equal to 1 from August 2021 (after Ahrtal Public sources
flood event)

Flood risk Individual firms’ expected annual losses from river flood per EU Joint Research
year (share of tangible assets) Center/ECB

Disaster region

Revolving credit

Credit line

Variable rate

Bank size

Liquidity ratio

Equity ratio

Portfolio quality

Funding structure

Green voting share

Right-wing
share

voting

Exposure share

Past flood

Dummy variable equal to 1 if borrower is located in disaster
region (based on NUTS3 code)

Dummy variable equal to one if the loan is a revolving credit
and zero otherwise

Dummy variable equal to one if the loan is a credit line and
zero otherwise

Dummy variable equal to one if the loan has a variable rate
and zero if the loan has a fixed interest rate

Natural logarithm of banks’ total assets

Liquid assets over total assets

Equity over total assets

The sum of impairments and provisions over total assets

Deposits over total assets

Share of votes for Green party (in %) at German federal elec-
tion in 2021

Share of votes for the party ’Alternative fiir Deutschland’ (in
%) at German federal election in 2021

Bank-level proportion of loans to firms located in disaster re-
gions shortly before disaster (June 2021, as % of each bank’s
total business loan exposure)

Dummy variable that equals 1 if firm is located in counties
that were affected by flood events in 2002 or 2013

BMI (2021) and Ana-
Credit

AnaCredit
AnaCredit
AnaCredit

Bundesbank monthly
balance sheet statistics
(BISTA)

Bundesbank monthly
balance sheet statistics
(BISTA)

Bundesbank monthly
balance sheet statistics
(BISTA)

Bundesbank monthly
balance sheet statistics
(BISTA)

Bundesbank monthly
balance sheet statistics
(BISTA)

Public sources

Public sources

AnaCredit

Rehbein and Ongena
(2022)

Note: The table provides an overview of the variables used in the analyses, along with their
definitions and sources.
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Table A2: Robustness Spreads: Bank x year FE

Spreads
(1) (2) (3) (4)

Flood risk 4. 7FH* 4.18%%*

(0.73) (0.61)
Post x flood risk ~ -3.73*** -1.55%** -3.34%** -1.53%**

(0.85) (0.36) (0.73) (0.28)
Bank controls Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes
ILT FE No Yes No Yes
ILST FE Yes No Yes No
Bank FE Yes Yes No No
Bank-year FE No No Yes Yes
Firm FE No Yes No Yes
No. of obs. 2,276,389 2,632,713 2,276,389 2,532,713
Adj. R? 0.93 0.94 0.93 0.94

Note: *** ** and * denote significance at the 1, 5 and 10 %-level, respectively.
Clustering of standard errors at firm-time level. Flood risk is a continuous variable
reflecting the exposure to flood risk at the indiviual firm. Post is a dummy variable
that equals one for the period after the July 2021 flood in Germany. Industry-
location-time (ILT) fixed effects are used based on firms’ 2-digit NACE code, their
NUTS region (level 3) and monthly time period. For ILST (industry-location-size-
time) fixed effects we additionally capture firm size based on deciles of firms’ total
assets. Observations from borrowers and banks located in disaster regions have been
omitted from the analysis. We take logs of the variables volumes, collateral ratio and
PDs.
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Table A3: Indirect effects: Loans to firms outside disaster regions (Indicator treatment)

Spreads Volumes Collateral ratio PDs
(1) (2) (3) (4) (5) (6) (7) (8)
Flood risk 0.02* -0.02 -0.04 0.01 0.02%**
(0.03) (0.19) (0.05) (0.00) (0.01)
Post x flood risk -0.13***  _0.08*** -0.03 -0.04%** -0.04 -0.02 -0.01 -0.01
(0.04) (0.01) (0.03) (0.01) (0.05) (0.04) (0.00) (0.00)
Bank controls Yes Yes Yes Yes Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes Yes Yes Yes Yes
ILT FE No Yes No Yes No Yes No Yes
ILST FE Yes No Yes No Yes No Yes No
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes No Yes
No. of obs. 2,276,389 2,532,713 2,276,389 2,532,713 2,276,389 2,532,713 1,396,921 1,295,696
Adj. R? 0.92 0.92 0.66 0.71 0.73 0.71 0.56 0.87

Note: This table shows the results from estimating equation (2). The dependent variable is the interest rate
spread. Flood risk is an indicator treatment variable reflecting the exposure to flood risk at the individual firm.
Post is a dummy variable equal to one for the period after the July 2021 flood in Germany and zero otherwise.
Industry-location-time (ILT) fixed effects are used based on firms’ 2-digit NACE code, their NUTS region (level
3) and monthly time period. For ILST (industry-location-size-time) fixed effects we additionally capture firm size
based on deciles of firms’ total assets. Observations from borrowers and banks located in disaster regions have
been omitted from the analysis. We take logs of the variables volumes, collateral ratio and PDs. *** ** and *
denote significance at the 1%, 5%, and 10 %-level, respectively. Standard errors clustered at the firm-time level
are shown in parentheses.
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Table A4: Robustness: Loans to firms outside disaster regions, harmonized sample

Spreads Volumes Collateral ratio PDs
(1) (2) (3) (4) (5) (6) (7) (8)

Flood risk 5.63%** -1.27%** 2.73¥** 5.84**

(0.85) (0.61) (0.73) (2.51)
Post x flood risk -4.54***  _1.90%** 1.95%**  _0.69** -1.57 0.74 -2.92 -1.46

(0.98) (0.37) (0.61) (0.31) (0.96) (1.99) (2.76) (1.17)
Bank controls Yes Yes Yes Yes Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes Yes Yes Yes Yes
ILT FE No Yes No Yes No Yes No Yes
ILST FE Yes No Yes No Yes No Yes No
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes No Yes
No. of obs. 2,210,006 2,210,006 2,210,006 2,210,006 2,210,006 2,210,006 1,351,917 1,351,917
Adj. R? 0.94 0.95 0.68 0.70 0.74 0.71 0.89 0.89

Note: This table shows the results from estimating equation (2). The dependent variable is the interest rate
spread. Flood risk is a continuous variable reflecting the exposure to flood risk at the individual firm. Post
is a dummy variable equal to one for the period after the July 2021 flood in Germany and zero otherwise.
Industry-location-time (ILT) fixed effects are used based on firms’ 2-digit NACE code, their NUTS region (level
3) and monthly time period. For ILST (industry-location-size-time) fixed effects we additionally capture firm
size based on deciles of firms’ total assets. Observations from borrowers and banks located in disaster regions
have been omitted from the analysis. We take logs of the variables volumes, collateral ratio and PDs. *** **
and * denote significance at the 1%, 5%, and 10 %-level, respectively. Standard errors clustered at the firm-time
level are shown in parentheses.
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Table A5: Robustness: Influence of banks’ exposure to flood regions on loan pricing, har-
monized sample

Dependent variable: Spread

(1) (2) (3) (4) (5) (6)

Post x Flood risk -1.47 -1.81 -0.02
(1.22) (1.15) (0.70)
Post x Flood risk x Exposure share -0.50  -1.45%*  _0.82
(0.38) (0.45) (0.54)
Post x Flood risk x Med. exposure share -0.39%FF  _4.09%FF  _1.64%**
(1.19) (1.89) (0.65)
Post x Flood risk x Top exposure share S4.54HFF _6.21%* 572X
(1.71) (2.55) (2.27)
Bank controls Yes Yes Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes Yes Yes
ILT FE Yes No Yes Yes No Yes
ILST FE No Yes No No Yes No
Bank FE Yes Yes Yes Yes Yes Yes
Firm FE No No Yes No No Yes
No. of obs. 2,210,006 2,210,006 2,210,006 2,657,504 2,276,389 2,532,713
Adj. R? 0.90 0.94 0.94 0.90 0.94 0.94

Note: The dependent variable is the interest rate spread. Flood risk is a continuous variable reflecting the
exposure to flood risk at the individual firm. Post is a dummy variable equal to one for the period after
the July 2021 flood in Germany and zero otherwise. The variable Exzposure share captures bank-level
exposures (as a % of total exposures) in June 2021 to firms located in counties subject to disaster alert
during the July 2021 flood. The dummy variables Med. exposure share and Top exposure share indicate
if a bank belongs to the medium or top percentile, respectively, of all banks in terms of Ezposure share.
Industry-location-time (ILT) fixed effects are used based on firms’ 2-digit NACE code, their NUTS region
(level 3) and monthly time period. For ILST (industry-location-size-time) fixed effects we additionally
capture firm size based on deciles of firms’ total assets. Observations from borrowers and banks located
in disaster regions have been omitted from the analysis. *** ** and * denote significance at the 1%, 5%,
and 10 %-level, respectively. Standard errors clustered at the firm-time level are shown in parentheses.
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Table A6: Direct effects: K-alarm regions

Spreads Volumes Collateral ratio PDs
(1) (2) (3) (4) (5) (6) (7) (8)

Disaster region -0.79%H* -0.16* 1.16%** 0.82%**

(0.16) (0.08) (0.13) (0.23) (0.14)
Disaster region x Post  0.65%** 0.07 0.04 0.22%* -0.85%* -0.23 0.08 -0.45%

(0.16) (0.15) (0.12) (0.10) (0.34) (0.34) (0.17) (0.25)
Bank controls Yes Yes Yes Yes Yes Yes Yes Yes
Loan controls Yes Yes Yes Yes Yes Yes Yes Yes
ILT FE No Yes No Yes No Yes No Yes
ILST FE Yes No Yes No Yes No Yes No
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes No Yes
No. of obs. 2,326,094 2,585,173 2,326,094 2,585,173 2,326,094 2,585,173 1,389,051 1,482,786
Adj. R? 0.93 0.93 0.66 0.71 0.73 0.71 0.89 0.90

Note: This table shows the results from estimating equation (1). The dependent variable is the interest rate
spread. Disaster region is a dummy variable equal to one if a firm is located in a postal code directly affected by
the July 2021 flood and zero otherwise. Post is a dummy variable equal to one for the period after the July 2021
flood in Germany and zero otherwise. Industry-location-time (ILT) fixed effects are used based on firms’ 2-digit
NACE code, their NUTS region (level 3) and monthly time period. For ILST (industry-location-size-time) fixed
effects we additionally capture firm size based on deciles of firms’ total assets. We take logs of the variables
volumes, collateral ratio and PDs. *** ** and * denote significance at the 1%, 5%, and 10 %-level, respectively.
Standard errors clustered at the firm-time level are shown in parentheses.
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