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ABSTRACT7

Financial investors increasingly recognize the economic threats of climate change, yet most assessments of financial risk do
not account for climate tipping points. Here, we combine advances in integrated assessment modeling of tipping points with
dividend discount modeling to quantify risks of climate change damages for major stock indices. For the MSCI World and
the MSCI Emerging Markets, two globally diversified indices, climate-related losses vary considerably by index and damage
function; under RCP4.5, the expected loss ranges between 1–15%, and the 95% Value-at-Risk, a common risk measure,
between 4–26%. Risks are highest in emerging markets with extensive coastal areas. Tipping points increase expected
losses and Values-at-Risk by over 10%, primarily due to permafrost thaw and ice sheet disintegration. Unlikely but potentially
catastrophic tipping points, such as the Atlantic meridional overturning circulation’s collapse, exacerbate tail risks. Therefore,
tipping points should be integrated into climate scenario analyses in the financial sector.
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Introduction9

Climate change is projected to hamper economic prosperity in many regions1–7 through channels such as labor productivity and10

human capital losses8, agricultural impacts9, or the destruction of existing capital stocks10. Since the economic damages of11

climate change will decrease firms’ profitability, climate change poses risks to financial investors, who will face lower returns12

and, due to the forward-looking nature of markets, might see their assets devalued in return11–14. As a response, financial13

investors have become increasingly alert to such physical climate risks over the past years15, with hazard exposure increasingly14

reflected in asset prices13, 16. In addition, forward-looking assessments of climate change’s impacts on investor portfolios and15

banks have become increasingly common in academia and among financial institutions11, 13, 14, 17–24, leveraging well-established16

climate scenarios and modeling outputs for broader top-down assessments and asset- and impact-specific bottom-up approaches.17

Past and current assessments of physical risks of climate change to banks and investors, however, do not account for climate18

tipping points, that is, climatic subsystems that may switch into a persistently different state due to minor perturbations25, such19

as the disintegration of the Antarctic ice sheet26. The impacts of such tipping points on societies and economies are highly20

uncertain but potentially severe26–31, might be triggered at global warming levels as low as 1.5°C32 and, in the worst case, could21

trigger each other, resulting in a cascade of tipping elements33. Therefore, current assessments of physical risks for financial22

investors are likely to underestimate the exposure of assets to physical climate change risks. However, a systematic assessment23

of this potential omission is missing.24

Here, we use an established framework to translate scenario-dependent economic damage projections into financial risk11,25

measured in terms of a portfolio’s average losses and Value-at-Risk (VaR), a typical risk measure in finance based on loss26

distribution quantiles17. We apply this framework to the META integrated assessment model, which represents annual impacts27

from warming and sea level rise and accounts for multiple climate tipping points based on a meta-analysis of the extant28

economic literature27. We advance the META model with recently developed region-specific damage functions that account for29

various bottom-up climate change impacts34. By doing so, we derive the first country-specific estimates of physical risks to30

stock investors due to climate tipping points based on the latest evidence on the economic impacts of climate change. Combining31

these estimates with data on the composition of major stock indices, we derive financial loss distributions for these indices32

under different climate change scenarios with and without accounting for climate tipping points. Our approach is applicable to33

any generic international stock portfolio and, in principle, could incorporate damage estimates of any climate-economy model34

with country-level resolution.35

Importantly, building on the META model27 our analysis only covers some tipping points31, primarily those with more36

gradual effects35, and addresses their impact primarily through the lens of additional warming and sea level rise. In addition, our37

treatment of tipping points abstracts from direct effects on local economies, non-market impacts, intra-country heterogeneities,38



potential ripple effects (e.g., climate-related famine or conflicts), and additional feedback from financial losses onto the economy.39

Therefore, our assessment of tipping points’ financial risks is conservative and remain subject to deep uncertainties regarding40

the physical feedbacks underlying climate tipping points and their socio-economic impacts31. It nevertheless constitutes an41

important advancement in the assessment of climate-induced financial risk.42

Results43

Estimating lost dividends based on integrated assessment modeling outputs44

While the short-term evolution of individual stock prices is highly uncertain, the trajectory of dividend growth (and hence45

stock prices over the long run) is driven by overall economic development36, 37. Based on this fundamental concept of dividend46

discount modeling, our methodological framework11 links climate change-induced shifts in overall gross domestic product47

(GDP) to changes in future stock dividends. Fig. 1 illustrates the steps of this approach. First, the META model translates48

different scenarios of socio-economic developments and emissions into temperature shifts and sea level rise with or without49

accounting for climate tipping points, with the latter increasing warming and sea level rise (Fig. 1a–b) before converting them50

into impacts on GDP (for an overview of META’s climate and socio-economic model dynamics, see Supplementary Fig. S4 and51

S5, respectively). Notably, through Monte Carlo analysis, META explicitly accounts for the stochastic nature of several climate52

tipping points, which might or might not be triggered for a given Monte Carlo run. For each Monte Carlo run, META also53

samples key model parameters, such as the climate sensitivity or the damage function parameters, from calibrated distributions54

to account for climate and socio-economic uncertainties27. Based on our framework’s assumption that the resulting GDP55

impacts affect dividend growth proportionally—which is unlikely to hold for a single year and stock but reasonable for all56

publicly listed companies in a country combined in the long run11—, we translate the GDP losses projected by META into57

dividend losses for each market (Fig. 1c; example values for the United States, the world’s largest stock market). Using growth58

data from the Shared Socio-economic Pathways (SSPs) and empirical estimates for investor discount rates and country risk59

differences (see Experimental procedures), we then project the present value of future dividends in the absence of climate60

change and the country-specific present value loss due to climate change damages with and without accounting for climate61

tipping points (Fig. 1d).62

Finally, we aggregate the country-specific losses to globally diversified stock indices based on granular data on their current63

composition. For our main results, we use three indices covering all large-cap and mid-cap stocks in different categories of64

stock markets: i) the MSCI World, which covers all well-developed stock markets; ii) the MSCI Emerging Markets (EM),65

which covers less developed stock markets in terms of size, liquidity, and accessibility; and iii) the MSCI Frontier Emerging66

Markets (FEM), which covers even less developed stock markets. These indices cover approximately 85% of the total stock67

market in each constituent country and, due to their broad coverage and diversification, are most compatible with dividend68

projections based on economy-wide shocks from climatic shifts. Globally diversified stock indices, such as the MSCI World,69

are widely used as benchmark indices for actively managed portfolios of financial practitioners, including major pension and70

sovereign wealth funds38, and for exchange-traded funds used extensively by retail investors. Notably, the increasing awareness71

of financial investors about climate change risks means that some future dividend losses might already be reflected in current72

index valuation. However, a recent literature review finds that physical climate risks are not fully priced yet13, which aligns73

with surveyed expert beliefs on climate risk pricing39. Therefore, investors have already suffered some of the losses quantified74

in this paper, while others will be due in the future once asset prices adjust further. Importantly, climate tipping points, in75

particular, are unlikely to be priced in since the systematic understanding of their economic impacts is relatively nascent27, 31
76

and they have been absent from extant risk assessments by practitioners and academics11, 12, 14, 17–23.77

Implications for diversified stock indices78

Fig. 2a shows the expected loss (i.e., the mean reduction in the present value of future dividends) and the 95% VaR (i.e., the79

95th percentile of the loss distribution) under RCP4.5 for the ten largest developed, emerging, and frontier markets, respectively.80

Climate change is projected to generate losses for all markets, albeit more pronounced for emerging markets and lower-latitude81

frontier markets than developed markets—with the notable exception of Australia and the Netherlands for which the 95% VaR82

reaches almost 6.5%, due to high initial temperatures and exposure to sea level rise. For the largest market in each country83

category (the US, China, and the Philippines), the expected loss amounts to 1.5% (95% VaR: 3.3%), 1.6% (95% VaR: 3.7%),84

and 4.4% (95% VaR: 10.3%), respectively.85

Fig. 2b displays the implications of these country-level losses for the respective stock indices. For the MSCI World, even86

under a mitigation scenario compatible with the Paris Agreement (RCP3-PD/2.6), the expected present-value loss in future87

dividends when including climate tipping points averages 0.9% of the index’s current valuation, while the 95% VaR amounts to88

2.1%. Under RCP4.5, expected losses and the 95% VaR increase to 1.5% and 3.4%, respectively. For RCP8.5, the expected loss89

and 95% VaR nearly double. Given the predominant role of US stocks for globally diversified portfolios focusing on developed90

markets (see Supplementary Fig. S11), losses for the MSCI World closely track the results for the US stock market. For the91
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Figure 1. Steps to convert integrated assessment model outputs into index-specific dividend impacts. (a) Increase in global
mean surface temperature based on Monte Carlo runs of the META integrated assessment model under RCP4.5 with and
without climate tipping points. Line and shaded area denote the Monte Carlo mean and the 2.5th–97.5th percentile, respectively.
(b) Same as Panel a but for global sea level rise. (c) Same as Panel a but for dividend losses of an example market (United
States) based on GDP loss projections by META. (d) Projected dividends from US stocks under RCP4.5-SSP2 in current and
present value, gross and net of climate change-related losses excluding and including climate tipping points. Grey transparent
bars denote the current value prior to discounting, colored bars the reduction of discounted dividends due to climate damages
excluding tipping points (blue) and the additional reduction due to tipping points (red). Note that given the conceptual nature of
the figure, the bars for climate losses have been magnified for the sake of readability and do not represent actual model results.
For the unmodified chart version, see Supplementary Fig. S12.

3/15



MSCI EM, the high losses of key markets, such as India, South Africa, and Thailand, translate into higher relative losses at the92

index level, averaging 2.5% under RCP4.5 with a 95% VaR of 5.9%. Under RCP8.5, the 95% VaR increases to 9.2%. While93

the index size of the MSCI FEM is minor compared to the other two indices, its expected losses and 95% VaR in relative terms94

are the highest due to substantial losses in the Philippines, Vietnam, and Morocco particularly. Under RCP4.5 and RCP8.5, the95

95% VaR of the MSCI FEM amounts to 7.5% and 11.9%, respectively.96
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Figure 2. Expected loss and 95% VaR for major stock indices with and without accounting for climate tipping points. (a)
Expected loss and 95% VaR by country under RCP4.5. Countries displayed are the ten largest stock markets in each MSCI
market category (developed, emerging, and frontier emerging), with the weight in the respective stock index in parentheses.
Blue bars denote the expected loss excluding climate tipping points, red bars denote the additional increase in the expected loss
due to including tipping points. (b) Same as Panel a but for MSCI World, MSCI Emerging Markets (EM) and MSCI Frontier
Emerging Markets (FEM) indices under RCP3-PD/2.6, RCP4.5, and RCP8.5. Value labels in % denote the expected loss
(squares) and 95% VaR (triangles) including climate tipping points.

Loss distributions by damage function specification97

A 95% VaR of around 2–12% of indices’ current valuation might seem low compared to estimates that climate change may98

reduce global GDP on average by 7–14% at the end of this century under RCP8.52, 3, 34, with some studies indicating even99

higher damages1, 6. This discrepancy is partially driven by the fact that our method emulates the high discount rates used by100

financial investors, which reflect the high volatility (and hence risk) of the overall stock market and, particularly, the higher risk101

of investing in emerging markets, where most climate damages will occur1, 2, 6, 34. As a result, dividend losses from years far102

into the future play a reduced role in the overall present value from an investor perspective (compare Fig. 1d). In addition, the103

MSCI World is dominated by Northern Hemisphere countries, especially the United States, where economic climate impacts104

are likely smaller34.105

More pertinently, our loss distributions strongly depend on the assumed effects of temperature shifts and sea level rise106

on economic output and the persistence of these impacts (i.e., whether the economy bounces back after an adverse shock or107

persistently follows a lower growth trajectory). For the GDP-temperature relationship, the results presented above use the108
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COACCH damage functions by ref.34 calibrated on bottom-up impact models for agriculture, riverine floods, energy demand,109

labor and energy supply, and road infrastructure. These damage functions produce results that align with a recent meta-analysis110

of global cost estimates of climate change40, and, importantly, do not imply damage persistence. To evaluate the range of losses111

under different damage function specifications, Fig. 3 illustrates the loss distribution for the MSCI World and the MSCI EM112

under RCP4.5 using two alternative damage specifications: i) the main specification by ref.1 combined with sampling the113

damage persistence from a uniform distribution between 0–100%, which is the default setting of the META model27 due to114

mixed empirical evidence1, 2, 4–6, 41, 42 (Fig. 3b,e); ii) the same dose-response function of ref.1 paired with the full persistence115

assumption by ref.1 in their own GDP loss projections (Fig. 3c,f).116

In line with the heterogeneous estimates of climate change’s economic costs43, the loss distributions differ substantially117

by damage specifications. For the MSCI World (Fig. 3a–c), the expected loss across damage specifications, when including118

climate tipping points, ranges between 0.8–4.2%; for the MSCI EM (Fig. 3d–f), losses average between 2.3–15.0%. Allowing119

for some or full damage persistence widens the distribution substantially, with the 95% VaR reaching up to 17.1% for the MSCI120

World and 25.8% for the MSCI Emerging Markets. Notably, when using the damage function by ref.1, a considerable share of121

the loss distribution for the MSCI World implies index-level dividend gains, driven by economic benefits to colder, high-latitude122

countries, whereas the COACCH damage functions are more pessimistic for the Northern Hemisphere (see Supplementary123

Fig. S1). Despite these differences in magnitude and sign, the effect of including tipping points is fairly consistent across124

specifications and increases the expected loss and the 95% VaR by roughly a tenth or more (Fig. 3a–f), except a somewhat125

smaller VaR increase for the MSCI World under full persistence (+5%; Fig. 3c). This is because the main underlying drivers of126

tipping points’ financial risks in our model are additional warming and sea level rise, which, in relative terms, have similar127

implications across damage specifications.128
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Figure 3. Loss distribution for the MSCI World and the MSCI Emerging Markets (EM) under RCP4.5 by GDP-temperature
damage function and persistence of GDP damages assumed. The box and whiskers denote the 25th, 50th and 75th percentile,
and the 5th and 95th percentile (i.e., the 95% VaR), respectively. For details on the damage specifications, see Experimental
procedures and Supplementary Note 1.
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Risk increases due to climate tipping points129

When assessing losses and their tipping point-related increase separately for each market using our main COACCH damage130

specification (Fig. 4a–b), India exhibits the highest expected loss among major stock markets (5.6%, 95% VaR: 13.0%) and the131

highest tipping point-related increase in the expected loss (+19% increase), primarily due to the impacts of the region-specific132

summer monsoon. Losses are also particularly high for African developing countries, such as Mauritius (95% VaR: 11.6%),133

Côte d’Ivoire (95% VaR: 10.7%) and Senegal (95% VaR: 10.6%) and for Southeast Asian markets like Malaysia (95% VaR:134

10.7%) or Indonesia (95% VaR: 10.0%). Tipping point-related increases in the expected loss are higher for OECD countries135

like the Netherlands (+18%), Australia (+14%), or Japan (+13%). The impact of tipping points is lower but still substantial in136

Latin America (+9% for Brazil), the Middle East (+7% for Saudi Arabia), or China (+6%). For the entire MSCI World index,137

tipping points increase the expected loss by 11% and the 95% VaR by 13%.138

When considering the different climate tipping points in the META model in isolation, additional warming due to permafrost139

thawing dominates the effect on all markets alike (Fig. 4c and Supplementary Fig. S13). Sea level rise due to the disintegration140

of the Greenland and West-Antarctic Ice Sheets also plays an important role, particularly for developed markets—in line141

with previous findings on tipping point impacts on the social cost of carbon27. For the MSCI EM, the Indian summer142

monsoon increases the expected loss by over 3%. By contrast, Amazon dieback risks have little effect on the loss distribution,143

primarily because the META model only accounts for warming-related impacts of this tipping point through additional CO2144

emissions from forest diebacks (and not for the potentially devastating socio-economic ripple effects on local and regional145

economies27, 30, 31). Therefore, these results are particularly conservative and should be taken with caution.146

To explore how the risk increase due to climate tipping points is related to investors’ patience and time horizons, Fig. 4d147

displays the expected loss and the 95% VaR for the MSCI World with and without climate tipping points (red and blue lines)148

for different equity risk premiums used in the investor discount rate (see Experimental procedures). The figure also shows the149

relative increase of both risk measures due to tipping points (red error bars) for our default equity risk premium of 5% (dashed150

vertical line), akin to the return expectation of institutional investors like pension funds, and other example values up to 15%, in151

the range of high return expectations of actors like buyout or venture capital funds. Both the expected loss and the 95% VaR152

decrease sharply in the discount rate deployed. However, the additional risk due to tipping points remains important for all153

discount rates considered and, in relative terms, decreases from +11% to +7% for the expected loss and from +13% to +9% for154

the 95% VaR. As a result, additional physical risks due to climate tipping points are most material for “patient” investors, such155

as pensions funds, but can apply to investors with higher discount rates as well. In addition, these risks increase for simulated156

investment horizons starting in 2034 or 2044 instead of 2024 (Fig. 4e) since physical damages of climate change increase over157

time. Therefore, tipping point-related risks are poised to become more material in future assessments. The same findings hold158

for the MSCI EM and the MSCI FEM (Supplementary Fig. S14).159

The possibility of catastrophic tipping point impacts160

While our main results align with recent estimates of additional tipping point-related warming35, they do not capture the161

possibility of unlikely but catastrophic impacts33. To explore this possibility, we model a shutdown of the Atlantic meridional162

overturning circulation (AMOC) following ref.28 as an additional tipping point, which is unlikely through the 21st century32, 44
163

but, if triggered, gradually harms global GDP by up to 15% (see Experimental procedures). Unlike other tipping points in164

META, such a stylistic impact assumption lacks geophysical foundations27 but is a useful worst-case scenario. Compared to165

our main results under RCP4.5 using the COACCH damage specification, the possibility of a catastrophic AMOC collapse166

increases the expected loss from 1.5% to 1.6% (+6%) for the MSCI World, with much more moderate effects for emerging and167

frontier markets as an AMOC collapse shifts the climate primarily in the North Atlantic (Fig. 5a). While the AMOC remains168

stable for a large majority of Monte Carlo runs, the tails of the loss distribution for the MSCI World increase substantially. The169

95% VaR rises from 3.4 to 3.7% and the 99% VaR (i.e., the 99th percentile of the loss distribution) from 4.7 to 5.7%, with170

worst-case losses reaching almost 15%. When considering the dividend loss distribution by year for the United States under171

RCP4.5 and RCP8.5 (Fig. 5b), annual expected losses in the near-term future are largely the same whether an AMOC collapse172

is introduced or not. By contrast, the tails of annual losses rise sharply and, for the 99th percentile under RCP4.5, may even173

be comparable to the corresponding percentile under RCP8.5 without an AMOC collapse. The reason is that such a climate174

catastrophe can introduce substantial tail risks over the next decades if a collapse occurs earlier than thought, which remains175

unlikely but possible32, 44.176

Discussion177

Our results show that the physical risk increase due to climate tipping points for diversified stock portfolios is secondary to178

overall climate change damages but remains material across a wide range of stock indices, investor preferences, and damage179

specifications. Since markets are unlikely to have already priced in the economic impacts of climate tipping points entirely,180

this suggests potential overvaluations in regions where tipping points add to overall risks, albeit to a very heterogeneous181
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loss due to climate damages including climate tipping points for all countries featured in the MSCI World, EM or FEM (for
detailed values, see Supplementary Table S4). (b) Increase in the relative country-level expected loss due to tipping points. (c)
Contribution of each climate tipping point to the overall relative increase in the expected loss (+11.2%), calculated as the
difference between the expected loss excluding tipping points and a model specification that features only the tipping point in
question. “Interaction of tipping points” is the residual between the summed individual contributions and the expected loss
increase of all tipping points combined. (d) Expected loss and 95% VaR (expressed in current USD) for different equity risk
premiums used in the investor discount rate (see Experimental procedures) with and without accounting for climate tipping
points. Dark red error bars and value labels denote the relative increase in both risk measures due to tipping points for example
values of the equity risk premium (5%, 10%, 15%). (d) Expected loss and 95% VaR for different investment horizons. Blue
bars denote the expected loss excluding climate tipping points, red bars denote the additional increase in the expected loss due
to including tipping points.
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extent. Therefore, financial investors and regulators should integrate tipping points into their climate scenario analyses and182

stress tests. Specifically, risk assessments should prioritize the effects of ice sheet disintegration and permafrost thawing, and183

potential regional tipping points, such as monsoon shifts, in the case of geographically concentrated portfolios. Risk magnitudes184

are highly sensitive to the damage function and persistence assumed, illustrating the need for careful sensitivity checks or185

meta-analyses to capture the full distribution of potential losses. Unlikely but potentially catastrophic tipping point impacts186

strongly affect the tails of the loss distribution, meaning that too conservative assumptions can easily result in underestimated187

VaRs.188

Indeed, there are many reasons why the numbers presented here may provide a lower bound of tipping point-related risks189

rather than a central estimate27. The science of modeling the economic impacts of climate tipping points is in its infancy190

and subject to deep uncertainties31, such that updating the structural modeling of tipping points to the most recent literature191

can affect results considerably (see Supplementary Note 2). In addition, the META model deployed here encapsulates the192

consequences of such events through the lens of additional warming and sea-level rise alone. Severe regional impacts of193

specific tipping points, such as the dieback of the Amazon rain forest30, are not covered, nor are non-market effects (e.g., on194

health or biodiversity), as presumably financial investors do not consider them directly in their valuations. Several suspected195

tipping points, such as Boreal forest ecosystem shifts, coral reef die-offs, or changes in the West African monsoon, are not196

represented in our model but could inflict substantial impacts on societies31, 35. In addition, the damage functions deployed197

abstract from intra-country heterogeneities and potential ripple effects of climatic shifts via climate-related famine, conflicts, or198

the propagation of shocks through supply chains45. Assuming that GDP losses are spread evenly across a country’s stocks199

abstracts from more concentrated climate disasters triggering bankruptcies of individual firms, which could increase investor200

losses further. In addition, stochastic parameters in the Monte Carlo runs of the META model are assumed to be independently201

distributed27, which can lead to underestimated tail risks46.202

As such, the figures presented here are conservative and should be seen as conditional on avoiding an all-out climate203

catastrophe (similar to how financial risk analysis often abstracts from other low-likelihood catastrophes, such as global nuclear204

war). However, their magnitude aligns with previous estimates of climate change’s impacts on investor cash flows11 and205

suggests that climate change impacts are, from today’s investors’ perspective, an important but not an overwhelming risk206

to globally diversified portfolios—unless impacts on the economy and stocks persist over time. This is primarily because207

global stock portfolios are concentrated in the Global North and because investors apply high discount rates, particularly to208

investments located in developing countries, thus assigning lower weights to these countries’ long-term future in valuations. As209

a result, investors’ short-termism may result in inefficient capital allocation if long-term damages are not appropriately taken210

into account. At the same time, our results suggest that a reallocation in response to such risks might remove capital from (and211

increase risk premiums for) low-income countries with high exposures to sea level rise—where finance for mitigation and212

adaptation is already scarce43, 47. Therefore, stringent public policies are key to ensure that capital allocation accounts for the213

physical risks of climate change without depriving the most vulnerable countries of much-needed capital.214

In interpreting the results of this study, additional caveats warrant consideration. First, our approach treats each market215

as homogeneous, thereby not capturing business-specific, sectoral, and subnational dynamics, and treats future GDP growth216

deterministically in line with the SSPs. Second, applying climate change-related GDP shifts of a country to equities located217

there abstracts from the global dispersion of operations and supply chain. This assumption, however, is, on average, conservative218

since there is more market capitalization in companies headquartered in the Global North (where GDP impacts are lower) and219

with substantial economic activity in the Global South (where GDP impacts are higher) than vice-versa (see Supplementary220

Table S6). Therefore, accounting for the geographic scope of operations would rather increase than decrease the numbers221

presented here. Finally, while the methodological framework employed here is well-rooted in financial theory and allows222

for comprehensive scenario analysis regarding dividends11, it should not be misconstrued as a forecast given the volatile and223

unpredictable nature of stock prices48.224

Overall, our results assess the importance of climate tipping points’ physical risks for stock investors and highlight the key225

drivers and mechanisms. In addition, our approach can be easily extended to any globally diversified stock portfolio of interest.226

Future research could build on our work by including additional tipping points31, 32, accounting for GDP growth uncertainty49,227

and replacing the economy-wide projections deployed here with more granular impact projections and asset data to allow for228

asset- and location-specific assessments12. This could involve modeling impacts based on supply chain structures45 and more229

granular damage functions that better capture structural and climatic heterogeneities across regions6, 7. Given the conservative230

nature of our approach, we expect such work to strengthen further our call for the inclusion of tipping points in financial risk231

assessments.232
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Experimental procedures233

Climatic and GDP projections We use the recently developed META integrated assessment model27 to derive climatic and234

GDP impact projections with and without considering climate tipping points under different RCP-SSP scenarios. META covers235

the 2010–2200 period in annual time steps for 180 countries and uses the Finite Amplitude Impulse Response (FaIR) model236

as a climate module50. Country-level warming and global sea level rise calculated by the climate module for the respective237

emission scenario are translated into economic impacts using damage functions based on ref.1 and ref.51, respectively. META238

covers seven potential climate tipping points as well as their interactions with each other, with the calibration based on a239

meta-analysis of the extant literature: i) Greenland Ice Sheet disintegration, ii) West-Antarctic Ice Sheet disintegration, iii)240

Amazon rain forest dieback, iv) shifts in the Indian summer monsoon, v) permafrost thawing, vi) ocean methane hydrate241

dissociation, vii) slowdown of the Atlantic meridional overturning circulation. In addition, META explicitly represents the242

surface albedo feedback in its climate module52. However, based on the latest state of climate science and to avoid double243

counting, we do not use the tipping point modules for vi) and vii), which combined has a conservative effect as it reduces the244

impact of tipping points on dividend present values (see Supplementary Note 2 for a detailed discussion). To account for the245

climatic and socio-economic uncertainties involved, META uses Monte Carlo draws for a wide range of model parameters, such246

as the climate sensitivity, the GDP-temperature damage function coefficients, or the parameters used to calibrate the different247

tipping points. Since some tipping points in the model are stochastic, sampling a large distribution of Monte Carlo runs provides248

a more accurate representation of the risks involved. An overview of META’s climate and socio-economic modules and our249

modifications to the original model version by ref.27 can be found in Supplementary Fig. S4 and S5.250

For our main results, we couple RCP3-PD/2.6, RCP4.5, and RCP8.5 with the “middle-of-the-road” scenario SSP2 to isolate251

the effect of climatic shifts (since varying SSPs would also alter economic growth projections and hence the projected future252

dividends in the absence of climate change). However, using SSP5 instead, which is more compatible with RCP8.553, produces253

somewhat higher losses across different RCPs and model specifications but does not alter our conclusions regarding the effects254

of climate tipping points (see Supplementary Table S3). Using N = 10,000 Monte Carlo runs of META for each scenario s and255

model specification m following ref.27, we calculate the overall impact of climate change on GDP in country i and year t for256

each Monte Carlo run as follows:257

γ
CC
i,t,s,m = GDPCC

i,t,s,m/GDPSSP
i,t,s (1)

where GDPSSP denotes GDP as per the SSP scenario in the absence of climate change, which does not vary across model258

specifications m, and GDPCC denotes the GDP remaining after market damages due to climate change.259

For model specifications m, we vary the following three settings in META:260

• The tipping points included (all, none, all including a potential AMOC collapse, or individual tipping points separately—261

with the latter option being used for Fig. 4c and Supplementary Fig. S13 only)262

• The GDP-temperature damage function deployed to estimate GDPCC, for which we use region-specific COACCH damage263

functions provided by ref.34 (main approach) or the main function from ref.1. For more information and mathematical264

expressions for the damage functions, see Supplementary Note 1.265

• The persistence of GDP-temperature damages, that is, whether economies rebound after a climate shock or are persistently266

pushed to a lower growth path5, 54. We run META with three different specifications: no persistence following ref.52
267

(main approach), full persistence following ref.1, or drawing the share of persistent damages from a uniform distribution268

between 0–100% following ref.27. For details on how damage persistence is implemented in META, see ref.27.269

Notably, we trim 35 Monte Carlo runs from the total distribution of 10,000 runs because they produce NA values in META’s270

climate module due to inconsistent or implausible combinations of parameter draws. These trimmed runs are not featured in271

any of the results presented in this paper. In addition, we impute γCC
i,t,s,m for Taiwan, whose damages are currently not captured272

in META, with the values for Hong Kong due to a similar latitude and exposure to sea level rise impacts and the fact that both273

territories are covered by the same region-specific COACCH damage function.274

Financial losses for national stock markets We use the dividend discount modeling framework developed by ref.11 to275

translate GDP projections from integrated assessment models into financial losses due to physical climate change impacts,276

assuming that the initial dividends from all stocks in a given market grow at the same rate as the respective economy. Therefore,277

in the absence of climate change, the present value of future dividends from country i for a given SSP can be written as follows:278

PV SSP
i,s =

T

∑
t=2024

(
Di,2024

t

∏
k=2025

1+gSSP
i,k,s

1+ ri

)
(2)
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where Di,2024 is the initial dividends received in the base year 2024, gSSP
i,t,s is the respective country’s GDP growth rate in279

year t as per the SSP scenario s, and ri represents a country-specific investor discount rate (see next subsection). In the base280

year t = 2024, dividends simply amount to Di,2024 and are not discounted. As a time horizon under consideration, we cap T281

at 2100 but note that years late in the century are subject to high discount factors and hence have a low weight in the overall282

present value.283

This approach assumes that the current valuation of stocks in country i is based on the discounted value of expected284

future dividends36, 55 and hence abstracts from the excess volatility of stocks48 and the possibility of capital gains not rooted285

in dividend expectations37, for instance through share buybacks. These simplifications notwithstanding, dividend discount286

modeling has been found to identify potential excess returns37, is a common approach to assess climate physical risks11, 12,287

and can reproduce the actual market capitalizations of most major stock markets reasonably well (see Supplementary Note 4).288

Notably, ref.12 also assume a linear relationship between output shifts and dividends, while equating dividend and GDP growth289

is a common long-term assumption in dividend discount modeling37 and aligns with empirical evidence based on dividend290

growth in developed financial markets since World War II (see Supplementary Note 5).291

Assuming that dividends are affected proportionately by the climate change-related reduction in overall GDP, the present292

value of future dividends from country i under climate change is then293

PVCC
i,s,m =

T

∑
t=2024

(
Di,2024

t

∏
k=2025

1+gSSP
i,k,s

1+ ri

)
γ

CC
i,t,s,m (3)

Lastly, the relative present-value loss is294

LCC
i,s,m = 1−PVCC

i,s,m/PV SSP
i,s (4)

Since Di,2024 is a constant, it cancels out when dividing PVCC
i,s,m by PV SSP

i,s , such that the relative loss LCC
i,s,m is independent295

of the initial dividends’ absolute magnitude11. Repeating the calculation in Equation (4) for the different values of γCC
i,t,s,m296

for each Monte Carlo draw of META input parameters then provides us with a loss distribution, reflecting the climatic and297

socio-economic uncertainties and, more importantly, the stochastic nature of the tipping points involved. Notably, ref.11 refers298

to the loss term LCC
i,s,m as the “climate VaR”, whereas in financial analysis, VaR describes percentiles of the loss distribution56.299

To avoid misunderstandings, we, therefore, use the term “loss” throughout the paper and use the VaR term only for the 95th and300

the 99th percentile of the Monte Carlo distribution of LCC
i,s,m.301

Investor discount rate Dividends are discounted to present values using a country-specific, inflation-adjusted investor302

discount rate ri, which we calibrate based on the widely-used capital asset pricing model57, 58 paired with a country risk303

premium47:304

ri =
1+ rr f + rcrp,i +β ×ERP

1+π
−1 (5)

where rr f denotes the nominal return on a risk-free asset, rcrp,i is a country-specific risk premium, ERP denotes the overall305

equity risk premium of the stock market, β denotes the volatility of the asset in question relative to the overall market, and π306

is the expected annual inflation rate in USD, the currency of our results. Following extant studies47, 59, we take country risk307

premiums from the Damodaran database60, and use an equity risk premium of ERP = 5% and β = 1 since we model broadly308

diversified investments in the overall stock market37. Lastly, we calibrate the risk-free rate rr f based on the 10-year geometric309

mean of the US treasury bond rate between 2014-2023 (1.5%60) and use the corresponding 10-year geometric mean of the310

US Consumer Price Index (1.8%61) for π . Therefore, dividends from “risk-free” countries with rcrp,i = 0 are discounted at311

an annual rate of 1+0.015+0.05
1+0.018 −1 ≈ 4.6%. Country risk premiums for each market are displayed in Supplementary Table S5.312

Notably, this calibration aims to reproduce discount rates that financial investors typically apply, not determine which rates they313

should use, as the social discount rate supported by expert surveys generally is much lower62. To test the robustness of our314

findings to alternative discount rates, we further vary the assumed value of ERP between 1–15% (Fig. 4d).315

Financial losses for globally diversified stock indices To calculate present value losses for globally diversified stock316

indices, we obtain data on their market capitalization and specific composition as of 31 August 2023 from MSCI, a commercial317

provider of financial indices. Summing up the market capitalization of all equities in index p listed in country i and dividing it318

by the overall index’s market capitalization provides us with country weights wi,p in the current valuation of the respective319

index (weights are listed in Supplementary Tables S7–S9). Notably, the methodological framework by ref.11 assumes that320
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current valuations of stocks reflect the present value of expected dividends36, 37. Under this assumption, the share of a country321

in the present value of the entire index’s future dividends must equal its share in the index’s current market capitalization. Then,322

the relative present-value loss of the entire index p simply equals the weighted average of the relative loss of each market i in323

index p, weighted by wi,p:324

LCC
p,s,m = ∑

i
wi,pLCC

i,s,m (6)

Lastly, we can convert relative present-value losses based on Equation (6) to absolute losses in current USD (used in Fig.325

4d) by multiplying LCC
p,s,m by the index’s market capitalization (as of 31 August 2023 to ensure consistency with our weights326

wi,p). Note that this step rests on the simplifying assumption that climate change damages are currently not priced in. If327

investors have already priced in at least some damages (such that current market capitalization is already lower than the market328

capitalization in the absence of climate change), this means that we underestimate the index value in the absence of climate329

change and hence also the financial loss due to climate change impacts in absolute terms.330

Impacts of a catastrophic AMOC collapse Following ref.28, we model the probability of an AMOC collapse for a given331

year t as332

pAMOC,t = 1− exp
(
−bAMOC ×max{0,∆Tglobal,t −1}

)
(7)

where bAMOC = 0.00063064. By subtracting one and using the max operator, this approach ensures that at +1°C of global333

warming, the probability of an AMOC collapse is zero. At +1.5°C, +3°C, and +4°C of global warming, Equation (7) yields334

an annual tipping probability of 0.03%, 0.13%, and 0.19%, respectively. Over our modeling horizon of 2010–2100, these335

probabilities translate to a cumulative probability of no AMOC shutdown throughout the 21st century of 84–97%, calculated336

via (1− pAMOC)
91. Therefore, an AMOC shutdown in this calibration is unlikely in line with recent IPCC assessments32, 44, but337

it remains a possibility. Interactions of the likelihood of an AMOC collapse with other tipping points are modeled based on the338

calibration by ref.27 for tipping point interactions of a strong AMOC slowdown (for details, see Supplementary Information339

section 2.1.9 of ref.27).340

Regarding the economic impacts of an AMOC collapse, the central specification of ref.28 assumes that impacts increase341

linearly over a 50-year period until reaching the maximum of 15% of global GDP. We follow their approach, but given the342

country-level resolution of META, we assume that national losses are proportional to how strongly reductions in AMOC343

alter country-level temperatures in META’s AMOC module27. For compatibility with ref.28, we further require the global344

GDP-weighted loss to equal 15% (using each country’s share in META’s global GDP in the 2010 base year). Mathematical345

expressions for how we calibrate country-level impacts of an AMOC collapse are provided in Supplementary Note 3.346

Resource availability347

Lead contact Requests for further information and resources should be directed to and will be fulfilled by the lead contact,348

Paul Waidelich (paul.waidelich@gess.ethz.ch).349

Materials availability This study did not generate new unique materials.350

Data and code availability MSCI index composition data can be obtained commercially from MSCI. The META integrated351

assessment model version used in this study is available under https://github.com/pwaidelich/META-2021. Financial data352

used to calibrate the country risk premiums, the risk-free interest rate, and the equity risk premium can be obtained from the353

NYU Damodaran database60. US Consumer Price Index data are available at the World Bank’s World Development Indicators354

database61. All additional data required to replicate the analysis and to create the figures in this study will be deposited and355

made publicly available upon acceptance. All original code will be deposited and made publicly available upon acceptance.356

Acknowledgements357

The authors thank Felix Schaumann, Chris Smith, James Rising, Lorenz Wieshammer, participants at EGU24 and EAERE 2024,358

and particularly Stefano Battiston for valuable comments. This work was supported by the European Union’s Horizon 2020359

research and innovation program, European Research Council (ERC) under grant agreement no. 948220, project GREENFIN360

and received funding from the Swiss State Secretariat for Education, Research and Innovation (SERI) (contract number:361

22.00541).362

12/15

https://github.com/pwaidelich/META-2021


Author contributions363

All authors conceived the study and developed the methodology. P.W. collected the data, performed the model runs and the364

portfolio simulations, analyzed and visualized the results, and wrote the manuscript. All authors reviewed and edited the365

manuscript.366

Declaration of interests367

Lena Klaaßen is a co-founder of CCRI GmbH, a company providing data on sustainability aspects of cryptocurrencies and368

blockchain systems. To our knowledge, cryptocurrencies and blockchain systems do not play a decisive role in the present369

study. The other authors declare no competing interests.370

References371

1. Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527,372

235–239, DOI: https://doi.org/10.1038/nature15725 (2015).373

2. Kalkuhl, M. & Wenz, L. The impact of climate conditions on economic production. Evidence from a global panel of374

regions. J. Environ. Econ. Manag. 103, 102360, DOI: https://doi.org/10.1016/j.jeem.2020.102360 (2020).375

3. Kahn, M. E. et al. Long-term macroeconomic effects of climate change: A cross-country analysis. Energy Econ. 104,376

105624, DOI: https://doi.org/10.1016/j.eneco.2021.105624 (2021).377

4. Newell, R. G., Prest, B. C. & Sexton, S. E. The GDP-temperature relationship: Implications for climate change damages.378

J. Environ. Econ. Manag. 108, 102445, DOI: https://doi.org/10.1016/j.jeem.2021.102445 (2021).379

5. Kikstra, J. S. et al. The social cost of carbon dioxide under climate-economy feedbacks and temperature variability.380

Environ. Res. Lett. 16, 094037, DOI: https://doi.org/10.1088/1748-9326/ac1d0b (2021).381

6. Kotz, M., Levermann, A. & Wenz, L. The economic commitment of climate change. Nature 628, 551–557, DOI:382

https://doi.org/10.1038/s41586-024-07219-0 (2024).383

7. Waidelich, P., Batibeniz, F., Rising, J. A., Kikstra, J. & Seneviratne, S. Climate damage projections beyond annual384

temperature. Nat. Clim. Chang. 14, 592—-599, DOI: https://doi.org/10.1038/s41558-024-01990-8 (2024).385

8. Hsiang, S. et al. Estimating economic damage from climate change in the United States. Sci. (New York, N.Y.) 356,386

1362–1369, DOI: https://doi.org/10.1126/science.aal4369 (2017).387

9. Palagi, E., Coronese, M., Lamperti, F. & Roventini, A. Climate change and the nonlinear impact of precipitation anomalies388

on income inequality. Proc. Natl. Acad. Sci. United States Am. 119, e2203595119, DOI: https://doi.org/10.1073/pnas.389

2203595119 (2022).390

10. Hsiang, S. M. & Jina, A. The causal effect of environmental catastrophe on long-run economic growth: Evidence from391

6,700 cyclones. NBER Work. Pap. Ser. 20352, DOI: https://doi.org/10.3386/w20352 (2014).392

11. Dietz, S., Bowen, A., Dixon, C. & Gradwell, P. ‘Climate value at risk’ of global financial assets. Nat. Clim. Chang. 6,393

676–679, DOI: https://doi.org/10.1038/nclimate2972 (2016).394
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Supplementary Note 1: GDP-temperature damage functions7

COACCH damage functions Ref.1 develop and deploy region-specific damage functions that account for the economic8

impacts of climate change on agriculture, river floods, energy demand, labor and energy supply, and road infrastructure, each9

estimated via bottom-up impact models. Impact model outputs are fed through a computable general equilibrium (CGE) model10

to account for general equilibrium effects and market-based adaptation. Region-specific joint impacts on gross domestic product11

(GDP) are regressed on global temperature increases, resulting in the following damage function12

ai
(
bi,1∆Tglobal,t,1986−2005 +bi,2∆T 2

global,t,1986−2005
)

(S1)

where ∆Tglobal,t,1986−2005 is the global temperature increase vis-a-vis the 1986–2005 average (which we calculate as13

0.7765°C using annual anomaly data from Berkeley Earth based on land and ocean using air temperature above sea ice2),14

and ai, bi,1, and bi,2 are region-specific parameters estimated via quantile regression to capture the range of GDP impacts15

returned by the CGE model for region i. We use the COACCH function specification that excludes sea level rise impacts (which16

are already captured by a separate, sea level rise-specific damage function in META3, 4), for which parameters are publicly17

available at https://zenodo.org/records/5546264. Damage function uncertainties are captured via the ai parameter, for which18

ai = 1 represents the central value. Since the COACCH function repository does not publish the full distribution for ai, we19

estimate Gaussian distributions for ai based on the available percentiles in the repository, requiring the distribution mean to20

equal the central value of ai = 1. The COACCH damage functions deployed are displayed in Fig. S1 below, with grey dotted21

lines indicating the range between the 2.5th and the 97.5th percentile as per the original repository values and the shaded area22

indicating the corresponding percentiles as per our Gaussian distribution estimates, which we use for Monte Carlo runs of the23

META model. Overall, the tails of our distribution are slightly more conservative than the repository percentiles, except in24

Latin America (“Laca”), where the published repository values indicate a highly non-symmetric distribution that the Gaussian25

distribution does not fully capture. Unfortunately, estimates for ai, bi,1 and bi,2 are provided only at the resolution of major26

integrated assessment models (WITCH, REMIND, IMAGE) and not at the country level resolution used in META. Therefore,27

we apply the same estimate for ai, bi,1 and bi,2 to all countries located in the respective region of the IMAGE model, using28

matching files from ref.5.29

Notably, the COACCH functions take global temperatures as input and account for differences in how local temperatures30

shift with global warming through the region-specific damage function parameters ai, bi,1, and bi,2. However, META’s module31

for a slowdown of the Atlantic meridional overturning circulation (AMOC) returns country-level temperature shifts (since32

the effect of such a slowdown on temperatures is very heterogeneous across countries6–8); for details, see section 2.1.7 of33

the Supplementary Information of ref.3. We do not include an AMOC slowdown in our main results for reasons provided34

in Supplementary Note 2, but it is featured in a robustness check in Supplementary Note 2. Therefore, using the COACCH35

damage functions in combination with the AMOC slowdown module requires “translating” the country-specific temperature36

shifts due to a slowdown into corresponding global temperature shifts. To do this, we calculate the global temperature shift that37

would have the equivalent effect on the national temperature of a country i in year t as follows:38

∆T AMOC
global,i,t = ∆T AMOC

i,t /ψi,t (S2)

where ∆T AMOC
i,t is the national temperature shift returned by META’s AMOC slowdown module and ψi,t is the country- and39

year-specific pattern scaling relationship between global mean surface temperature in year t and the national temperature of40

country i (calculated in META’s “Pattern Scaling” component; see section 2.3.2 in the Supplementary Information of ref.3).41

For instance, if the AMOC slowdown module indicates that a country i’s national temperature would decrease by -1.5°C due42

to the slowdown and the pattern scaling relationship is such that global warming of +1°C increases national temperatures of43

country i by +1.5°C (i.e., ψi,t = 1.5), then a global temperature shift of ∆T AMOC
global,i,t =−1°C would have the equivalent effect on44

the national temperature of country i. This country-specific AMOC slowdown-induced shift in global temperature is then added45

to the COACCH damage function:46

ai

(
bi,1(max{0,∆Tglobal,t,1986−2005 +∆T AMOC

global,i,t})+bi,2(max{0,∆Tglobal,t,1986−2005 +∆T AMOC
global,i,t})2

)
(S3)

Here, the max operator floors the global temperature increase over the 1986–2005 average at 0°C since the COACCH47

damage functions are not well-defined for decreases of global temperatures below baseline levels. As a result, the GDP gains of48

an AMOC slowdown can mitigate the otherwise adverse economic effects of global temperature increases but cannot lead to49

GDP levels that are higher than in a counterfactual world without climate change.50
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Figure S1. Region-specific GDP-temperature damage functions from the COACCH project1 used in our main results. Solid
lines and shaded areas indicate the distribution mean and the range between the 2.5th and the 97.5th percentile, respectively,
based on our estimated Gaussian distributions. Dotted grey lines denote the corresponding percentiles based on the original
percentile values for ai in the COACCH repository. Negative values indicate GDP gains due to climate change. For the ten
most important markets in the MSCI World, MSCI Emerging Markets, and MSCI Frontier Emerging Markets, respectively, we
add the ISO3 code in parentheses to their respective COACCH region (e.g., FRA for France in Western Europe WEU). Some
COACCH regions, such as Sub-Saharan Africa (SSA), do not feature any of the top 10 markets in either index. Note that the
x-axis starts at the baseline warming level for the COACCH functions (0.7765°C).
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Burke et al. (2015) damage function Following ref.9, we implement the damages based on their main specification as51

β1
(
Ti,t −Ti,base

)
+β2

(
T 2

i,t −T 2
i,base

)
(S4)

where Ti,t is the average temperature of country i in year t, Ti,base is the average temperature during a baseline period, and β152

and β2 denote the regression coefficients estimated by the main specification of ref.9. For our Monte Carlo analysis, we sample53

β1 and β2 from a bivariate Gaussian distribution with the respective coefficient estimates by ref.9 as means (β1 = 0.0127 and54

β2 =−0.0005) and the variance-covariance matrix estimated by their main specification. As a baseline period for Ti,base, the55

META model uses 1981–20003.56
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Supplementary Note 2: Modifications of the climate tipping point modules in the META57

model58

Overall, our calibration of the climate tipping point modules in the META model closely follows the main specification by ref.3,59

which uses the following calibrations:60

• Permafrost carbon feedback: Calibration based on ref.10
61

• Amazon dieback: Calibration based on ref.11
62

• Greenland Ice Sheet disintegration: Calibration based on ref.12
63

• West-Antarctic Ice Sheet disintegration: Calibration based on ref.13
64

• Indian summer monsoon variability: Calibration based on ref.14 following ref.15
65

However, the main specification of ref.3 also features three additional tipping point modules, namely:66

• Surface albedo feedback due to Arctic sea ice loss: Calibration based on ref.16
67

• Slowdown of the Atlantic meridional overturning circulation (AMOC): Calibration based on ref.768

• Dissociation of ocean methane hydrates: Calibration based on ref.17
69

For these three elements, we depart from the main specification by ref.3 due to different reasons laid out below.70

Surface albedo feedback META’s modeling of the surface albedo feedback stems from ref.16 and takes into account that71

a loss of sea ice and snow cover on land leads to higher solar absorption in cold, high-latitude regions and, hence, higher72

temperatures. Therefore, this module primarily corrects how greenhouse gas emissions and concentrations are translated into73

mean surface temperature changes and does not cover any explicit tipping dynamics or elements. Indeed, the latest scientific74

understanding suggests that Arctic sea ice decline during summer is not a tipping element and is likely reversible, although75

a threshold-dependent tipping element may exist for sea ice loss during winters18. In any case, the surface albedo feedback76

module in META constitutes a definitive refinement of the FaIR-based climate module that translates emissions into temperature77

shifts, not a module capturing a potential tipping point. For this reason and following the recommendation of the META model78

developers, we include it in all of our model runs, including those excluding climate tipping points. As a result, META’s79

surface albedo feedback module does not contribute to the joint effect of climate tipping points on expected losses and the80

Value-at-Risk (VaR) in any of our results.81

AMOC slowdown The main calibration used by ref.3 implies a reduction of 27% in AMOC strength and captures the82

temperature-altering effects of such a slowdown, which lowers national temperatures in many regions, most pertinently in the83

North Atlantic7, 8. Importantly, the probability of such a slowdown occurring in year t in META (pAMOC,t ) is modeled as84

pAMOC,t = 1− exp
(
−bAMOC∆Tglobal,t

)
(S5)

where ∆Tglobal,t denotes the increase in global mean surface temperature over pre-industrial levels and bAMOC represents85

a hazard rate following the modeling of tipping points in ref.11. Therefore, the more the global mean surface temperature86

increases, the more likely the AMOC slowdown (and other tipping events in META) become. Importantly, as with all other87

tipping events in the model, the AMOC slowdown is irreversible, so pAMOC,t = 1 for all years after the tipping is triggered. If88

an AMOC slowdown occurs in the model, this gradually alters country-level temperatures, most notably through a cooling89

effect on countries adjacent to the North Atlantic, such as the United States and Western Europe7. The maximum effect on90

country-level temperature in the main specification of ref.3, which is reached 35 years after the slowdown begins, is displayed91

in Fig. S2.92

In the main specification of ref.3, bAMOC is set to 0.54, which by Equation (S5) implies an annual probability of occurrence93

of 56%, 66% and 80% at +1.5°C, +2°C, and +3°C of global warming, respectively. Therefore, the occurrence of the slowdown94

over several decades is virtually certain in all model runs. Such a high likelihood of an AMOC slowdown is in line with95

recent IPCC assessments reporting a considerable decline in AMOC strength in climate models participating in the Coupled96

Model Intercomparison Project’s (CMIP) 5th and 6th phase throughout the 21st century, which is more pronounced in high-97

emission scenarios6, 19. However, META’s climate module derives national temperatures by taking the global mean surface98

temperature returned by the simple climate model FaIR and scaling it down to the country level based on country-specific99
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Figure S2. Maximum country-level temperature shifts due to an AMOC slowdown by 27% in the META model’s main
specification used by ref.3 (“IPSL” calibration).

statistical relationships between global and national temperatures in CMIP5 model outputs (for details, see section 2.3.2100

in the Supplementary Information of ref.3). Since an AMOC slowdown is widely present in these CMIP5 model runs, the101

estimated relationship between a country’s national temperature and the global mean surface temperature implicitly accounts for102

AMOC slowdown-related temperature shifts. Therefore, adding the temperature effect of an AMOC slowdown to country-level103

temperatures that were pattern-scaled based on CMIP5 (or CMIP6) risks double-counting the temperature-altering effect of an104

AMOC slowdown, particularly since such a slowdown is near-certain in the main specification by ref.3 and ubiquitous in CMIP105

model runs. To avoid such double counting, we do not include the AMOC slowdown module in any of the results in our paper.106

Importantly, the reasoning above does not apply to a full collapse of the AMOC during the 21st century, which occurs in107

virtually none of the CMIP model runs6, 19 and, therefore, comes with no comparable risk of double counting climatic shifts108

and their socio-economic impacts.109

Ocean methane hydrates The main specification by ref.3 features a calibration of the ocean methane hydrates based on110

ref.17 that releases up to 50 Gt of methane over 20 years. However, recent climate science indicates that ocean methane hydrates111

are only projected to release small amounts of methane throughout the 21st century20, with ref.18 modeling them with 5.91112

Mt of methane released per year between 2000–2100 under SSP5-8.5. This much more conservative calibration translates113

to a cumulative release of approximately 0.6 Gt of methane throughout the 21st century, two orders of magnitude less than114

the calibration by ref.17. Indeed, the Global Tipping Points Report 202321 concluded: “While there is potential for methane115

hydrate deposits in ocean sediments to be destabilised by warming, which could eventually have very large impacts on global116

temperature due to increases in atmospheric methane concentrations, current evidence and understanding suggests timescales117

of centuries to millennia for substantial impacts18.” For this reason, we omit the ocean methane hydrate module in the main118

specification.119

Net effect of modifications to tipping point modules Fig. S3 below shows our main index-level results if we use the main120

specification of ref.3 for all tipping point modules (i.e., include the AMOC slowdown and the ocean methane hydrates in our121

main specification including climate tipping points and treat the surface albedo feedback as a climate tipping point). In this122

case, climate tipping points would increase the expected loss for the MSCI World under RCP4.5-SSP2 from 1.4% to 2.0% (a123

+44% increase), while the expected loss for the MSCI Emerging Markets and the MSCI Frontier Emerging Markets would124

increase by +75% and +85%, respectively. Expected losses and 95% VaRs when using all tipping point modules from the main125

specification of ref.3 are considerably higher than our main results in Fig. 2. The primary reason is that releases of methane in126

META’s ocean methane hydrates module cause substantial near-term warming (Fig. S9) that strongly affects investor present127

6/26



values. By contrast, including the AMOC slowdown module and its effect on national temperatures reduces dividend losses,128

particularly in North America and Europe, which is why the increase of the expected loss due to climate tipping points in Fig.129

S3 is much less pronounced for the MSCI World than for the other two indices. Compared to the other two elements, the impact130

of the surface albedo feedback on expected losses is less pronounced. However, comparing Fig. S3 to our main results clearly131

shows that, overall, our modifications of META’s tipping point modules are conservative by decreasing the estimated impact of132

climate tipping points considerably.133
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Figure S3. Expected loss and 95% VaR under RCP4.5-SSP2 when using the main specification of ref.3 for climate tipping
points (i.e., including ocean methane hydrates and the AMOC slowdown and switching off the surface albedo feedback in the
specification excluding climate tipping points). Text labels in dark red denote the relative increase in the expected loss due to
climate tipping points (i.e., the increase by adding the red to the blue bar).

Visual overview of our META modifications Figures S4 and S5 illustrate the climatic and economic parts of the META134

model by ref.3, respectively. All modifications for the present study are highlighted by dashed red boxes and the text annotations135

in bold. Modifications include the climate tipping point adjustments explained above and the new COACCH damage functions136

for GDP-temperature damages explained in Supplementary Note 1. The output variables from META that feed into our present137

value calculations of future dividends with and without climate change’s economic impacts are:138

• A country’s GDP in a given year in the absence of climate change, as per the respective SSP139

• A country’s GDP in a given year in the presence of climate change, that is, net of GDP losses due to (i) national140

temperature damages, (ii) sea level rise, and, specifically for India, (iii) the Indian Summer Monsoon141

For a more detailed explanation of the META model, we refer readers to Section 2 of the Supplementary Information of142

ref.3.143
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Figure S4. Overview of META’s climate module with blue boxes indicating model variables, yellow boxes indicating tipping
point modules, and orange boxes indicating other modules in META. Dashed red boxes and bold text denote our modifications
to the original model. Source: Adapted from ref.3, Figure 4 in their Supplementary Information.

Figure S5. Overview of META’s climate module with blue boxes indicating model variables, yellow boxes indicating tipping
point modules, and orange boxes indicating other modules in META. Dashed red boxes and bold text denote our modifications
to the original model. Green dashed boxes denote the output variables we take from META to calculate GDP in the absence
and in the presence of climate change impacts (i.e., GDPSSP and GDPCC in Equation 1 in Experimental procedures). Source:
Adapted from ref.3, Figure 5 in their Supplementary Information.
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Supplementary Note 3: Country-level GDP impacts of an AMOC collapse following Cai et144

al. (2016)145

While Supplementary Note 1 above explains our reason to exclude META’s module for a slowdown of the AMOC due to risks146

of double counting, our manuscript features an additional analysis based on the potentially catastrophic economic impacts of147

an AMOC collapse, which is modelled differently. As pointed out in Supplementary Note 1, there is no such risk of double148

counting for an AMOC collapse. Here, we explain in more detail how we calibrate the economic impacts of such a collapse in149

the META model following ref.11.150

The central specification of ref.11 assumes that damages of an AMOC collapse increase linearly over a transition time of 50151

years to 15% of global GDP, with no further impact of the AMOC collapse on the carbon cycle. Notably, the model by ref.11 is152

global. To translate these assumptions into country-level damages, we account for the fact that an AMOC shutdown would have153

very heterogeneous effects on regional climates by assuming that GDP impacts are proportional to the expected temperature154

shifts:155

φi =
abs(∆TAMOC,i)

∑i abs(∆TAMOC,i)×wGDP
i,2010

(S6)

where φi is the ratio of a country i’s maximum GDP impact following an AMOC shutdown to the global GDP impact of156

15%:157

γ
AMOC,max
i = φi × γ

AMOC,max
global (S7)

For instance, if φi =
4
3 , then the GDP loss of country i increases linearly to a maximum GDP loss of 4

3 × 15% = 20%158

throughout the 50-year transition time after the AMOC shutdown begins. ∆TAMOC,i in Equation (S6) denotes the maximum159

shift in the national temperature of country i, which we calibrate based on the country-level temperature shifts displayed in Fig.160

S2 above. wGDP
i,2010 is the share of country i in META’s global GDP in the 2010 base year. This calibration of impacts ensures that161

global GDP impacts are consistent with the calibration by ref.11, given the initial allocation of GDP across countries because162

∑
i

wGDP
i,2010 × γ

AMOC,max
i = γ

AMOC,max
global (S8)

Therefore, GDP-weighted global impacts equal the value assumed by ref.11. At the same time, our calibration of country-163

level impacts in Equation (S7) captures that countries with more substantial temperature shifts (abs(∆TAMOC,i) ↑) are likely164

more affected (φi ↑) than others22. The maximum country-level GDP impacts of an AMOC collapse based on Equation (S7)165

(which are reached 50 years after the irreversible collapse begins) are displayed in Fig. S6 below.166

Importantly, while ref.11 point to other studies of an AMOC collapse that suggest even higher damages, their calibration167

differs substantially from more optimistic studies that translated the substantial cooling effects of an AMOC slowdown (not a168

collapse) into GDP gains, particularly for North American and Western European countries3, 7. However, as the Global Tipping169

Points Report 2023 summarizes21, an AMOC collapse would also entail significant sea level rise in the North Atlantic, colder170

winters and more cold extremes in adjacent countries, reductions in precipitation with drastic implications for arable farmland171

in Europe, and shifts in monsoon patterns in Latin America and West Africa. Accordingly, our calibration takes a much more172

pessimistic take on an AMOC collapse as “the archetype of a climate catastrophe”11, which is more informative for exploring173

potential impacts of low-likelihood, high-impact tipping events, despite its stylized nature—particularly given that the META174

model’s representation of other climate tipping points is conservative and likely produces a lower bound of impacts rather than175

a central estimate3.176
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Maximum GDP impact due
to an AMOC collapse

−30% −20% −10% 0%

Figure S6. Country-specific maximum GDP impacts of an AMOC collapse, calculated as φi ×15%, for all 68 countries that
feature in any of the three stock indices considered in our analysis (other countries colored in dark grey).
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Supplementary Note 4: Validating our dividend discount model against actual market177

capitalizations178

To explore whether our dividend discount modeling approach can reproduce current market capitalizations, we calibrate baseline179

dividends (Di,2024 in Equation 2 in Experimental procedures) by multiplying the actual market capitalization of country i180

by the dividend yield of the respective country’s MSCI index (denominated in USD and covering large- and mid-cap stocks,181

consistent with the global stock indices used), as indicated by MSCI’s publicly availabale factsheets for indices. Next we182

calculate the resulting present value of future dividends in the absence of climate change (PV SSP
i,s in Equation 2 of Experimental183

procedures) for two scenarios s, namely SSP2 and the higher-growth scenario SSP5, and compare it to the total market184

capitalization of all stocks in country i that are included in the MSCI All Country World Index. For index-level validations, we185

follow the same steps but at the aggregate index level, using index-level dividend yields.186

Results are shown in Figure S7 below. For the MSCI World, the implied market capitalization by the dividend discount187

model is only roughly half of the actual market capitalization when using GDP growth trajectories from SSP2 and still by188

roughly one third lower when using SSP5. The primary reason is that our model underestimates market capitalizations in the189

United States, where dividend yields are relatively low (roughly 1.3% as of July 2024, compared to 1.8% for the MSCI World190

overall) partially due to a much higher prevalence of share buybacks as an alternative mechanism to reward shareholders instead191

of dividends. Therefore, estimating market capitalizations only based on dividends produces too conservative values. However,192

for most other major stock markets (with a lower prevalence of buybacks), the range of model results between SSP2 and SSP5193

covers the actual market capitalization. As a result, the implied market capitalizations for the MSCI Emerging Markets and the194

MSCI Frontier Emerging Markets are fairly close to the actual values, with a minor underestimation under SSP2 and somewhat195

overestimated valuations under SSP5. However, aside from the US, there are other markets where actual market capitalizations196

are underestimated (e.g., India) or overestimated (e.g., Australia). A potential reason for such country-specific underestimation197

(overestimation) is that investors may expect substantially higher (lower) GDP growth for these countries than the SSPs used in198

our dividend discount model.199

Importantly, these deviations apply to both the present value in the presence and in the absence of climate change (PVCC
200

and PV SSP in the equations in Experimental procedures). Therefore, they have no implication for relative losses due to climate201

change, the main outcome of interest in this paper (LCC in Equation (4) of Experimental procedures). Yet, the validation202

illustrates that despite its simplicity, the dividend discount model is broadly consistent with current valuations for most countries203

in our sample. However, the sizable deviations for individual markets also highlight that any simplified model covering a wide204

range of markets will inevitably fall short of fully capturing all relevant stock market dynamics.205
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Supplementary Note 5: Examining the linear relationship between GDP and dividend206

growth207

The methodological framework by ref.23 to convert GDP impacts of climate change into changes in dividends assumes that208

a 1% shock to GDP leads to a corresponding 1% decline in dividends. To explore if this assumption aligns with empirical209

evidence, we use the Jorda-Schularick-Taylor Macrohistory Database24 (version R6, accessed on 15 January 2024), which210

features a rich set of country-level economic and financial variables and returns covering 1870-2020 for 18 OECD countries.211

To explore the relationship between GDP and dividend growth, we use data from 1951 onwards, excluding years before, during,212

or immediately after World War II to avoid distortions due to wars, the Great Depression, and hyperinflation.213

Annual GDP growth (in constant PPP for consistency with the SSP data in META) can be derived from the Macrohistory214

Database’s data points on GDP per capita (sourced from the Maddison Project database) and population. Year-to-year growth215

in dividends (gD) is not featured in the database but can be easily derived based on available data points on dividend yields,216

dividend returns, and capital gains. As the SSP growth rates for GDP used in the META model are in real instead of nominal217

terms, we adjust for inflation using the Consumer Price Index inflation of country i in year t in the Macrohistory Database (π):218

1+gD
i,t

1+πi,t
−1 (S9)

To explore the assumption of a linear (one-to-one) relationship, we regress country-level dividend growth in real terms on219

real GDP growth, using country and year fixed effects, country-specific linear time trends, and standard errors clustered by both220

country and year. As dividend growth data is not available for Canada and Ireland in the Macrohistory Database, our effective221

sample covers N = 16 countries and T = 70 years (1951–2020). Regarding non-stationarity, tests following ref.25 and ref.26
222

using the plm package in R27 firmly reject the unit root hypothesis for both GDP and dividend growth (p << 0.01).223

Results are displayed in Table S1 and show that after introducing fixed effects and country-specific time trends, there is a224

significant link between dividend and economic growth (col. 3), suggesting that a +1 percentage point increase in real GDP225

growth is associated with a +1.5 percentage point change in dividend growth. We find no significant evidence for non-linearity226

(col. 4) or a substantially different relationship if we use an alternative measure of GDP growth available in the Macrohistory227

Database (col. 5). The relationship seems primarily driven by country-years with negative economic growth (col. 7), for which228

the effect remains statistically significant with p < 0.01 (by testing the sum of the coefficients for “Real GDP PPP growth” and229

“Real GDP PPP growth × I(Negative GDP growth)”). However, the effect does not appear to be driven by years with economic230

crises, using a crisis dummy included in the Macrohistory Database (col. 6). Weighting each country by its current market231

capitalization instead of weighting all countries equally (col. 8), which assigns a very high importance to the US, reduces the232

point estimate, as does trimming country-years, for which dividend growth falls into the upper/lower 2.5th percentile of our233

sample (col. 9). Allowing for a structural break in the relationship in the 2nd half of our sample (i.e., from 1985 onward) does234

not indicate a significantly different relationship (col. 10), although point estimates suggest a weakening relationship over time.235

This supplementary analysis comes with several important caveats. First, the Macrohistory Database does not cover236

emerging markets, for which the relationship may differ systematically. Second, the model deployed here is relatively simple237

and addresses the risk of omitted variable bias merely through fixed effects and country-specific time trends, while potential238

reverse causality issues remain unaddressed. Therefore, the coefficients in Table S1 do not represent causal effect sizes. Third,239

we note that the explanatory power of our models net of fixed effects and time trends (i.e., within-R2) is low, amounting to 1%240

of the observed variation in dividend growth or less. For all these reasons, the regressions in Table S1 do not necessarily present241

stringent proof for the assumptions underlying the dividend discount model framework by ref.23. However, we note that the242

regression results are broadly consistent with these assumptions, as all 95% confidence intervals for the link between GDP and243

dividend growth cover the assumed value of one except for the specification in col. 9.244
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Table S1. Regressing dividend growth on GDP growth using the Jorda-Schularick-Taylor Macrohistory Database

Real dividend growth
No FEs Year FE Main + Quadratic Other GDP measure + Crises + Recessions Market cap-weighted Trim upp/low 2.5% Break

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Constant 3.07
(2.96)

Real GDP PPP growth 0.837 1.59∗ 1.50∗∗ 2.06∗ 1.39∗ 0.984 0.632∗ 0.517∗∗ 1.70∗

(0.641) (0.554) (0.384) (0.778) (0.511) (0.637) (0.252) (0.168) (0.742)
Real GDP PPP growth square -0.045

(0.030)
Barro GDP growth 1.65∗∗∗

(0.400)
Real GDP PPP growth × I(Crisis year) = TRUE 3.69

(2.36)
I(Crisis year) = TRUE -4.37

(2.91)
I(Negative GDP growth) = TRUE -4.01

(5.64)
Real GDP PPP growth × I(Negative GDP growth) = TRUE 2.54

(1.82)
Real GDP PPP growth × above_break = TRUE -0.406

(1.51)

year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
iso FEs Yes Yes Yes Yes Yes Yes Yes Yes

Varying Slopes
year (iso) Yes Yes Yes Yes Yes Yes Yes Yes

Standard-Errors iso & year
Observations 1,090 1,090 1,090 1,090 1,090 1,090 1,090 1,090 1,031 1,090
R2 0.004 0.165 0.199 0.200 0.200 0.200 0.201 0.194 0.234 0.199
Within R2 0.009 0.007 0.008 0.009 0.008 0.009 0.004 0.003 0.007
BIC 11,067.0 11,357.0 11,528.9 11,534.8 11,527.1 11,541.4 11,540.0 11,667.9 9,474.9 11,535.7

Clustered (iso & year) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05, †: 0.1
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Figure S8. Global warming and sea level rise with and without climate tipping points for RCP3-PD/2.6, RCP4.5 and RCP8.5
in META. Lines denote the Monte Carlo mean, while shaded areas range from the 2.5th to the 97.5th percentile of the Monte
Carlo distribution for the respective year and model specification (excluding or including climate tipping points).
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Figure S9. Global warming (Monte Carlo mean) with and without individual climate tipping points for RCP4.5. Shaded areas
range from the 2.5th to the 97.5th percentile of the Monte Carlo distribution for the respective year and model specification.
The y-axis is clipped at +3°C to make differences between the lines more visible. Note that ocean methane hydrates are not
included in our main results (see Supplementary Note 2) and, hence, do not feature in the results for “All tipping points”.

All tipping points
 (excl. OMH)

2025 2050 2075 2100

0.1m

0.2m

0.3m

0.4m

0.5m

G
lo

ba
l s

ea
 le

ve
l r

is
e

si
nc

e 
20

00

Ocean methane
hydrate dissociation

2025 2050 2075 2100

0.1m

0.2m

0.3m

0.4m

0.5m

G
lo

ba
l s

ea
 le

ve
l r

is
e

si
nc

e 
20

00

Permafrost
carbon feedback

2025 2050 2075 2100

0.1m

0.2m

0.3m

0.4m

0.5m

G
lo

ba
l s

ea
 le

ve
l r

is
e

si
nc

e 
20

00

Greenland ice
sheet disintegration

2025 2050 2075 2100

0.1m

0.2m

0.3m

0.4m

0.5m

G
lo

ba
l s

ea
 le

ve
l r

is
e

si
nc

e 
20

00

West−Antarctic ice
 sheet disintegration

2025 2050 2075 2100

0.1m

0.2m

0.3m

0.4m

0.5m

G
lo

ba
l s

ea
 le

ve
l r

is
e

si
nc

e 
20

00

Amazon
dieback

2025 2050 2075 2100

0.1m

0.2m

0.3m

0.4m

0.5m

G
lo

ba
l s

ea
 le

ve
l r

is
e

si
nc

e 
20

00

Excl. climate tipping points Incl. climate tipping points

Figure S10. Global sea level rise (Monte Carlo mean) with and without individual climate tipping points for RCP4.5. Shaded
areas range from the 2.5th to the 97.5th percentile of the Monte Carlo distribution for the respective year and model
specification. The y-axis is clipped at +0.5m to make differences between the lines more visible. Note that ocean methane
hydrates are not included in our main results (see Supplementary Note 2) and, hence, do not feature in the results for “All
tipping points”.
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Figure S13. Contribution of individual tipping points to the overall rise in the expected loss due to climate tipping points for
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main manuscript
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Figure S14. Expected loss and 95% VaR by investment time horizon and equity risk premium for the MSCI Emerging
Markets and Frontier Emerging Markets under RCP4.5-SSP2. For definitions, see Fig. 4 in the main manuscript.
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Portfolio RCP SSP TippingPoints Mean Median 1st perc. 5th perc. 95th perc. 99th perc.
1 MSCI World RCP3-PD26 SSP2 all 0.92% 0.79% 0.1% 0.21% 2.1% 2.94%
2 MSCI World RCP3-PD26 SSP2 none 0.82% 0.71% 0.09% 0.2% 1.83% 2.53%
3 MSCI World RCP45 SSP2 all 1.52% 1.33% 0.15% 0.36% 3.39% 4.65%
4 MSCI World RCP45 SSP2 none 1.37% 1.21% 0.14% 0.33% 3% 4.06%
5 MSCI World RCP85 SSP2 all 2.85% 2.54% 0.22% 0.68% 6.17% 8.29%
6 MSCI World RCP85 SSP2 none 2.61% 2.34% 0.2% 0.63% 5.56% 7.4%
7 MSCI EM RCP3-PD26 SSP2 all 1.72% 1.5% -0.29% 0.18% 4.15% 5.67%
8 MSCI EM RCP3-PD26 SSP2 none 1.52% 1.32% -0.36% 0.08% 3.71% 4.99%
9 MSCI EM RCP45 SSP2 all 2.53% 2.24% -0.52% 0.26% 5.93% 8%

10 MSCI EM RCP45 SSP2 none 2.27% 2.02% -0.57% 0.16% 5.37% 7.22%
11 MSCI EM RCP85 SSP2 all 4.01% 3.62% -0.91% 0.39% 9.19% 12.14%
12 MSCI EM RCP85 SSP2 none 3.68% 3.34% -0.96% 0.27% 8.48% 11.16%
13 MSCI FEM RCP3-PD26 SSP2 all 2.09% 1.75% -0.47% 0.18% 5.24% 7.38%
14 MSCI FEM RCP3-PD26 SSP2 none 1.91% 1.62% -0.44% 0.16% 4.75% 6.54%
15 MSCI FEM RCP45 SSP2 all 3.02% 2.59% -0.87% 0.2% 7.49% 10.42%
16 MSCI FEM RCP45 SSP2 none 2.77% 2.4% -0.82% 0.17% 6.82% 9.34%
17 MSCI FEM RCP85 SSP2 all 4.83% 4.23% -1.71% 0.15% 11.9% 16.24%
18 MSCI FEM RCP85 SSP2 none 4.48% 3.96% -1.61% 0.12% 10.95% 14.85%

Table S2. Summary statistics of the loss distribution for the key MSCI indices using SSP2 and the COACCH damage
specification (main results)

Portfolio RCP SSP TippingPoints Mean Median 1st perc. 5th perc. 95th perc. 99th perc.
1 MSCI World RCP45 SSP5 all 1.72% 1.51% 0.17% 0.41% 3.83% 5.26%
2 MSCI World RCP45 SSP5 none 1.53% 1.36% 0.15% 0.37% 3.36% 4.54%
3 MSCI World RCP85 SSP5 all 3.44% 3.08% 0.26% 0.83% 7.4% 9.96%
4 MSCI World RCP85 SSP5 none 3.14% 2.83% 0.24% 0.76% 6.66% 8.86%
5 MSCI EM RCP45 SSP5 all 2.69% 2.38% -0.55% 0.27% 6.29% 8.49%
6 MSCI EM RCP45 SSP5 none 2.42% 2.15% -0.61% 0.17% 5.7% 7.66%
7 MSCI EM RCP85 SSP5 all 4.38% 3.96% -1% 0.42% 10.03% 13.29%
8 MSCI EM RCP85 SSP5 none 4.02% 3.66% -1.04% 0.3% 9.25% 12.18%
9 MSCI FEM RCP45 SSP5 all 3.25% 2.79% -0.94% 0.21% 8.06% 11.22%

10 MSCI FEM RCP45 SSP5 none 2.98% 2.58% -0.89% 0.18% 7.29% 9.99%
11 MSCI FEM RCP85 SSP5 all 5.39% 4.73% -1.9% 0.16% 13.24% 18.03%
12 MSCI FEM RCP85 SSP5 none 4.99% 4.42% -1.79% 0.13% 12.14% 16.47%

Table S3. Summary statistics of the loss distribution for the key MSCI indices using SSP5 and the COACCH damage
specification
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Country Expected loss (incl. TPs) 5% VAR (incl. TPs) Expected loss (excl. TPs) Increase of expected loss due to TPs (pp) Relative increase
1 Mauritius 5.7% 11.6% 5.2% 0.5 +9.4%
2 India 5.6% 13% 4.7% 0.9 +19.5%
3 Senegal 5.3% 10.6% 4.9% 0.4 +9.1%
4 Cote d’Ivoire 5.2% 10.7% 4.8% 0.4 +8.8%
5 Malaysia 4.5% 10.7% 4.1% 0.4 +8.9%
6 Philippines 4.4% 10.3% 4% 0.4 +8.9%
7 Thailand 4.2% 10.3% 3.9% 0.3 +8.5%
8 Indonesia 4.1% 10% 3.8% 0.3 +8.3%
9 Viet Nam 4% 9.5% 3.7% 0.3 +8.3%

10 Netherlands 3.9% 6.5% 3.3% 0.6 +18%
11 Kenya 3.9% 8.1% 3.7% 0.3 +7.1%
12 Bangladesh 3.9% 8.5% 3.7% 0.2 +6.6%
13 Nigeria 3.7% 7.7% 3.5% 0.2 +6.7%
14 Morocco 3.5% 10% 3.1% 0.4 +12%
15 Pakistan 3% 6.7% 2.8% 0.1 +4.9%
16 Sri Lanka 2.9% 6.5% 2.8% 0.1 +4.9%
17 New Zealand 2.8% 6.5% 2.5% 0.3 +13.8%
18 South Africa 2.8% 6.5% 2.5% 0.3 +11.5%
19 Australia 2.7% 6.4% 2.4% 0.3 +13.6%
20 Republic of Korea 2.5% 5.4% 2.2% 0.2 +9.8%
21 Tunisia 2.3% 6.1% 2.1% 0.2 +9.3%
22 Chile 2.1% 7.2% 1.9% 0.2 +10.3%
23 Egypt 2.1% 6.1% 1.9% 0.2 +8.7%
24 Bahrain 2% 3.7% 1.8% 0.2 +10.2%
25 Peru 1.9% 6.6% 1.7% 0.2 +9.7%
26 Colombia 1.9% 6.4% 1.7% 0.2 +9.7%
27 Mexico 1.9% 6.4% 1.7% 0.2 +9.5%
28 Brazil 1.7% 5.8% 1.6% 0.1 +9.2%
29 China, Hong Kong SAR 1.7% 3.8% 1.6% 0.1 +6.5%
30 China, Taiwan Province of 1.7% 3.8% 1.6% 0.1 +6.5%
31 Japan 1.7% 4.5% 1.5% 0.2 +13.3%
32 Canada 1.7% 4.2% 1.5% 0.2 +10.9%
33 China 1.6% 3.7% 1.5% 0.1 +5.7%
34 Kuwait 1.6% 3.8% 1.5% 0.1 +8%
35 Denmark 1.6% 3.5% 1.4% 0.2 +14.3%
36 Qatar 1.6% 3.8% 1.5% 0.1 +7.5%
37 United Arab Emirates 1.5% 3.8% 1.4% 0.1 +7.2%
38 Saudi Arabia 1.5% 3.7% 1.4% 0.1 +7.1%
39 United States of America 1.5% 3.3% 1.4% 0.1 +10.8%
40 Estonia 1.5% 3.7% 1.3% 0.1 +10.9%
41 Lithuania 1.4% 3.7% 1.3% 0.1 +10.9%
42 Czechia 1.4% 3.7% 1.3% 0.1 +10.8%
43 Poland 1.4% 3.6% 1.3% 0.1 +10.7%
44 Oman 1.4% 3.3% 1.3% 0.1 +7.1%
45 Slovenia 1.3% 3.5% 1.2% 0.1 +10.3%
46 Israel 1.3% 3.1% 1.2% 0.1 +6.2%
47 Croatia 1.3% 3.2% 1.1% 0.1 +10.1%
48 United Kingdom 1.2% 3% 1.1% 0.1 +12.4%
49 Hungary 1.2% 3.2% 1.1% 0.1 +9.9%
50 Romania 1.2% 3.1% 1.1% 0.1 +9.9%
51 Ireland 1.2% 2.9% 1.1% 0.1 +12.4%
52 Kazakhstan 1.2% 2.9% 1.1% 0.1 +7%
53 Jordan 1.2% 3% 1.1% 0.1 +5.8%
54 Belgium 1.2% 2.9% 1.1% 0.1 +12.1%
55 Norway 1.2% 3% 1% 0.1 +12%
56 Germany 1.1% 3% 1% 0.1 +11.8%
57 Sweden 1.1% 3% 1% 0.1 +11.8%
58 Serbia 1.1% 2.9% 1% 0.1 +9.2%
59 France 1.1% 2.8% 1% 0.1 +11.4%
60 Finland 1.1% 2.8% 1% 0.1 +11.4%
61 Switzerland 1.1% 2.9% 1% 0.1 +11.2%
62 Portugal 1% 2.6% 0.9% 0.1 +11.2%
63 Austria 1% 2.7% 0.9% 0.1 +10.9%
64 Iceland 1% 2.6% 0.9% 0.1 +10.8%
65 Spain 1% 2.5% 0.9% 0.1 +10.9%
66 Turkey 0.9% 2.4% 0.9% 0 +4.6%
67 Greece 0.9% 2.3% 0.8% 0.1 +10.4%
68 Italy 0.9% 2.3% 0.8% 0.1 +10.1%

Table S4. Country-level results under SSP2-4.5 using the COACCH damage specification (used in Fig. 4) for all 68 countries
that feature in any of the three stock indices considered in our analysis
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Name Country Risk Premium
1 Sri Lanka 14.7%
2 Pakistan 12.2%
3 Tunisia 11%
4 Egypt 9.2%
5 Nigeria 9.2%
6 Kenya 7.9%
7 Turkey 7.9%
8 Bahrain 6.7%
9 Bangladesh 5.5%

10 Jordan 4.4%
11 Senegal 4.4%
12 Brazil 3.7%
13 Cote d’Ivoire 3.7%
14 Serbia 3.7%
15 Viet Nam 3.7%
16 South Africa 3.7%
17 Greece 3.1%
18 Morocco 3.1%
19 Oman 3.1%
20 India 2.7%
21 Italy 2.7%
22 Mauritius 2.7%
23 Romania 2.7%
24 Colombia 2.3%
25 Croatia 2.3%
26 Hungary 2.3%
27 Indonesia 2.3%
28 Kazakhstan 2.3%
29 Mexico 2.3%
30 Philippines 2.3%
31 Spain 2%
32 Peru 2%
33 Thailand 2%
34 Malaysia 1.5%
35 Portugal 1.5%
36 Slovenia 1.5%
37 Chile 1%
38 Iceland 1%
39 Israel 1%
40 Lithuania 1%
41 Poland 1%
42 China 0.9%
43 Estonia 0.9%
44 Japan 0.9%
45 Kuwait 0.9%
46 Saudi Arabia 0.9%
47 Belgium 0.7%
48 Czechia 0.7%
49 United Kingdom 0.7%
50 China, Hong Kong SAR 0.7%
51 Ireland 0.7%
52 China, Taiwan Province of 0.7%
53 United Arab Emirates 0.6%
54 France 0.6%
55 Republic of Korea 0.6%
56 Qatar 0.6%
57 Austria 0.5%
58 Finland 0.5%

Table S5. Country risk premium values used for the investor discount rate taken from the Damodaran database. Countries
from Table S3 not listed here have a country risk premium of zero

21/26



Country MSCI ACWI share GDP 2021 (in tn 2015 USD) GDP share Difference
1 United States of America 62.9% 20.53 26.7% 36.1%
2 Switzerland 2.5% 0.76 1% 1.5%
3 Canada 2.8% 1.68 2.2% 0.6%
4 Denmark 0.8% 0.34 0.4% 0.3%
5 China, Hong Kong SAR 0.6% 0.33 0.4% 0.1%
6 Sweden 0.8% 0.57 0.7% 0%
7 Netherlands 1.1% 0.85 1.1% 0%
8 Kuwait 0.1% 0.10 0.1% -0.1%
9 Qatar 0.1% 0.16 0.2% -0.1%

10 Finland 0.2% 0.26 0.3% -0.1%
11 South Africa 0.3% 0.35 0.5% -0.1%
12 Hungary 0% 0.15 0.2% -0.2%
13 Australia 1.8% 1.52 2% -0.2%
14 Greece 0% 0.20 0.3% -0.2%
15 New Zealand 0% 0.21 0.3% -0.2%
16 Portugal 0.1% 0.22 0.3% -0.2%
17 Peru 0% 0.22 0.3% -0.3%
18 Czechia 0% 0.21 0.3% -0.3%
19 Japan 5.5% 4.44 5.8% -0.3%
20 Chile 0.1% 0.28 0.4% -0.3%
21 Malaysia 0.1% 0.36 0.5% -0.3%
22 Israel 0.2% 0.38 0.5% -0.3%
23 Thailand 0.2% 0.44 0.6% -0.4%
24 France 3% 2.58 3.4% -0.4%
25 Ireland 0.2% 0.45 0.6% -0.4%
26 United Arab Emirates 0.1% 0.40 0.5% -0.4%
27 Norway 0.2% 0.42 0.5% -0.4%
28 United Kingdom 3.5% 3.04 4% -0.4%
29 Belgium 0.2% 0.50 0.6% -0.4%
30 Colombia 0% 0.33 0.4% -0.4%
31 Philippines 0.1% 0.38 0.5% -0.4%
32 Saudi Arabia 0.4% 0.67 0.9% -0.4%
33 Austria 0% 0.41 0.5% -0.5%
34 Egypt 0% 0.43 0.6% -0.5%
35 Poland 0.1% 0.60 0.8% -0.7%
36 Republic of Korea 1.3% 1.69 2.2% -0.9%
37 Spain 0.6% 1.24 1.6% -1%
38 Indonesia 0.2% 1.07 1.4% -1.2%
39 Mexico 0.3% 1.21 1.6% -1.3%
40 Turkey 0.1% 1.13 1.5% -1.4%
41 Italy 0.6% 1.86 2.4% -1.8%
42 Brazil 0.6% 1.83 2.4% -1.8%
43 India 1.5% 2.73 3.5% -2%
44 Germany 2.1% 3.55 4.6% -2.6%
45 China 3.1% 15.80 20.6% -17.5%

Table S6. Comparison of countries’ weight in the MSCI All Country World Index (ACWI) and their share in the joint GDP of
all MSCI ACWI countries. GDP data are taken from the Word Bank’s World Development Indicators database, with the
missing 2021 GDP value for Kuwait imputed with the country’s 2020 value. Taiwan is omitted as it does not feature in the
World Bank’s GDP data. Singapore is omitted as it is not included in the META model and hence in our analysis
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Country Weight in index
1 United States of America 70.2%
2 Japan 6.2%
3 United Kingdom 4%
4 France 3.3%
5 Canada 3.2%
6 Switzerland 2.7%
7 Germany 2.3%
8 Australia 2%
9 Netherlands 1.2%

10 Denmark 0.9%
11 Sweden 0.8%
12 Spain 0.7%
13 Italy 0.7%
14 China, Hong Kong SAR 0.6%
15 Belgium 0.3%
16 Finland 0.2%
17 Ireland 0.2%
18 Norway 0.2%
19 Israel 0.2%
20 Portugal 0.1%
21 New Zealand 0.1%
22 Austria 0%

Table S7. Country weights in the MSCI World used in our analysis (rounded to first digits). Singapore (weight: 0.4%) is
omitted from our analysis as it is not included in the META model

Country Weight in index
1 China 29.8%
2 China, Taiwan Province of 15%
3 India 14.9%
4 Republic of Korea 12.2%
5 Brazil 5.3%
6 Saudi Arabia 4.2%
7 South Africa 3.2%
8 Mexico 2.8%
9 Thailand 2%

10 Indonesia 2%
11 Malaysia 1.4%
12 United Arab Emirates 1.3%
13 Qatar 0.9%
14 Poland 0.8%
15 Kuwait 0.8%
16 Turkey 0.7%
17 Philippines 0.6%
18 Chile 0.5%
19 Greece 0.5%
20 Peru 0.3%
21 Hungary 0.3%
22 Czechia 0.2%
23 Colombia 0.1%
24 Egypt 0.1%

Table S8. Country weights in the MSCI Emerging Markets used in our analysis (rounded to first digits)
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Country Weight in index
1 Philippines 26.6%
2 Viet Nam 15.1%
3 Peru 12%
4 Romania 5.9%
5 Morocco 5.9%
6 Kazakhstan 4.7%
7 Iceland 4.3%
8 Colombia 4.2%
9 Egypt 3.8%

10 Slovenia 2.5%
11 Oman 2.3%
12 Nigeria 2.2%
13 Bangladesh 2.1%
14 Kenya 1.6%
15 Mauritius 1.2%
16 Bahrain 1%
17 Croatia 0.9%
18 Jordan 0.9%
19 Estonia 0.5%
20 Senegal 0.4%
21 Tunisia 0.4%
22 Sri Lanka 0.4%
23 Lithuania 0.4%
24 Pakistan 0.3%
25 Cote d’Ivoire 0.2%
26 Serbia 0.1%

Table S9. Country weights in the MSCI Frontier Emerging Markets used in our analysis (rounded to first digits)
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