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Abstract

Natural disasters are increasingly affecting the financial system. While most of the
literature on natural disasters and credit risk focuses on the probability of default,
very little is known about what happens after default. In this study, we combine two
unique datasets to provide novel empirical evidence on the financial impact of wildfires
through the loss given default channel. First, we determine Italian provinces’ exposure
to wildfires using geospatial data on burned areas derived from satellite imagery. Sec-
ond, we exploit a proprietary dataset on defaulted consumer credits obtained from a
third-party collection agency in Italy. Our results reveal a robust negative relationship
between debtors’ exposure to wildfires and the realized recovery rate. By focusing on
wildfires that occur during the recovery process of already-defaulted consumer credits,
we are able to isolate a loss given default channel, complementing existing evidence on
default probabilities.

Keywords: Natural disasters; Wildfires; Consumer credit; LGD; Credit risk

∗The authors thank Kris Boudt, Koen Inghelbrecht, Yasin Kürşat Önder, and the participants to the
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1 Introduction

Climate change has significantly affected the frequency and the intensity of natural disasters

(Bronstert, 2003; Bender et al., 2010; Turco et al., 2014; Bezner Kerr et al., 2022). Wildfires

represent one of the most emblematic examples (Jolly et al., 2015; Cunningham et al., 2024).

Over the period 2003-2019, the global burned area has increased by 15.8% (16.9% in the

Mediterranean region) as a result of climate change, whose contribution has grown at an

increasing rate (Burton et al., 2024). From 1984 to 2011, in the USA, the number of

wildfires in the western region increased at a rate of 7 fires per year, and the total burned

area at a rate of 355 squared kilometers per year (Dennison et al., 2014). In the European

Union, 2017 and 2022 marked the worst two years in terms of burned hectares of natural

land (San-Miguel-Ayanz et al., 2018, 2023).

Natural disasters affect the economic and financial conditions of households directly

and indirectly. Direct impacts stem from immediate damage to assets such as property,

infrastructure, and productive capital, as well as monetized effects on physical and mental

health. Indirect costs include disruptions to economic activity, along with potential positive

spillovers from production substitution and increased demand for reconstruction, affecting

both short- and long-term economic recovery (Kousky, 2014; Botzen et al., 2019). These

disruptions can impair borrowers’ operations, reduce revenues, and weaken their debt re-

payment capacity, potentially leading to delinquency (i.e., higher Probability of Default,

henceforth, PD). Furthermore, they reduce collateral values and future income streams,

diminishing creditors’ recovery potential in default situations (i.e., lower Recovery Rate,

henceforth, RR). Consequently, natural disasters are likely to increase expected losses by

raising not only the Probability of Default, but also the Loss Given Default (henceforth,

LGD).1 However, existing literature regarding the effect of natural disasters on household

financial conditions mainly focuses on the former, without providing insights regarding

what happens after default.

The main focus of this paper is assessing the impact of wildfires on the loss given default

of consumer credits. Understanding this mechanism is crucial, given the growing relevance

of natural disasters, and the dimension of households’ debt. As of October 2024, aggregate

U.S. household debt stands at USD 17.94 trillion, reflecting a USD 3.8 trillion increase since

late 2019, just before the pandemic recession (Federal Reserve Bank of New York, Research

1LGD=1-RR.

2



and Statistics, 2024). In the Euro Area, consumer debt reached a record high of EUR 746.4

billion in December 2024, up from EUR 711.9 billion in March 2020, prior to the COVID

pandemic.2

In order to analyse the LGD channel of wildfires, we rely on two unique datasets. First,

we obtain acces to a proprietary dataset of over 3 million defaulted consumer credits in Italy

from a third-party collection agency. Second, we use geospatial data on burned areas derived

from satellite imagery to determine Italian provinces’ exposure to wildfires. By combining

these datasets, we have the unique opportunity of observing wildfires occurring during the

recovery period (i.e., after the credit has defaulted and gone to the collection agency).

Using a logistic regression model, we estimate the impact of wildfires on the recovery rate

of defaulted consumer credits while controlling for credit and debtor characteristics. Our

results reveal a robust negative relationship between debtors’ exposure to wildfires, both

during and before the recovery period, and the realized recovery rate. This effect is primarily

driven by larger wildfire exposures and is significantly smaller in densely-populated areas.

2 Literature review

Our paper speaks to the vast literature analysing the economic and financial consequences

of natural disasters, with a special focus on wildfires. Klomp and Valckx (2014) offer

an extensive meta-analysis regarding the relationship between natural disasters and GDP

growth, pointing at a growing negative effect emerging from several sources in existing

literature. Moreover, natural disasters have a significant impact on labour market outcomes

(Deryugina, 2022). Regarding wildfires, Meier et al. (2023) find a substantial reduction of

GDP growth in Southern Europe, and lower regional employment in sectors related to retail

and tourism. Furthermore, existing literature outlines how wildfires can have economic

impact also indirectly, through smoke exposure (Borgschulte et al., 2024). Other economic

impacts of wildfires include, among others, property prices (Nicholls, 2019), intangible and

non-market costs (Johnston et al., 2021), forestry (Rego et al., 2013), and health costs

(Johnston et al., 2021).

Natural disasters also have a profound impact on the financial system. Mallucci (2022),

2Data on credit for consumption vis-à-vis euro area households reported by MFIs in the euro area

(stock) can be retrieved from the MFI balance sheets available from the ECB Statistical Data Warehouse

https://sdw.ecb.europa.eu/ with key BSI.M.U2.N.U.A21.A.1.U2.2250.Z01.E.
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and Phan and Schwartzman (2024) find that extreme weather events impair governments

borrowing capacity. Klomp (2017) finds that natural disasters affect public debt sustain-

ability through a worsening of its public finances. Moreover, natural disasters are found

to impact asset prices of firms, depending on their exposure (Pagano et al., 2023). Co-

herently, wildfires are also found to have important impact on public finances (Liao and

Kousky, 2022; Jeon et al., 2024), and firms behaviours and financing conditions (Griffin

et al., 2023; Tavor, 2024).

Our paper mainly contributes to the literature studying the effect of natural disasters on

household finances. Existing research is increasingly pointing out that natural disasters and

climate-related extreme events influence credit supply (Berg and Schrader, 2012; Cortés and

Strahan, 2017; Nguyen and Wilson, 2018; Koetter et al., 2020), credit demand, households’

financial decision-making (Gallagher and Hartley, 2017; Groen et al., 2020; Johar et al.,

2022; del Valle et al., 2024), as well as credit scores and mortgage performance, in particular

for financially constrained households (Ratcliffe et al., 2020; Billings et al., 2022). When

focusing on the effect of wildfires on household finances, existing literature finds an increase

in credit delinquency rates (Ho et al., 2023). It is noteworthy that natural disasters might

also show negligible, or even a positive, impact on insured households (Biswas et al., 2023;

Gallagher and Hartley, 2017; Gallagher et al., 2023). However, to the best of our knowledge,

no studies bring evidence regarding the impact on the recovery once default took place.

Most of credit risk research focuses on credit scoring, which involves estimating default

probabilities and their main drivers, as well as understanding credit cycles. For example,

Djeundje and Crook (2018) find that incorporating account-specific effects and macroeco-

nomic variables significantly enhances predictive accuracy for credit card defaults. Similarly,

Malik and Thomas (2010) show that consumer default intensities for banking loans are in-

fluenced by business cycle indicators, and Carvalho et al. (2020) confirm that incorporating

macroeconomic information improves the accuracy of models forecasting defaults of non-

financial firms in the euro area, with GDP growth notably reducing default probabilities.

When it comes to identifying the main drivers of LGD, most of the literature has

documented the central role of contract-specific variables (such as the debtors’ age, recovery

duration or the total amount to recover, and the incidence of fees and interests on the

amount to principal). The legal environment may also play an important role. In the credit

card industry, for instance, Fedaseyeu (2020) finds that consumer protection legislation
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governing third-party debt collection reduces the number of third-party debt collectors and

increases the LGD on delinquent credit card loans.

Finally, the ability of households to repay defaulted credits should also be linked to their

current financial situation. Low aggregate consumption and high unemployment rates often

signal insufficient income and wealth, complicating loan repayment and reducing recovery

values. There is no clear consensus on the relevance of macroeconomic and social envi-

ronments as predictors of Loss Given Default (LGD). For instance, Bellotti and Crook

(2012) analyse 55,000 defaulted UK credit card accounts from 1999 to 2005, and find that

incorporating macroeconomic variables enhances the predictive power of recovery rate mod-

els. Specifically, higher interest rates and unemployment levels at default are associated

with lower recovery rates, while higher earnings growth improves recoveries. Leow et al.

(2014), instead, examine defaulted mortgages (1990–2002) and unsecured personal loans

(1989–1999) and find that macroeconomic variables, such as net lending growth, dispos-

able income growth, GDP growth, and unemployment rates, improves the prediction of

mortgage loan recovery rates, but not personal loan recoveries. Beck et al. (2017) anal-

yse German consumer credits for goods and services from 2004 to 2008, incorporating both

idiosyncratic determinants (e.g., exposure at default and prior collection rates) and macroe-

conomic factors, such as GDP growth and regional unemployment rates. Only the latter

consistently exhibits a negative effect on recovery rates. Distaso et al. (2024), instead, ex-

amine over six million Italian consumer credits managed by a third-party collection agency

from 2007 to 2019, showing that macroeconomic and social factors significantly improve

LGD forecasting. Key predictors include lower real economic activity, a higher cost-of-

debt-to-GDP ratio, and heightened economic uncertainty, all of which are associated with

higher LGD. Conversely, Nazemi et al. (2022) analyse 65,535 defaulted unsecured consumer

credits acquired from a German telecommunications company (2010–2013) and find that

including macroeconomic variables, such as provincial unemployment rates and excessive

indebtedness rates, does not improve prediction accuracy.

At the aggregate level, evidence supports the relevance of business cycle dynamics for

LGD. Calabrese (2012) identifies systematic relationships between average recovery rates

and macroeconomic indicators—such as interest rates, GDP growth, unemployment, and

aggregate default rates—based on a study of loan recovery processes in the Italian banking

sector. Similarly, Caselli et al. (2008) demonstrate that LGD dynamics for household and
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SME banking loans are shaped by distinct macroeconomic factors. For households, the

most robust models link LGD to variables such as household default rates, unemployment,

and consumption. Additional evidence comes from Konecny et al. (2017), who analyse

retail banking in the Czech Republic, and highlight the significance of both lagged and

contemporaneous macroeconomic effects, particularly in the context of consumer finance.

3 Data and Methodology

In the following sections, we provide a detailed description of the data and methodology used

in our analysis. First, we discuss the datasets on defaulted consumer credits and wildfires in

Italy. Next, we detail the empirical setup, including the data cleaning process, descriptive

statistics, and the econometric framework used to analyze the relationship between wildfire

exposure and recovery rates.

3.1 Defaulted consumer credits

Data on defaulted consumer credits (DCCs) is sourced from a proprietary, anonymised

database managed by a third-party collector in Italy. This database contains DCCs orig-

inating from the telecommunications and utilities sectors, which third-party collectors are

authorized to recover within a maximum period of ∆ = 365 days from the original creditor’s

mandate. Using data from a third-party collector, rather than a single original creditor,

reduces biases from creditor-specific recovery procedures or industry of origin, while still

allowing granular control over creditor and debtor characteristics across DCCs. The DCC

contracts relate to natural persons and record their anonymised national registration num-

ber, enabling the extraction of gender, birth date as well as their main residency postal

code. This allows each DCC to be matched to a specific region and province at the autho-

rization date for recovery. Overall, the data spans from January 2013 to December 2019

and covers debtors across 18 out of 21 regions and 98 out of 110 provinces in Italy.3

Our variable of interest is the recovery rate (RR) and is defined as the outcome of the

3Debtor provinces are registered according to the 2016 version of the NUTS 3 classification, which

contained 110 NUTS 3 regions in Italy. Following a reclassification of provinces in the Autonomous Region

of Sardinia, the 2021 version of the NUTS classification contains 107 Italian NUTS 3 regions.
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recovery process relative to the Total amount to Recover (TtR), i.e.,

RRi =
sum of repaymentsi over the period [τi, τi +∆i]

TtRi at [τi]
, (1)

where the collection process starts in τi when the collection agency receives the recovery

mandate and its length ∆i can vary across DCCs, but cannot exceed one year. We refer to

[τi, τi +∆i] as the Recovery Period (RP ) of the credit. Since wildfire exposure is measured

at monthly frequency, we convert the length of the recovery period (observed in days) to

months. To avoid including wildfires that occur beyond the actual recovery period, we

round down to the number of full months.

The TtR includes the principal, interest, recovery fees, and administrative costs imposed

by the original creditor. Therefore, the gross recovery rate RR reflects the recovery of

principal, interest, and creditor-established fees but excludes handling fees charged by the

third-party collector. These handling fees—typically a fixed fee plus a commission on

recovered amounts—are defined in the bilateral contract, with payment by the original

creditor at the collection period’s end.

Following Distaso et al. (2024) and consistent with Bellotti and Crook (2012) for delin-

quent credit card accounts and Nazemi et al. (2022) for defaulted telecommunication credits,

we consider DCCs for which recovery is initiated for the first time and measure the realized

RR at the end of the collection period. If recovery is incomplete at this time (i.e., RR < 1

or no settlement), the original creditor may continue collection efforts in their name or as-

sign a second mandate to a specialized firm. Amounts recovered from this second attempt

would not be reflected in our observed RR. Additionally, third-party collector data lacks

precise workout cost details (which vary by lender-collector contracts), so the RRs in our

sample cannot be directly extrapolated as estimates of ultimate recovery. While the exact

default date of a consumer credit contract is unknown, there is typically a 6-month delay

in the telecommunications and utilities sectors between when the original creditor marks

a credit as ’defaulted’ and when it is transferred to the third-party collector. This timing

aligns with the telecommunication contracts considered by Nazemi et al. (2022).

3.2 Wildfires data

We measure debtors’ exposure to wildfires by calculating the burned area in the debtor’s

province of residence as a fraction of the total province area (BA). This variable is con-

structed by combining geospatial data on wildfires and administrative units. For wildfires,
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we use the Burnt Areas product provided by the European Forest Fire Information Sys-

tem (EFFIS),4 which contains the exact delineations of the burn perimeters of wildfires

in Europe at a daily frequency from 2001 onwards. This data is collected using a semi-

automatic procedure to map fire-burned areas based on Moderate Resolution Imaging Spec-

troradiometer (MODIS) and Sentinel-2 satellite imagery. First, fires are mapped through

an unsupervised procedure combining band thresholds, ancillary spatial datasets and fire

news. These initial delineations are then verified and corrected through visual inspection.

The output of this process can map burned areas with a size of around 30 hectares or larger

and capture approximately 95% of the total burned area in the EU.

We use geospatial data on Italian provinces from the Nomenclature of Territorial Units

for Statistics (NUTS) provided by the Geographic Information System of the Commission

(GISCO).5 NUTS is a harmonized classification system of EU countries’ regions at three

different levels. NUTS 1 divides each EU country into major socio-economic regions, NUTS

2 into basic regions for regional policies, and NUTS 3 into small regions for specific diag-

noses. We focus on NUTS 3 regions as these correspond to provinces in Italy. We use the

2016 version of NUTS containing 110 Italian NUTS 3 regions as this matches the debtor

provinces available in the defaulted consumer credits dataset. We calculate monthly wildfire

exposure as the total burned area in each province in each month as a fraction of the total

province area. For wildfires that affect multiple provinces, we only count the intersecting

area between the burn perimeter and each province.

Our main variable of interest is the debtor’s wildfire exposure during the recovery period

(BARP ), which we define as the sum of monthly exposures in the debtor’s province of

residence over the months of the recovery period. As the length of the recovery period

is credit-specific and varies between 1 and 12 months, the number of months included in

BARP also varies across credits. To guarantee a clean identification of the loss given default

channel, it is important that the variable measuring wildfire exposure during the recovery

period does not include any wildfires that occurred before the start of the recovery period.

Such wildfires could cause debtors to default on their credit or induce the original creditor

to enlist the services of the collection agency for an already-defaulted credit, both of which

could pollute the estimation of an isolated LGD-channel. As we observe the month in which

4https://forest-fire.emergency.copernicus.eu/about-effis/technical-background/

rapid-damage-assessment.
5https://ec.europa.eu/eurostat/web/nuts/overview.

8



the collection agency acquired the DCC but not the exact date, we define BARP as starting

on the first day of the month after the acquisition of the DCC, removing the possibility of

including any wildfires that happened before the recovery period.6 We also calculate the

debtor’s wildfire exposure in the year before the start of the recovery period (BA−1y) and

the year before that (BA−2y).

These measures of wildfire exposure treat all wildfires in the same way, without account-

ing for their location within the province. However, some wildfires may have a greater

impact than others. To extend the baseline analysis, we examine whether the effects of

wildfires vary based on their proximity to densely populated areas and man-made environ-

ments. This analysis relies on granular data on population density and land cover at the

sub-province level. In the next section, we outline how we integrate these elements into the

analysis.

3.2.1 Population density

In the baseline model, we combine geospatial data on provinces and wildfires to determine

the monthly burned area in each province. To assess whether the impact of wildfires depends

on the population density of the affected areas within a province, we incorporate data from

each province’s constituent municipalities. We refine the baseline measures described in the

previous section by first determining wildfire exposure at the municipality level and then

aggregating the results to the province. This enables us to incorporate the characteristics

of the municipalities in which wildfires occur.

We obtain geospatial data on Local Administrative Units (LAUs), corresponding to

Italian municipalities (comuni), from the GISCO.7 Similar to NUTS, LAU is a harmonized

classification system of EU countries’ regions and essentially represents the next level of

granularity after NUTS 3 regions (i.e., provinces in Italy). Importantly, NUTS and LAU are

compatible systems in which LAUs serve as the building blocks of NUTS regions such that

each Italian province is a combination of the underlying LAUs. We exploit this structure to

6This approach may lead us to include some additional days after the recovery period has already ended.

However, given the fact that we round down the true length of the recovery period when converting it to

full months, which has an offsetting effect, the overall impact is limited. Additionally, we verify that our

results are robust to excluding the last month from BARP .
7https://ec.europa.eu/eurostat/web/gisco/geodata/statistical-units/

local-administrative-units.
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compute the wildfire exposure of each province’s constituent LAUs separately, allowing us

to determine the population density of the affected areas within the province at a granular

geographic level, before aggregating to the province level.

We start by computing the monthly wildfire exposure of each LAU as we did for the

provinces and confirm that aggregating the LAU exposures to the province level creates a

measure that closely resembles the original measure based on province geodata. Indeed,

the largest deviation in burned area is 17 hectares, or 3.4% of the average burned area

in months with at least some wildfires (and 1.8% of the burned area in question). We

also confirm that the regression results for the main specification using the original wildfire

measures or the LAU-based measures are practically identical.

On average, an Italian province is composed of 72 LAUs. For each LAU, we observe the

population density and degree of urbanization. The degree of urbanization is a classification

system created by the GISCO that uses geographical contiguity and population density to

classify each LAU into one of the following three categories: cities, towns and suburbs,

and rural areas.8 Using these LAU characteristics, we employ two approaches to evaluate

whether the impact of wildfires in a province depends on the population of the affected

LAUs within that province.

We can interpret the wildfire exposure variable from the main specification, i.e., the

fraction of the total area of province p that was burned by wildfires in month s, as a proxy

for the fraction of the population in the province that was affected by wildfires:

BAp,s =
BA(km2)p,s
Area(km2)p

=

BA(km2)p,s
Area(km2)p

× Popp,s

Popp,s
. (2)

We can refine this proxy by exploiting the fact that we observe both wildfire exposures and

population densities at the LAU level. As shown in eq. 3, we do this by calculating the

numerator of eq. 2 separately for each LAU m belonging to province p before aggregat-

ing to the province level, essentially weighting the burned areas within a province by the

population density of the municipality in which they occur.

BAp,s =

∑
(
BA(km2)m,s

Area(km2)m
× Popm,s)

Popp,s
. (3)

Alternatively, we determine the share of the total burned area in the province that

occurred in LAUs categorized as cities according to the degree of urbanization classification.

8https://ec.europa.eu/eurostat/web/gisco/geodata/population-distribution/

degree-urbanisation.
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We interact this measure with the wildfire exposure variables to determine whether wildfires

that occur in or near cities have a different effect from those affecting towns and suburbs

or rural areas.

3.2.2 Land cover

As a second extension, we examine whether wildfires affecting man-made environments

have a different impact than those affecting natural land. To do so, we calculate the share

of the total burned area within each province that occurred in man-made environments.

We then interact this variable with the wildfire exposure measures to test for significant

differences in the effect.

We collect CORINE Land Cover (CLC) data from the Copernicus Land Monitoring

Service.9 The CLC database was established to standardize land cover data collection

across Europe. It is primarily derived from ortho-corrected high-resolution satellite imagery,

supplemented by topographic maps, ortho-photos, and ground survey data (Büttner et al.,

2021). The database classifies land cover into 44 categories at a 100-meter by 100-meter

resolution and is updated every six years. We use raster files from the 2006, 2012, and 2018

editions.

For each wildfire polygon in the burned areas dataset (split across province boundaries if

the wildfire affected several provinces), we compute the share of the total burned area that

occurred in the ”Artificial areas” CLC category, which we refer to as man-made environ-

ments. This category includes the following subcategories: (i) urban fabric, (ii) industrial,

commercial and transport units, (iii) mine, dump and construction sites, and (iv) artifi-

cial non-agricultural vegetated areas.10 Aggregating this measure to the province level, we

calculate the share of the total burned area in the province that occured in man-made en-

vironments. We always determine the land cover of the burned area using the most recent

version of the land cover dataset that could not have been affected by the occurrence of

that wildfire. We use the 2006 version of the CLC database for wildfires up to 31 Dec 2012,

the 2012 version for wildfires between 1 Jan 2013 and 31 Dec 2018, and the 2018 version

for wildfires from 1 Jan 2019 onwards.

9https://land.copernicus.eu/en/products/corine-land-cover.
10For an overview of the 44 CLC land cover categories, see https://land.copernicus.eu/en/

technical-library/clc-illustrated-nomenclature-guidelines/@@download/file.
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3.3 Data processing and descriptive statistics

We now outline the empirical setup, first detailing the data-cleaning process and then

moving on to descriptive statistics of the final sample.

In line with Bellotti and Crook (2012); Nazemi et al. (2022); Distaso et al. (2024), we

focus on defaulted credits with a maximum recovery period duration of one year. We count

3,373,182 observations, and to further enhance the homogeneity of the dataset and prevent

results from being disproportionately influenced by outliers, we filter out observations where

the total amount to recover is below 20 EUR or above 5,000 EUR, the principal-to-total ratio

exceeds 1, or the debtor is over 80 years old. Finally, since the recovery period is measured

in full months, DCCs with a recovery period shorter than one month are excluded from the

sample, as they cannot be assigned a wildfire exposure during the recovery period. Figure 1

highlights that the dataset exhibits a highly bimodal distribution of recovery rates, with

88% of DCCs having recovery rates of exactly 0 or 1, consistent with previous studies on

recovery rates in the consumer credit industry (Thomas et al., 2012; Nazemi et al., 2022;

Distaso et al., 2024). Consequently, for the main analysis, we exclude the remaining 12%

of DCCs with continuous recovery rates (values between 0 and 1) from the sample, as a

binary outcome model is more appropriate for the majority of observations, and no clear

threshold exists for converting continuous values to binary outcomes. The results remain

robust when these DCCs are included, with recovery rates greater (less) than 0.5 mapped

to 1 (0) as demonstrated in Section A.3. As a result, the final sample consists of 3,049,627

defaulted consumer credits between 2013 and 2019 across 98 (out of 110) Italian provinces,

representing a total defaulted debt of over EUR 1.2 billion. About 19% of the credits,

making up 8.8% of the total owed amount (EUR 107 million), was successfully recovered.11

The large share of unrecovered DCCs is in line with the statistics reported by Thomas

et al. (2012) for third-party collection. 59% of DCCs originate from the telecommunications

sector and 41% from the utilities sector.

Descriptive statistics for the DCC characteristics are reported in Table 1. The average

owed amount is about 400 EUR (median 250 EUR), with the principal making up over

90% of the total (the rest being interest and ancillary fees). The recovery period spans an

average of 4 months and rarely extends beyond 6 months (less than 5% of observations).

11The owed amount in the dataset including DCCs with a non-binary recovery rate totals almost EUR

1.4 billion, of which 14% (EUR 195 million) was recovered.
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Table 2 presents descriptive statistics of the wildfire exposure variables. About 22%

of the observations in the sample had some wildfire exposure during the recovery period.

For the BA variables capturing wildfire exposure one and two years before the recovery

period, this percentage rises to respectively 45% and 42%. As the ”lag” variables always

include 12 months whereas the recovery period BA variable spans an average of 4 months,

they have more observations with some wildfire exposure. Conditional on the occurrence

of at least one wildfire, an average of 0.37% of the total province area was burned during

the recovery period, and 0.53% and 0.66% during respectively the first and second year

before the recovery period. The lower median values indicate that the average is pushed

up by some very large values. The maximum value of 4.10% reflects the wildfires of July

and August 2017 in the province of Naples, which destroyed large portions of woodland

surrounding the Vesuvius volcano.12

3.4 Econometric framework

The logistic regression model is particularly well-suited for our analysis as the dependent

variable is bounded between 0 and 1. Unlike linear regression, which may produce predic-

tions outside this range, logistic regression or logit ensures that predicted values remain

within the [0, 1] interval, making it ideal for modeling the probability of default or recovery

rates (Lawrence et al., 1992; Jiménez and Saurina, 2004; Thomas et al., 2012; Imbierowicz

and Rauch, 2014).

Specifically, we estimate the effect of wildfire exposure on the probability to recover

defaulted consumer credits using logistic regression of the form:

RRi,p,t,c = βRPBAp,RP + γ1BAp,−1y + γ2BAp,−2y + CVi + τt + ρp + ζc + ϵi,p,t,c, (4)

where RRi,p,t,c is the realized recovery rate for defaulted consumer credit i from province

p with original creditor c whose recovery period started in month t. The main variable of

interest, BAp,RP , measures the total burned area in province p during the recovery period

as a fraction of the total province area. BAp,−1y and BAp,−2y measure the burned area

in province p (as a fraction of total province area) during respectively the year before the

start of the recovery period and the year before that. We control for the following credit

and debtor characteristics: total to recover (ln), share of the principal in total to recover

12https://www.esa.int/ESA\_Multimedia/Images/2017/07/Vesuvius\_on\_fire.
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(as opposed to interest and ancillary fees), debtor age, and debtor sex (dummy). We also

include dummy variables for the province of the debtor, the starting month of the recovery

period, the length of the recovery period in months, and the original creditor ID. Standard

errors are clustered at the province level.

4 Results

4.1 Baseline model

We present the estimation results in Table 3. Column 1 reports the regression coefficients

and t-statistics, while Column 2 provides the corresponding odds ratios. The odds ratios

are calculated as the exponential of the regression coefficients and, in our logistic regression

framework, represent the ratio of the odds of observing a successful recovery, i.e., RR = 1,

associated with a one-unit increase in the corresponding regressor.

βRP is negative and significant at 0.1%, indicating that higher wildfire exposure during

the recovery period is associated with a lower recovery rate. The coefficient of -0.110 corre-

sponds to an odds ratio of 0.896, meaning that a 1%-point increase in the total burned area

of the province during the recovery period (as a fraction of total province area) decreases

the odds of recovery by about 10%. Similarly, the negative coefficients on the lagged wildfire

exposure variables, γ1 and γ2, significant at respectively 1% and 0.1%, indicate that higher

wildfire exposure in the years preceding the start of the recovery period is also associated

with a lower recovery rate. It is important to note that a value of 1 for the wildfire exposure

measures, indicating a burned area equal to 1% of the total province area, constitutes a

fairly severe exposure. Out of all the credits in our sample with some wildfire exposure

during the recovery period (i.e., BARP > 0), about 9.5% have a value greater than or equal

to 1. For BA−1y and BA−2y, roughly 14.5% and 20.5% of credits with some exposure have

a value greater than or equal to 1. To illustrate the magnitude of the estimated effects at

different levels of wildfire exposure, columns 3, 4, and 5 report the odds ratios for the 10th,

50th and 90th percentile values of the (non-zero) wildfire exposures.

Our findings on the control variables align with the literature on the determinants of the

LGD of defaulted consumer credits (Nazemi et al., 2022; Thomas et al., 2012; Distaso et al.,

2024). Specifically, we identify a significant negative relationship between the recovery rate

and the total amount to recover, while a larger share of principal in the total amount
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to recover is associated with a higher recovery rate. In contrast, the estimated positive

relationship between recovery rate and debtor age differs from the negative relationship

reported by Nazemi et al. (2022).

We perform two checks to verify that βRP is capturing the effect of wildfires that occur

during the recovery period. First, as discussed in Section 3.2, our measure of wildfire

exposure during the recovery period (BARP ) may include some days beyond the end of the

recovery period. To ensure that the estimated effect is not driven by wildfires occurring

after the recovery period, we exclude the entire last month from BARP , eliminating all

possible overmeasurement of wildfire exposure. In Appendix A.1, we show that our result

is robust to this change. The second check relates to the recurring nature of wildfires.

Debtors who were exposed to wildfires during the recovery period had a high probability of

also being exposed to wildfires in the years preceding the recovery period13. While BARP

only captures wildfires that occurred after the debtor had already defaulted by construction

and can only affect recovery rates through loss given default, past wildfire exposure may

also have an impact by affecting default rates. Therefore, to ensure that βRP captures a loss

given default effect, it is important to account for the relationship between wildfire exposure

during and before the recovery period. In the baseline model, we do so by including BA−1y

and BA−2y as control variables in the regression. To completely eliminate any remaining

impact of past wildfire exposure on the realized recovery rate that may not be captured by

the control variables, we estimate the model on the subset of credits without any wildfire

exposure in the two years preceding the recovery period. In Appendix A.2, we show that

the negative effect of BARP remains significant.

We perform several other checks, all of which reinforce the baseline results. In Ap-

pendix A.3, we include the DCCs with a non-binary recovery rate in the estimations by

converting their recovery rate to 0 or 1. Second, we account for regional heterogeneity

by controlling for region- and province-specific macro-economic and social characteristics

(Appendix A.4) and by including province-specific time effects (Appendix A.5). Third,

in Appendix A.6, we show that our results are robust to removing the largest and most

frequent wildfire exposure values from the estimation, as well as all credits originating from

Naples (the province with the most wildfire-exposed credits in the sample).

13The correlation between BARP and the yearly lags is 0.32 for BA−1y and 0.24 for BA−2y. 75% of

observations with some wildfire exposure during the recovery period (BARP > 0) also had some exposure

in the preceding year (BA−1y > 0), and 65% in the year before that (BA−2y > 0)
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In the following sections, we extend the baseline model to explore potential heterogeneity

in the effect of wildfires on recovery rates. In Section 4.2, we evaluate whether the scale of

the wildfire exposure affects its impact on recovery rates by separately estimating the effect

of the largest 50% and smallest 50% of exposure values. In Section 4.3, we explore how the

characteristics of the burnt areas, particularly their proximity to densely-populated areas

and man-made environments, may affect the negative relationship with recovery rates.

4.2 Wildfire severity

Measuring wildfire exposure as a continuous variable allows us to avoid making arbitrary

decisions about what qualifies as a natural disaster. By estimating the effect of the magni-

tude of wildfires relative to the total area of the province, we take a more agnostic stance on

how and which wildfires can have an impact. However, a limitation of this method is that

the BA variable often takes on very small values, capturing minor wildfires that are unlikely

to significantly affect recovery rates. To ensure that our results are not (only) driven by

small wildfires, we decompose the BA variable into two separate variables: one containing

above-median values and the other containing below-median values, thus isolating the ef-

fects of larger (smaller) wildfires. Column 1 of Table 4 reports the results of a regression

that only includes the above-median BA variables, essentially censoring all below-median

wildfire exposures to zero. Results are very similar to the baseline specification. The model

in column 2 includes both the above-median and below-median BA variables. These results

show that larger wildfire exposures are driving the negative effects, while smaller wildfire

exposures have no significant effect.

4.3 Proximity to densely populated areas and man-made environments

We investigate whether the relationship between recovery rates and wildfire exposure in

the debtor’s province varies with the population density of affected municipalities and the

share of the burned area that affected man-made environments, such as urban fabrics,

industrial, commercial, and transport units, mines, dumps, construction sites, and other

artificial non-agricultural or non-forested areas.

As described in Section 3.2.1, we map wildfire exposure at the municipality level and

aggregate it to the province level to account for the population density of municipalities

within each province. First, we verify that aggregating LAU-level wildfire exposures to
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the province level without applying any weighting closely mimics the province-level wildfire

exposures from the main specification. Columns 1 and 2 of Table 5 compare the results

of the same regression model using the baseline province-level BA measures and the LAU-

based aggregated BA measures, respectively. The results are nearly identical, alleviating

concerns that the estimations incorporating municipality population characteristics are not

comparable to the main specification.

Column 3 presents regression results using the modified wildfire exposure measure that

assigns a higher (lower) weight to wildfires that occur in municipalities with a higher (lower)

population density. The estimated effect of wildfire exposure during the recovery period

changes very little compared to the unweighted model (column 2). Interestingly, the coef-

ficient on BA−2y becomes insignificant and each of the coefficients shrinks in size.

In a second approach, we explicitly estimate whether the effect of wildfires differs in

densely-populated areas. Specifically, column 4 uses the BA measures based on the aggre-

gated LAU-level exposures (as in column 2) but includes a term that interacts each wildfire

measure with the share of the total burned area that occurred in city municipalities (ac-

cording to the degree of urbanization classification). The coefficients on the BA variables

estimate the effect of wildfires occurring in non-city municipalities (towns, suburbs and

rural areas) and the coefficients on the interaction terms indicate whether wildfires that

affect cities have a different effect. The interaction coefficients for the recovery period and

first lag are positive and significant at 5%, indicating that the effect of wildfires that occur

in city municipalities is less negative compared to wildfires that occur in towns, suburbs

and rural municipalities.

We then investigate whether the significant negative relationship between wildfires and

recovery rates depends on the proximity to man-made environments, determined by the land

cover types of the burned areas in the province (column 5). Similar to column 4, this model

includes the main province-level wildfire exposures and an interaction term measuring the

share of the total burned area that occurred in man-made environments. The coefficients

on the main BA variables estimate the effect of wildfires that occur in the other land

cover types (mostly forests and agricultural land) and the interaction terms estimate the

difference in effect for wildfires occurring in built-up areas. Similar to the results reported

in column 4, the interaction coefficients for the recovery period and first lag are positive

and significant at 5%, indicating a significantly less negative effect of wildfires that occur
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in built-up areas.

4.4 Discussion

A borrower’s ability to repay debt depends on factors such as income, cash flow, and asset

liquidity, which are particularly critical for unsecured credit, such as telecommunications

and utilities, that lack collateral. In Section 4.1, we bring new empirical evidence that higher

wildfire exposure before and during the recovery period is associated with a lower recovery

rate. There are multiple ways in which wildfires could affect households’ financial situation.

For instance, wildfires can have a direct impact by destroying residential properties (Biswas

et al., 2023), affecting their health (Deryugina et al., 2019; Johnston et al., 2021), or affecting

their income (Borgschulte et al., 2024). Indirectly, wildfires have been shown to affect

regional economic outcomes in southern Europe (Meier et al., 2023), which in turn could

affect defaulted debtors’ ability to repay (Bellotti and Crook, 2012; Distaso et al., 2024).

Our baseline model indicates that the larger the wildfire relative to the area of the

province, the greater the negative impact of the recovery rate. In Section 4.2, we find that

this effect is primarily driven by larger exposures to wildfires. When dividing the wildfire

exposure variables at the median, only the above-median values have a significant effect,

suggesting that wildfires must reach a certain scale before having a meaningful impact.

Although our defaulted consumer credit database does not allow us to pinpoint the

exact channel through which wildfires shape the recovery rate distribution, our findings

suggest that the negative impact of wildfire exposure is mitigated by proximity to densely

populated areas and man-made environments.

One possible explanation is that city economies are highly diversified, reducing the risk

of widespread income losses following a disaster. In contrast, lower-density areas rely on

a few industries or services, and access to financial services may be limited. Therefore,

income loss and financial constraints following a natural disaster can persist longer and,

in turn, hinder third-party collectors in pursuing recoveries. Moreover, despite wildfires in

densely populated areas potentially causing greater property damage, they may trigger a

stronger emergency response in terms of both suppression efforts and financial aid. This

could mitigate the economic impact of natural disasters and safeguard household finances,

thereby enhancing collectors’ ability to recover debts.

This aligns with findings from Gallagher et al. (2023), who show that individuals living
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in census blocks that suffered severe tornado damage have a reduction in credit card debt

and bill delinquencies if disaster aid is available. Further, direct property damage could

provide debtors with an influx of liquidity through insurance payouts, increasing their

ability to repay defaulted debt in the short term. Previous studies have found evidence of

homeowners using insurance payouts to pay down outstanding debt instead of rebuilding

their property after wildfires (Biswas et al., 2023) and hurricane-related flooding (Gallagher

and Hartley, 2017).

5 Conclusion

Climate change is significantly increasing the frequency and intensity of natural disasters,

with wildfires being a prominent example. Natural disasters can affect household finances

both directly—through asset destruction and health costs—and indirectly, by disrupting

local economic activity, thus weakening borrowers’ repayment capacity. Therefore, natural

disasters should not only raise the likelihood of delinquency but also affect recovery rate

after default. While existing literature focuses primarily on probability of default, we

provide empirical evidence on the negative financial impact of wildfires through a loss given

default channel.

In our analysis, we combine a unique dataset containing more than 3 million defaulted

consumer credits originating from the telecommunications and utility sectors in Italy with

geospatial data on burned areas derived from satellite imagery. Using a logistic regression

model, we show that debtors’ exposure to wildfires during the recovery process decreases the

realized recovery rate. This effect is primarily driven by larger-scale wildfires. Proximity to

densely-populated areas and man-made environments, such as urban areas and industrial,

commercial and transport sites, appear to mitigate the negative impact. However, data

constraints prevent us from identifying specific economic transmission channels. Future

research using granular household-level data could offer deeper insights into these channels.
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A Appendix

A.1 Exclude last month of recovery period from wildfire exposure

In the main analysis, we define the recovery period as starting on the first day of the month

after the acquisition of the defaulted credit by the collection agency. This ensures that

our measure of wildfire exposure during the recovery period, BARP , does not capture any

wildfires that happened during the month in which the credit was acquired but before the

recovery period had started. A potential drawback of this approach is that, for the last

calendar month of the recovery period, BARP may capture some wildfires that happened

after the recovery period had already ended. This is partly offset by rounding down to full

months when converting the length of the recovery period from days to months (to match

the monthly frequency of the wildfire exposures dataset).

To eliminate any remaining concerns of BARP potentially capturing wildfires that hap-

pened after the recovery period had already ended, we exclude the last month of the recovery
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period from the exposure variable (BARP−1m). As a result, we can no longer determine

the exposure of credits with a recovery period of one month. These credits, representing

about 7.3% of the sample size, are dropped from the estimation. First, we re-estimate

the baseline model for the subset of credits with a recovery period of at least two months.

Results are presented in column 1 of Table 6. The estimated effect for BARP is similar in

magnitude and significance to the full sample result, while the significance of the lagged

wildfire measures decreases noticeably, with only the first lag remaining significant at 5%.

Column 2 presents the results from the estimation using the restricted measure of wildfire

exposure during the recovery period, BARP−1m. The results are very similar to column 1,

confirming that the baseline results are not driven by wildfires that happened outside of

the recovery period.

A.2 No recent wildfires

In the main specification, we control for debtor’s wildfire exposure before the recovery

period using two variables capturing total burned area in the 12 months preceding the

start of the recovery period, and the 12 months before that. Given that wildfires are more

likely to occur in areas that also experienced wildfires in the past (due to the region-specific

nature of wildfires), we include these lags to ensure that the estimate for BARP captures the

loss-given-default effect of wildfires. In other words, we isolate the effect on recovery rate of

wildfires that occur during the recovery period by controlling for the potentially negative

effects on recovery rates of wildfires that happened before start of the recovery period.

While our analysis indicates that these pre-RP wildfires also negatively affect recovery

rates, we mainly focus on wildfires during the RP as this allows for a precise identification

of the loss given default channel.

As a robustness check, we estimate the model using only DCC with no wildfire exposure

at all during the two years preceding the recovery period. This eliminates any potential

bias stemming from the included one-year and two-year lagged wildfire variables in the

main specification not perfectly controlling for the impact of pre-RP wildfires on recovery

rates. Table 7 shows that the estimated effect of BARP remains significant at 5% and has a

substantially greater magnitude than the main specification. Note that filtering the sample

to DCCs with no recent wildfire exposure dropped over 55% of observations. Importantly,

the geographic distribution of the sample shifted north as southern areas were much more
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likely to have experienced wildfires in the recent past, shifting the distribution of BARP

downward. Hence, the estimated magnitude of the effect is not directly comparable to the

main specification.

A.3 Include DCCs with non-binary RR

In the main specification, we only keep DCCs with a realized recovery rate equal to 0 or 1,

dropping about 12% of DCCs for which the collection agency was able to recover a part, but

not all, of the owed amount. This is motivated by the fact that the vast majority of DCCs

are either recovered in full, or not at all, making logistic regression the preferred estimation

method but necessitating all outcomes to be 0 or 1. As a robustness check, we convert

the recovery rates of those DCCs with a non-binary recovery rate to 0 or 1 and include

them in the regressions. In Table 8, we present the results when converting the recovery

rate to 1 if the continuous value is greater than or equal to 0.50 (column 2) or greater

than 0 (column 3). Column 1 repeats the baseline results for comparison. BARP remains

significant at 0.1%, though the estimated magnitude of the effect shrinks somewhat. The

negative relationship between the recovery rate and Total to Recover shrinks considerably.

Unsurprisingly, DCCs with a higher Total to Recover are more likely to have a non-binary

realized recovery rate in our dataset. By removing these DCCs from the sample in the main

specification, the estimated effect of Total to Recover may be biased downward. The model

fit, as measured by pseudo R2, drops substantially when including DCCs with (converted)

non-binary recovery rate.

A.4 Regional control variables

The main specification includes monthly dummies, capturing time effects at the national

level. In this section, we account for time variation at the sub-national level using macro-

economic and social control variables. We include these control variables at the level of

Italian regions (NUTS 2) and provinces (NUTS 3) in separate regressions. For the region-

level regressions, we include the natural log of the GDP per capita and the unemployment

rate as macro controls and the homicide rate, assault rate, and poverty risk rate as social

controls. For the province-level regressions, we include the natural log of the GDP per

capita and the ratio of employed persons to total province population as macro controls

and the homicide rate, assault rate, and life quality score as social controls. The control
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variables are measured at a yearly frequency. For each control, we include the calendar

year during which the recovery period started as well as two lags. The regression results

are reported in Table 9: column 1 repeats the base results and columns 2 to 5 present the

results when including only macro controls and including both macro and social controls,

at respectively the regional and province level. The slight drop in observations in column

(5) is explained by the fact that the crime rates data are not available for the Sardinian

provinces as defined in the 2016 version of the NUTS classification. The estimated effects

change very little when including the macro and social control variables, both in terms of

magnitude and significance.

A.5 Province dummy interactions

The main specification includes dummies for the starting month and the length of the

recovery period. The monthly dummies control for common time effects in the sample

that could otherwise introduce spurious correlation between wildfire exposure and recovery

rates. For instance, if wildfire activity increases over time and, for unrelated reasons,

recovery rates on defaulted consumer credits also increase, not controlling for time effects

could lead to an underestimation of the true impact of wildfire exposure on recovery rates.

Controlling for common time effects using monthly (instead of yearly) dummies has the

added advantage of eliminating seasonality in the data. This is especially relevant in the

context of wildfires: between 2013 and 2019, about 75% of the total burned area in Italy

was recorded in July and August.14 This means that credits from the same province will on

average have different levels of wildfire exposure (BARP ) depending on the time of the year

in which the recovery process takes place.15 Hence, the monthly time effects avoid that any

unrelated seasonality in the recovery rates biases the estimation. Similarly, two otherwise

identical credits will on average have a different wildfire exposure depending on the length

of the recovery period (i.e., the number of months included in BARP ). By controlling for

the length of the recovery period, we avoid that the negative association between recovery

period length and recovery rate is spuriously attributed to BARP .

While the main specification includes sample-wide dummies, effectively controlling for

common time effects, seasonality, and length of the recovery period at the national level,

14Source: authors’ own calculations based on the EFFIS dataset used in this paper.
15This is not the case for the yearly measures (BA−1y and BA−2y) as they always include 12 months.
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there may be heterogeneity within the country. For instance, different regions can expe-

rience different levels of economic growth, recovery rates may exhibit stronger seasonality

in tourism-dependent areas, etc. We address these concerns by controlling for time effects,

seasonality, and recovery period length, separately for each province instead of at the na-

tional level. In Table 10, we report the results from three regression models that include

an interaction term between the province of the debtor (NUTS 3 level) and respectively (1)

the starting year of the recovery period, (2) the starting month of the year (Jan-Dec) of

the recovery period, and (3) the number of months included in the recovery period. These

models also include all of the control and dummy variables from the main specification.

The estimated effects of wildfire exposure during and before the recovery period differ little

from the baseline results and remain highly significant.

A.6 Remove most frequent and largest exposure values

Given the unusual distribution of the wildfire exposure measures, with less than half of the

observations having a value different from zero and and some notable outliers, we perform

a few robustness checks to make sure that our results are not driven by a few anomalies.

In column 2 of Table 11, we drop all observations with BARP = 0.2065, which is the most

common value in the sample and is associated with credits acquired from the province of

Naples in 2016. This constitutes 17,481 observations or 0.6% of the sample. In column 3,

we drop all 13,125 observations (0.4% of the sample) with a value for BARP ≥ 4, which

corresponds to the top 3 largest wildfire exposures during the recovery period, all associated

with credits from Naples. Given that many (large) wildfire exposures in our sample are

associated with credits that originate from Naples, we perform a final robustness check

(column 4) in which we remove the entire province from our sample. This drops about 12%

of all observations. Comparing the results from the baseline model reported in column 1 to

the these checks highlights that the estimated negative effect of wildfire exposure during the

recovery period is highly robust to removing notable values of the BA measure and a large

portion of the sample. The coefficients on the lag measures also remain highly significant,

with the exception of the second lag in column 4.

B Tables
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Table 1: Descriptive statistics - Defaulted consumer credits

Variable µ σ P25 P50 P75

Total to Recover (EUR) 399.5 506.2 126.6 248.8 459.2

Principal (% TtR) 91.2 15.3 89.0 97.6 100.0

Debtor Age 49.1 13.5 39.0 48.0 58.0

Recovery Period (months) 3.8 2.0 2.0 4.0 5.0

This table presents descriptive statistics for the observed characteristics of the

defaulted consumer credits. Columns µ and σ report the mean and standard

deviation, respectively. Columns P25, P50, and P75 represent the 25th percentile,

median, and 75th percentile values.

N = 3,049,627
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Table 2: Descriptive statistics - Wildfire exposure measures

Variable N % µ σ P25 P50 P75 Max

BARP > 0 659,073 22% 0.37 0.76 0.03 0.09 0.32 4.10

BA−1y > 0 1,360,871 45% 0.53 0.89 0.04 0.21 0.58 4.10

BA−2y > 0 1,287,119 42% 0.66 1.03 0.04 0.21 0.76 4.10

This table presents descriptive statistics for the wildfire exposure measures included in the regressions.

Columns N and % show the number and proportion of observations with at least one recorded wildfire.

The statistics reported in the next columns pertain to this subset of observations. Columns µ and σ

report the mean and standard deviation, respectively. Columns P25, P50, and P75 represent the 25th

percentile, median, and 75th percentile values, while the Max column indicates the highest recorded

value.
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Table 3: Results - Logistic regression

(1) (2) (3) (4) (5)

Coefficient Odds ratio OR (P10) OR (P50) OR (P90)

BARP -0.110∗∗∗ 0.896 0.999 0.990 0.898

(-6.11)

BA−1y -0.066∗∗ 0.936 0.999 0.986 0.902

(-3.14)

BA−2y -0.066∗∗∗ 0.936 0.999 0.986 0.897

(-4.22)

ln(TtR) -1.006∗∗∗ 0.366

(-24.69)

Principal (% TtR) 0.029∗∗∗ 1.030

(28.20)

Debtor Age 0.009∗∗∗ 1.010

(25.59)

Observations 3,049,627

Pseudo R2 0.245

This table presents the results of the baseline regression model detailed in Section 3.4. Column

1 reports logistic regression coefficients with t-statistics in parentheses. Column 2 reports the

corresponding odds ratios, while columns 3 to 5 report the odds ratios at the 10th, 50th, and 90th

percentile value of the BA variables with some wildfire exposure, respectively. Standard errors

are clustered at province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 4: Results - BA median split

(1) (2)

BARP ≥ P50 -0.111∗∗∗ -0.104∗∗∗

(-6.26) (-5.22)

BARP < P50 1.542

(1.12)

BA−1y ≥ P50 -0.067∗∗∗ -0.081∗∗∗

(-3.38) (-3.95)

BA−1y < P50 -0.292

(-0.74)

BA−2y ≥ P50 -0.066∗∗∗ -0.062∗∗∗

(-4.36) (-3.72)

BA−2y < P50 0.238

(1.17)

ln(TtR) -1.006∗∗∗ -1.006∗∗∗

(-24.69) (-24.74)

Principal (% TtR) 0.029∗∗∗ 0.029∗∗∗

(28.21) (28.41)

Debtor Age 0.009∗∗∗ 0.009∗∗∗

(25.58) (25.57)

Observations 3,049,627 3,049,627

Pseudo R2 0.245 0.245

This table presents the results of the estimations de-

tailed in Section 4.2. Columns report logistic re-

gression coefficients with t-statistics in parentheses.

In column 1, below-median wildfire exposures are

censored to zero. Column 2 includes above-median

and below-median wildfire exposures as separate vari-

ables. The median for each exposure variable is based

on observations with some wildfire exposure (BA >

0). Standard errors are clustered at province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5: Results - Extensions

(1) (2) (3) (4) (5)

BARP -0.110∗∗∗ -0.110∗∗∗ -0.103∗∗∗ -0.159∗∗∗ -0.188∗∗∗

(-6.11) (-6.13) (-5.23) (-5.04) (-4.33)

BA−1y -0.066∗∗ -0.067∗∗ -0.047∗ -0.122∗∗∗ -0.169∗∗

(-3.14) (-3.14) (-2.53) (-3.80) (-2.72)

BA−2y -0.066∗∗∗ -0.066∗∗∗ -0.030 -0.080∗ -0.114∗∗∗

(-4.22) (-4.22) (-0.72) (-2.04) (-3.46)

BARP × %CityRP 0.126∗

(2.40)

BA−1y × %City−1y 0.137∗

(2.49)

BA−2y × %City−2y 0.030

(0.33)

BARP × %ManMadeRP 3.470∗

(2.25)

BA−1y × %ManMade−1y 4.330∗

(1.98)

BA−2y × %ManMade−2y 1.939

(1.32)

Control variables Yes Yes Yes Yes Yes

Dummies Yes Yes Yes Yes Yes

Observations 3,049,627 3,049,627 3,049,627 3,049,627 3,049,627

Pseudo R2 0.245 0.245 0.244 0.245 0.245

This table presents the results of the estimations detailed in Sections 3.2.1 and 3.2.2. Columns report

logistic regression coefficients with t-statistics in parentheses. Columns 1 and 2 both represent the

baseline model, estimated using the province-level BA measures and the LAU-based aggregated BA

measures, respectively. In column 3, we use LAU-population-weighted wildfire exposures. Columns 4

and 5 include interaction terms between the wildfire exposure measures and the fraction of the burned

area that occurred in city LAUs and man-made environments, respectively. Standard errors are clustered

at province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 6: Results - Exclude last month from BARP

(1) (2)

BARP -0.101∗∗∗

(-4.90)

BARP−1m -0.105∗∗∗

(-5.63)

BA−1y -0.055∗ -0.053∗

(-2.38) (-2.34)

BA−2y -0.027 -0.025

(-1.80) (-1.68)

ln(TtR) -1.035∗∗∗ -1.035∗∗∗

(-26.39) (-26.38)

Principal (% TtR) 0.028∗∗∗ 0.028∗∗∗

(29.54) (29.57)

Debtor Age 0.009∗∗∗ 0.009∗∗∗

(25.28) (25.28)

Observations 2,828,389 2,828,389

Pseudo R2 0.222 0.222

This table presents the results of the estimations de-

tailed in Appendix A.1. Columns report logistic re-

gression coefficients with t-statistics in parentheses.

Column 1 presents results from the baseline model

estimated on the subset of credits with a recovery

period of at least 2 months. In column 2, the same

sample is used and BARP excludes the last month of

the recovery period. Standard errors are clustered at

province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 7: Results - No recent wildfires

(1)

BARP -0.604∗

(-2.41)

ln(TtR) -0.985∗∗∗

(-38.54)

Principal (% TtR) 0.032∗∗∗

(22.93)

Debtor Age 0.010∗∗∗

(21.58)

Observations 1,333,444

Pseudo R2 0.225

This table presents the results of the

estimation detailed in Appendix A.2.

Column 1 reports logistic regression

coefficients, with t-statistics in paren-

theses, of the baseline model estimated

on the subset of credits with no wild-

fire exposure in the two years pre-

ceding the start of the recovery pe-

riod. Standard errors are clustered at

province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 8: Results - Include credits with non-binary recovery rate

(1) (2) (3)

BARP -0.110∗∗∗ -0.086∗∗∗ -0.079∗∗∗

(-6.11) (-6.84) (-6.69)

BA−1y -0.066∗∗ -0.056∗∗ -0.046∗∗

(-3.14) (-3.20) (-3.02)

BA−2y -0.066∗∗∗ -0.049∗∗ -0.037∗∗

(-4.22) (-3.27) (-2.78)

ln(TtR) -1.006∗∗∗ -0.796∗∗∗ -0.587∗∗∗

(-24.69) (-28.47) (-26.05)

Principal (% TtR) 0.029∗∗∗ 0.023∗∗∗ 0.015∗∗∗

(28.20) (31.20) (21.83)

Debtor Age 0.009∗∗∗ 0.009∗∗∗ 0.010∗∗∗

(25.59) (28.45) (26.88)

Observations 3,049,627 3,463,388 3,463,388

Pseudo R2 0.245 0.168 0.140

This table presents the results of the estimations detailed in Ap-

pendix A.3. Columns report logistic regression coefficients with t-

statistics in parentheses. Column 1 repeats the baseline results in

which credits with a non-binary recovery rate are excluded from

the estimation. In columns 2 and 3, non-binary recovery rates are

converted to 0 or 1 and included in the estimations. In column 2,

recovery rates greater than or equal to 0.50 are converted to 1. In

column 3, all recovery rates greater than 0 are converted to 1. Stan-

dard errors are clustered at province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 9: Results - Macro and social control variables

(1) (2) (3) (4) (5)

BARP -0.110∗∗∗ -0.109∗∗∗ -0.105∗∗∗ -0.111∗∗∗ -0.112∗∗∗

(-6.11) (-6.29) (-7.04) (-6.61) (-7.69)

BA−1y -0.066∗∗ -0.067∗∗∗ -0.074∗∗∗ -0.069∗∗ -0.065∗∗∗

(-3.14) (-3.46) (-3.71) (-3.20) (-3.70)

BA−2y -0.066∗∗∗ -0.061∗∗ -0.059∗ -0.062∗∗∗ -0.060∗∗∗

(-4.22) (-3.07) (-2.55) (-3.94) (-3.61)

ln(TtR) -1.006∗∗∗ -1.006∗∗∗ -1.007∗∗∗ -1.007∗∗∗ -1.009∗∗∗

(-24.69) (-24.71) (-25.10) (-24.84) (-24.65)

Principal (% TtR) 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗

(28.20) (28.73) (29.29) (28.82) (28.71)

Debtor Age 0.009∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.010∗∗∗

(25.59) (25.56) (25.72) (25.74) (26.18)

Macro controls No Region Region Province Province

Social controls No No Region No Province

Observations 3,049,627 3,049,627 3,049,627 3,049,627 3,010,505

Pseudo R2 0.245 0.245 0.245 0.245 0.246

This table presents the results of the estimations detailed in Appendix A.4. Columns report

logistic regression coefficients with t-statistics in parentheses. Column 1 represents the baseline

model that does not include macro-economic or social control variables. Columns 2 and 3 include

macro-economic and social controls at the region (NUTS 2) level. Columns 4 and 5 include

macro-economic and social controls at the province (NUTS 3) level. Standard errors are clustered

at province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 10: Results - Province dummy interactions

(1) (2) (3)

BARP -0.131∗∗∗ -0.123∗∗∗ -0.108∗∗∗

(-11.64) (-4.58) (-5.65)

BA−1y -0.087∗∗∗ -0.059∗∗ -0.057∗∗∗

(-7.01) (-3.26) (-3.32)

BA−2y -0.066∗ -0.070∗∗∗ -0.070∗∗∗

(-2.44) (-5.80) (-5.36)

ln(TtR) -1.009∗∗∗ -1.007∗∗∗ -1.002∗∗∗

(-25.36) (-24.65) (-24.61)

Principal (% TtR) 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗

(30.09) (30.46) (28.53)

Debtor Age 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(26.94) (27.72) (26.54)

NUTS 3 × Year MoY RP

(months)

Observations 3,049,627 3,049,627 3,048,815

Pseudo R2 0.247 0.251 0.247

This table presents the results of the estimations detailed in Ap-

pendix A.5. Columns report logistic regression coefficients with t-

statistics in parentheses. Column 1 includes province-year dummies.

Column 2 includes province-month-of-year dummies. Column 3 in-

cludes province-recovery-period-length dummies. Standard errors

are clustered at province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 11: Results - Remove most frequent and largest exposure values

(1) (2) (3) (4)

BARP -0.110∗∗∗ -0.111∗∗∗ -0.108∗∗∗ -0.145∗∗∗

(-6.11) (-6.19) (-3.88) (-5.57)

BA−1y -0.066∗∗ -0.068∗∗ -0.066∗∗ -0.113∗∗∗

(-3.14) (-3.27) (-3.13) (-4.36)

BA−2y -0.066∗∗∗ -0.068∗∗∗ -0.066∗∗∗ -0.057

(-4.22) (-4.34) (-4.22) (-1.47)

ln(TtR) -1.006∗∗∗ -1.005∗∗∗ -1.005∗∗∗ -0.978∗∗∗

(-24.69) (-25.19) (-24.88) (-30.45)

Principal (% TtR) 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.030∗∗∗

(28.20) (28.37) (26.51) (28.69)

Debtor Age 0.009∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.009∗∗∗

(25.59) (25.39) (26.05) (24.64)

Observations 3,049,627 3,032,146 3,036,502 2,693,714

Pseudo R2 0.245 0.245 0.245 0.233

This table presents the results of the estimations detailed in Appendix A.6.

Columns report logistic regression coefficients with t-statistics in parentheses. Col-

umn 1 presents the baseline results for comparison. Column 2 excludes observations

with the most frequent value of BARP , column 3 excludes the largest exposures

(BARP ≥ 4) from the estimation, and column 4 excludes all credits from Naples.

Standard errors are clustered at province level.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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C Figures

Figure 1: Distribution of realized recovery rates of defaulted consumer credits
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