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Abstract

This study investigates whether biodiversity loss is internalized through market pricing
or government intervention. Empirical results reveal that emissions from toxic facilities
increase lead concentrations and decrease vertebrate populations within a 12-kilometer
radius of a plant. The US equity market undervalues this biodiversity loss as firms
emitting pollutants near biodiverse regions attract no additional risk premium and face
economically small effects from regulatory action. A moral hazard issue likely drives
these observations; firms located near ecologically sensitive areas underreport their en-
vironmental impacts both in financial disclosures and to government oversight bodies.
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Voluntary or regulatory disclosures are mechanisms for revealing private information

about corporate activities, particularly for issues regarding Corporate Social Responsibility

(CSR). These mechanisms reduce information asymmetry between firms and market partic-

ipants, enabling risk pricing and capital allocation. In a Grossman and Hart (1980) world,

where information is verifiable and quantifiable, such as the case of carbon emissions (Bolton

and Kacperczyk, 2021), firms voluntarily disclose their information in equilibrium. Emerg-

ing CSR issues, such as biodiversity loss resulting from firm operations, are challenging to

measure due to heterogeneity across species, ecosystems, assessment methodologies, and mon-

itoring frameworks. The unverifiable nature of biodiversity can create perverse incentives for

firms to strategically reveal information, distorting disclosures (Christensen et al., 2021) and

affecting how information is incorporated into markets (Avramov et al., 2022).

Market participants show increasing concern over a firm’s impact on biodiversity, as re-

flected in the growing demand for disclosure on these effects (TNFD, 2023), which influences

how this externality is resolved. Several economic channels explain the incorporation of bio-

diversity loss into markets. Agents’ sustainability preferences may shift asset prices (Pástor

et al., 2021). Transition risks arise as regulatory policies prompt firms to internalize exter-

nalities (Pastor and Veronesi (2012); Hsu et al. (2023)). Biodiversity degradation may also

affect economic productivity and resilience through disrupting ecosystem services (Giglio et

al., 2024). Conversely, markets may not capitalize biodiversity information if investors per-

ceive limited impact on expected cash flows.1 Nonetheless, underlying these mechanisms

is the reliance on information, which, when not available through regulatory channels, is

accessed through currently limited voluntary disclosures. Figure 1, for example, documents

that over 40% of Carbon Disclosure Project (CDP) respondents provide no biodiversity data,

hindering assessment of corporate environmental impacts.

This paper asks whether biodiversity loss, directly attributable to a firm’s pollutive
1Empirical evidence predominantly supports this latter view (Garel et al. (2023); Coqueret et al. (2025)),

with risk premia emerging only after the Kunming-Montreal Global Biodiversity Framework in October 2021,
increasing the salience of biodiversity risks for investors.
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operations, is internalized within the firm through asset prices or government regulation.

This novel setting allows an exploration of this emerging issue while evaluating the function of

mandatory and voluntary environmental disclosures in addressing information asymmetries.

The study addresses the question in four stages. First, I establish a causal link between

toxic emissions and environmental degradation, documenting elevated lead concentrations

in water sources within a 12-kilometer radius of new facilities. Second, I estimate the bio-

logical impact by comparing vertebrate populations inside and outside this radius, revealing

significant declines in exposed areas. Third, I assess market pricing of biodiversity risk by

comparing returns of firms emitting near protected against unprotected areas, and investigate

whether regulatory interventions internalize these externalities. These steps are necessary to

finally evaluate firm disclosure of these environmental effects.

I focus on industrial pollution as it represents a meaningful channel for biodiversity

degradation and is regulated. The Intergovernmental Science-Policy Platform on Biodiversity

and Ecosystem Services ranks pollution as the third most significant driver of biodiversity loss,

following land use change and resource extraction (Watson et al., 2019; Jaureguiberry et al.,

2022). The U.S. Environmental Protection Agency documents that annual industrial waste

releases exceed three billion pounds through the Toxics Release Inventory (TRI) program.

These emissions generate biological externalities through multiple channels: reduced genetic

diversity (Rillig et al., 2019), aquatic ecosystem degradation Dale (2001), and soil biodiversity

loss Rillig et al. (2019). Market and regulatory responses to these externalities are evolving,

with increasing emphasis on biodiversity valuation and measurement.2

The empirical strategy relies on firm pollution data from the TRI program and exploits

variation in facility construction time. Facility construction dates are derived from a 30-meter

resolution geospatial land cover database and jump-detection algorithm spanning 1985-2024.

The introduction of these “pioneering facilities” into the environment generates plausibly
2The Kunming-Montreal Global Biodiversity Framework establishes quantifiable targets for biodiversity

preservation (target 1) and risk disclosure (target 15) through 2030. From the article, “Investment sector
seeks to put a value on biodiversity”, Financial Times December 9th 2024.
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exogenous variation in local ecosystem exposure to toxic emissions.

I first establish the spatial dispersion of toxic emissions following facility construction

by examining chemical transport to nearby water bodies. This focus on aquatic ecosystems

is motivated by their role in supporting biodiversity, with freshwater systems containing

25% of global vertebrate diversity (Dudgeon et al., 2006). I implement a spatial difference-

in-differences strategy comparing lead concentrations in proximate versus distant locations

from TRI facilities. The estimates reveal that facility construction induces a 4 µg/L increase

in mean lead concentration within a 9-kilometer radius relative to measurements at 10-

30 kilometers over the subsequent four years. This increment exceeds the EPA’s chronic

exposure criterion for aquatic life of 2.5 µg/L.3 These results establish a direct causal link

between facility construction and environmental degradation through toxic emissions.

Next, I use the PREDICTS (Projecting Responses of Ecological Diversity In Changing

Terrestrial Systems) database to examine the relationship between vertebrate populations and

industrial facilities (Hudson et al., 2017). PREDICTS aggregates biodiversity survey data

across sites with varying intensities of anthropogenic land use. I match facility locations with

species abundance data using geographic coordinates to estimate the impact of TRI facilities

on vertebrate populations at different spatial scales. The empirical results indicate that the

introduction of a TRI facility reduces vertebrate populations by 25% of the mean within a

12-kilometer radius relative to populations observed at 13 to 30 kilometers.

The analysis thus far demonstrates that firm facilities plausibly increase toxicity and

decrease vertebrate populations in nearby areas. I next examine whether firms internalize

their toxic externalities through asset prices or regulatory penalties. I obtain spatial data on

biodiversity hotspots from the World Database on Protected Areas (WDPA). The WDPA

designates protected areas (PAs) that conserve biodiversity and maintain ecological processes

(Elsen et al., 2018). Using spatial boundary data, I identify facilities and firms legally pro-

ducing toxic emissions within versus beyond a 12-kilometer radius of PAs.
3The EPA criterion is available here.
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To understand whether the equity market prices this risk, I use Fama-Macbeth re-

gressions (Fama and MacBeth, 1973) to estimate risk premiums associated with emissions

proximity to protected areas. The biodiversity footprint measure is constructed as the ratio

of emissions within 12-kilometers of protected areas to total firm TRI emissions. The specifi-

cation controls for the pollution premium (Hsu et al., 2023) through emission intensity. The

empirical results indicate no significant risk premium for firms with larger biodiversity foot-

prints near protected regions. Additional tests show these firms do not systematically exceed

analyst expectations, suggesting firms do not unexpectedly overperform compared to peers.

Moreover, their returns remained unaffected by increased biodiversity attention following the

Kunming Declaration (Garel et al., 2023). The evidence suggests the equity market does not

price firms’ biodiversity impacts.

Another way that externalities can be resolved is through government intervention,

e.g., regulation and fines. Using the EPA’s Enforcement and Compliance History Online

(ECHO) database, I estimate differences in regulatory penalties between facilities proximate

to protected areas versus those more distant. The empirical results indicate an economically

small though statistically significant fine differential of $187, suggesting minimal regulatory

action or potential legal constraints on enforcement for firms near PAs (Bellon, 2021).

I next explore the mechanisms underlying the non-pricing of biodiversity externalities,

focusing on disclosure patterns. Using ECHO data, I find that facilities near protected ar-

eas (PAs) self-report fewer violations compared to those not near such regions. To evaluate

potential underreporting, I use biodiversity risk scores from Giglio et al. (2021), which quan-

tify firms’ biodiversity risk disclosures in their 10-K filings. The empirical results show no

relationship between toxic emissions near biodiverse regions and firms’ self-reported risk mea-

sures. In fact, emissions intensity correlates with these measures, suggesting challenges in

differentiating between carbon emissions and biodiversity impacts in financial reports. Anal-

ysis of CDP biodiversity questionnaire responses yields similar non-correlation with firms’

biodiversity footprints.
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The evidence collectively implies systematic underreporting of operational biodiversity

impacts by firms with larger toxic footprints. Because investors use disclosures as a major

channel to incorporate information, this practice may explain the lack of evidence for pricing

this risk. Indeed, the suggestive evidence that facilities tend to not self-report their violations

to regulatory authorities raises questions about the usefulness of voluntary and financial

disclosures in assessing difficult to measure CSR activities. The voluntary disclosures could

amount to “cheap talk” (Crawford and Sobel (1982); Bingler et al. (2022); Gostlow (2020))

and cause moral hazard problems, as there is little incentive for firms to reduce information

asymmetries given the difficulties in measuring biodiversity loss.

As this an emerging topic, there are few other articles that measure the biodiversity

footprint of firms to understand whether this loss is priced. I contribute to the literature

examining the relationship between asset prices and the operational impacts of firms on the

broader environment. A related article by Hsu et al. (2023) uncovers a premium for firms

that generate high toxic emission intensity in comparison to those with lower intensity. This

paper uses similar techniques; however, the primary difference is in identifying the effects of

emissions in the context of biodiversity. Another paper by Garel et al. (2023) uses a more

general measure provided by an external data provider to assess firm impact on biodiversity

loss. While their results demonstrate that corporate biodiversity footprint is not priced in

the cross-section of stock returns, they illustrate a relationship between attention and firms

with greater footprints. This paper instead directly links biodiversity loss to firm operations

and uncovers little evidence that the market or governments resolve these losses.

This study also adds to the body of work on CSR disclosure. Ilhan et al. (2023) con-

duct a survey of institutional investors, revealing a consensus that inadequate reporting of

climate-related risks results in asset mispricing. Matsumura et al. (2014) examine S&P 500

companies, investigating the impact of carbon emissions on firm valuation and the influence

of voluntary public emissions disclosure via the CDP on firm value. Here, I explain inade-

quate pricing through a channel of underdisclosure and demonstrate the presence of moral
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hazard, even in the presence of trusted third-party mediators like the government or the CDP

(Ewerhart and Lareida, 2024).

More generally, this analysis extends the emerging biodiversity-finance literature sur-

veyed by Karolyi and Tobin-de la Puente (2023). Flammer et al. (2023) analyze private

capital deployment in biodiversity conservation through blended financing structures. Giglio

et al. (2023) construct biodiversity risk measures from firm disclosures and find evidence of

risk pricing.

1 Data

The data used in this paper are drawn from a variety of sources. I first describe the environ-

mental data used and then the firm level accounting and return data.

1.1 Environmental and Spatial Data

1.1.1 Water Quality Portal

I obtain a historical time series water quality information of concentrations of lead from the

Water Quality Portal (WQP). The WQP is a public platform where diverse groups such as

federal, state, tribal and local governments, academia, non-governmental organizations, and

private individuals submit project information and sampling results.

Due to the variety of information the WQP collects, the reporting for each chemi-

cal is not fully standardized. I therefore keep all observations that are either measured in

nanograms or micrograms per liter and transform measurements in nanograms to micro-

grams. I then aggregate the observations per station to a yearly frequency by taking the

mean of the measurements. Furthermore, due to variations in monitoring periods, I select

observations part of “regular screening” at monitoring sites with more than 10 observations.

I also remove observations that are related to industrial releases such as “industrial effluent”,

“industrial waste”, “wastewater treatment plant effluent”, and “waste water”. Including these
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observations would likely bias estimates as they might only occur due to the facility itself.

1.1.2 Vertebrate Population

I collect data on vertebrate populations from the Projecting Responses of Ecological Diver-

sity In Changing Terrestrial Systems (PREDICTS) database (Hudson et al., 2017). This

largely cross-sectional database, curated by the Natural History Museum of London, com-

piles data from 480 published scientific studies and government-monitored populations to

estimate vertebrate populations across various regions. For a survey to be included, it must

describe species abundance or ecological assemblage diversity. The data must come from

published work or use formally documented sampling methods. Consistent sampling meth-

ods are applied across sites per study, though varied effort levels are accepted if documented.

Geographic coordinates and land-use classifications accompany each sampling site.

Sampling effort influences measurements in the study. Thus, for the 1% of records

dependent on effort-sensitive metrics, where sampling effort varies, adjustments are necessary.

I standardize sampling effort in each study by assigning a relative effort value of 1 to the

most-sampled site and adjusting the efforts of other sites proportionately.4

1.1.3 Protected Areas

As a proxy for biodiverse regions, I use the World Database on Protected Areas (WDPA)

because protected areas are known to contain more species and individuals than from unpro-

tected areas (Gray et al., 2016). The database has been put forth by the UN Environment

Programme and the International Union for Conservation of Nature (IUCN) to denote in-

formation on global marine and land protected regions across the world. It contains spatial

information on the geographical area which has been recognized by either the IUCN or

the Convention on Biological Diversity (CBD). It includes areas such as: nature reserves,

wilderness areas, national park, natural monuments, managed habitats and species, pro-
4The code used to standardize the measurements are available from Tim Newbold.
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tected landscapes or seascapes, and managed resources. Overall, this database is meant to

proxy for biodiversity hotspots or havens. An image of the protected areas in the United

States is displayed in Figure 3.

I focus on IUCN-designated protected areas with classifications Ia, Ib, II, III, IV, and

V based on their land management goals. Specifically, Category Ia represents a strict nature

reserve, Category Ib a wilderness area, Category II a national park, Category III a natural

monument, Category IV a habitat or species management area, and Category V a protected

landscape or seascape.

1.1.4 Toxic Release Inventory and ECHO

I use the publicly available Toxic Release Inventory (TRI) database, managed by the US Envi-

ronmental Protection Agency (EPA), to identify industrial facilities emitting toxic pollutants.

The TRI database was established in 1986 through the Emergency Planning, Community

Right to Know Act (EPCRA), which was prompted by the Bhopal disaster and subsequent

incidents of chemical spills at American Union Carbide plants. Under the mandate, manu-

facturing plants (classified under Standard Industrial Classifications 2000 to 3999) with over

9 full-time employees and exceeding specified thresholds for the use or production of toxic

substances are obligated to report their releases to the EPA. The TRI dataset specifically

incorporates various parameters such as the report year, quantity of chemical pollutants in

pounds, chemical category identifiers, geographical location, and respective corporate identi-

fications. A spatial map of the facilities located in the contiguous United States is presented

in Figure 2.

The total log emissions by all TRI facilities is presented as the blue line in Figure

4. The sharp rise of emissions in 1998 through 2000 is marked by inclusion of persistent

bioaccumalitve toxins and seven industry sectors: metal and coal mining facilities, electric

power generators, commercial hazardous waste treatment operations, solvent recovery facil-

ities, petroleum bulk terminals and wholesale chemical distributors. The dashed red line
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represents the waste emitted within 12 km of a protected area.

I also draw on the EPA’s Enforcement and Compliance History Online (ECHO) database,

which integrates facility-level records of compliance with U.S. environmental laws into a com-

prehensive record for each facility. The ECHO Exporter consolidates various types of infor-

mation: it combines descriptive details such as the facility’s name, address, and industry

classification; aggregates five years of compliance history; and records information on the

penalties issued to the facility for noncompliance.

1.1.5 Landcover and Pioneers

The first set of empirical tests rely on newly constructed TRI facilities to estimate their

effects on lead concentration and biodiversity loss. To estimate the construction date of a

facility, I apply a widely used spatial land cover data and a simple jump-detection algorithm.

Specifically, I use the Annual National Land Cover Database (NLCD) impervious surface

product which provides the fractional or percent surface area of a 30-meter map pixel that

is covered with processed materials or structures (pavement, concrete, rooftops, and other

constructed materials) available from 1985 to 2023 for the contiguous US.

I calculate the total impervious fraction of a 500 meter circle surrounding the coordi-

nates given by the TRI dataset. Figure 5 shows the log growth in the fractional impervi-

ousness of the 500 meter region in the years surrounding the first report to the TRI at year

0. Overall, the growth in man-made surfaces drops sharply after the first reporting date

which adds validity to using this spatial data for this analysis. There appears to be a fairly

consistent growth in surface area before the first reporting further showing that naively using

the first reporting date of the facility may lead to biased estimates.

To estimate the first construction year of the facility, I use a simple jump-detection

algorithm.5 Specifically, I classify the first two standard deviation increase above the mean,

0.473, before the first reporting date as the beginning construction year. Figure 6 presents
5Jump detection algorithms have been used in the economics and financial literature to detect changes

in economic activity (van der Kroft et al. (2024); Lee and Mykland (2008)).
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the difference between the first reporting year and the estimated construction year using

this jump detection algorithm. The figure shows that the difference is contained around 2

years before the first reporting date and linearly decreases. Figure 7 presents graphically the

growth in built-up area after using the jump-detection method to move the reporting date

to the estimated construction year. Overall, after comparing Figures 5 and 7, the method

appears to effectively capture a sharp rise in construction efforts in the 500 m region.

The TRI facility filtering process is as follows. The TRI dataset in total contains

information on 63,062 facilities from 1987 to 2023. After using the jump-detection algorithm,

6,302 facilities remain in the sample which I call “pioneers”. The majority of the removed

facilities have no satellite based observable changes in built up area within the 500 m region,

suggesting a long-standing facility. For comparison to other literature, Currie et al. (2015)

use 1,600 TRI plant openings and closings.

1.2 Financial Data

The sample of firms used in this are those in the intersection of three databases: Compustat,

the Center for Research in Security Prices (CRSP), and the TRI database, following the

approach of Xiong and Png (2019) and Hsu et al. (2015). I sourced accounting data from

Compustat and gathered stock price information from CRSP. The selected companies for

our study are those that have complete TRI data, intact standard industrial classification

(SIC) codes, and domestic common shares (symbolized as SHRCD = 10 and 11) on public

exchanges such as NYSE, AMEX, or NASDAQ. I exclude financial companies with four-digit

SIC codes between 6000 and 6999, which encompass sectors such as finance, insurance, trusts,

and real estate. The final dataset includes 1,642 firms that have unbalanced return data from

October 1987 to December 2023.

10



2 Environmental Effects

2.1 Lead releases

I first identify whether the introduction of TRI facilities significantly increases pollutants into

their environments. Identification of the treatment effect comes with issues as it is difficult

cleanly estimate the effects of the TRI facility while satisfying the only through condition. In

this case, other industrial pollutants and anthropogenic reasons can add to the pollutants in

the area. Furthermore, TRI facilities only have to report to the EPA if the facility hires more

than 9 full time employees which makes it difficult to establish the true treatment effect of

the facility.6 Moreover, there is evidence of misreporting of total chemical releases (Currie et

al., 2015). To alleviate concerns of endogeneity, I use shock based inference to show that the

introduction of these facilities does plausibly increase lead concentration in their surrounding

area.

To identify a shock to local pollutants, I estimate the year that a TRI facility is con-

structed using spatial land cover data and a jump-detection algorithm outlined in Section

1.1.5. I then estimate the relationship between the introduction of these facilities and de-

tectable lead in the water bodies in its proximity. The primary empirical method uses a

difference-in-differences strategy to compare chemical measurements in water sources near

facilities to those marginally farther away.

I focus on water pollution for two reasons. First, while Currie et al. (2015) provides

an empirically defined bound for air emissions for the eight pollutants, much less is known

regarding the transport and geographic extent of influence of chemicals released into water

or land. Substantial evidence suggests that chemical deposits in air, water, or land can

travel significantly farther. For example, Svendsen et al. (2007) found high concentrations

of heavy metal deposits up to 10 km away from an industrial zinc smelter. Other evidence

from Burney (2020) estimates negative effects on crop yields due to air pollution up to 25
6Currie et al. (2015) bypasses this limitation by using the opening date from Census Bureau data.
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km away from coal plants.7 This large variation in distances makes it difficult to establish a

prior when considering the distance traveled by pollutants.

Second, aquatic ecosystems sustain a substantial fraction of global biodiversity. Fresh-

water habitats, though constituting less than 1% of the Earth’s surface, house almost 30% of

vertebrate species, including 51% of known fish species (WWF, 2020). These ecosystems also

hold intrinsic value for the environment and are critical for human life, livelihoods, cultures,

and economies (Declaration, 2007). Freshwater environments, alongside inland and coastal

wetlands, deliver more ecosystem services compared to open oceans, woodlands, grasslands,

and temperate forests (Farmer, 2012).

I generate a panel dataset by linking lead monitoring points to the construction date of

nearby industrial facilities. This involves matching the longitude and latitude of each moni-

toring location with those of pioneering industrial facilities within specific distance thresholds.

By spatially correlating these points, I assess the relationship between industrial emissions

and water quality across different distances.

I use a differences-in-differences strategy that compares the chemicals detected by a

monitoring site that has nearby toxic facilities with those slightly farther away. For example,

a dummy variable, Dist, is created, which equals 1 if a monitoring site (m) is within 500m to

6 km of a facility (f) and 0 if the nearest facility is 7 to 30 km away. This slight variation in

area is important, as these differentiated regions should be relatively similar, thus minimizing

unwanted bias in the estimation. To estimate the relationship between distance of monitoring

stations and chemical releases, I perform various regressions in the style of the following linear

model:

Ym,f,t = β0 + β1ωm,f,t + β2Constf,t + β3Distm + β4(Constf,t ×Distm) + ηm,f + τt + εm,f,t, (1)

where Ym,f,t is the outcome variable representing lead levels in micrograms per liter (µg/L)
7More evidence from the National Oceanic Atmospheric Administration shows that air pollutants can

potentially travel hundreds of miles and be deposited onto various surfaces.https://oceanservice.noaa.
gov/education/tutorial_pollution/07input.html
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detected at monitoring site, m, near facility, f , for year t. Distm serves as a dummy variable

distinguishing monitoring stations based on the proximity of their nearest facility within

different distance thresholds. To more cleanly estimate the effects of the TRI facility on lead

emissions, I focus on the years surrounding the first reporting date of the facility. Constf,t is

therefore a dummy variable equal to one if it is the first, second, third, fourth, or fifth year

after the construction date identified using the jump-detection algorithm, [0,4], and zero if

between two years to five years prior [-2,-5]. I also include monitoring-facility pair and year

fixed effects denoted by ηm,f and τt to guarantee that the variation comes from within these

pairs around the construction of the facility. The standard errors are two-way clustered on

the facility and monitoring station.

In this linear model, β2 represents whether there is a significant difference between

between the measured chemicals before and after the facility is introduced. The coefficient

of interest, β4, estimates the difference in the effect of the TRI facility on on chemical levels

between monitoring sites that are near a facility and those that are farther away. If the

coefficient is positively significant, this suggests that facilities close to monitoring sites show

a larger increase in chemical detections following a TRI facility entering the location compared

to those farther away.

The results of the regressions are presented in Table 1 and Figure 8 for various distance

pairings. The plot shows a positive and significant coefficient for β4 from specification 2

between 5 km and 10 km of a TRI facility. Three years following a TRI facility’s construc-

tion date, the mean concentration of lead within a 9-kilometer radius increases by 4 µg/L

compared to levels measured within a 11-30 kilometer radius. For comparison, the chronic

exposure limit for aquatic life recommended by the EPA is 2.5 µg/L.

However, there is evidence that these estimates from standard two-way fixed effects

models may be biased as there are are more than two time periods and monitoring stations

are treated at different points in time (Roth et al., 2023). To addresses this issue with

staggered differences-in-differences, I use a stacked difference-in-difference strategy for the
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distance pairing of [8, 9-30] km (Cengiz et al., 2019). Here the base period is considered the

year before the construction date identified by the jump-detection algorithm. Specifically, all

observations are aligned with the event-time of construction and not-yet-treated observations

act as a control set in each cohort.

Similar to the prior DiD estimation, the introduction of the facility is related to a

significant increase in lead concentrations of slightly less than 4 µg/L within the 8 km range

(Figure and Table). The increase is persistent up to five years after the construction date.

Capturing this connection between the operations of toxic plants and the levels of chemical

pollutants in nearby areas acts to confirm that pollutants are indeed disseminating into the

local environment. This extends the results of Currie et al. (2015) who find that air emissions

are particularly worsened in a one mile radius to toxic facilities.

2.2 Vertebrate population

To complement the analysis on chemical releases, I conduct a similar empirical exercise

associating surveyed vertebrate populations to the construction of nearby TRI facilities.

Soils and water containing these contaminants have the potential to be absorbed by plants

and animals. These chemicals include endocrine disruptors which are known to have adverse

effects on the developmental and reproductive ability of animals (Schantz and Widholm,

2001).

One method to measure vertebrate populations is the PREDICTS database developed

by Hudson et al. (2017). This holds records of thousands of monitored vertebrate populations

worldwide from 1996 to 2022 and is useful to understand species abundance and occurrence

in different regions.

To estimate the relationship between vertebrate populations and pioneering facilities,

I employ a similar DiD strategy used in Section 2.1 that leverages marginal differences in

the proximity of monitored populations to these facilities. Using various distance pairings,

I create a dummy variable, Dist, which equals 0 if survey site i is closer to a toxic facility
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and 1 if the nearest facility is slightly further away. I then perform regressions following this

specification:

Populationm,f,t = β0 + β1ωm,f,t + β2Constructf,t

+β3Distm + β4(Constructf,t × Distm) + ηf + θs + τt + εm,f,t,

(2)

where the dependent variable is the number vertebrates surveyed in a site, m, at year, t.

Distm serves as a dummy variable distinguishing survey sites based on the proximity of their

nearest facility within different distance thresholds. I focus on the years surrounding the

construction date of the facility. Constf,t is therefore a dummy variable equal to one if it

is the first, second, third, fourth or fifth year of the construction date identified using the

jump-detection algorithm, [0,4], and zero if between two years to five years prior [-2,-5]. τt is

a trend variable which captures the general decrease animal populations due to land loss and

other factors. I also include fixed effects for the facility, ηf and study, θs. Including facility-

site pair fixed effects would subsume the majority of the data as the sites in each study in

the PREDICTS data are largely cross-sectional rather than time series. I also include other

fixed-effects such as land-use intensity and ecoregion of the site. The standard errors are

clustered are the facility-year level.

I explore the interaction term for various distance pairings in Figure 10 and Table

3. The standard errors are large in the first distance pairings due to the small number of

observations of biodiversity sites within 4 and 6 km of facilities, 154 and 554, respectively.

Generally, I show that vertebrate populations decline by 20 in the five years after a TRI facility

is constructed. To put this into perspective, the average species surveyed are 55.48, therefore

reducing species by 36% of the mean or 25% of the variance. Overall, the consequences of

these facilities is evident—not only do these chemicals persist in the environment but they

substantially reduce biodiversity in nearby locations.

I also conduct a stacked difference-in-difference strategy for the distance pairing of [8, 9-

30] km as a robustness check. The base period is considered the year before the construction
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date identified by the jump-detection algorithm. Results are presented in graphical form in

Figure 11 and Table 4 which show lower counts of vertebrates in the years after construction.

3 Is the biodiversity footprint internalized?

The prior sections provided evidence of lead emissions being released within a 10 km radius

and species counts declining significantly in around a 12 km radius. Using this range, I

construct a measure of firm level biodiversity footprint by first indicating the facilities that

are withing a 12 km radius of protected areas, which are known to have greater biodiversity

than other regions. Then, I aggregate all toxic emissions, either nearby protected areas or

not, to the facility level. I link these facilities to the ultimate owner (Xiong and Png, 2019) to

obtain a time series of legal emissions emitted either nearby protected or unprotected areas

by each firm. Then I calculate the square root of total emissions nearby PAs divided by the

total emissions of the firm to obtain a firm’s biodiversity footprint.

Emissions measures, i.e., the biodiversity footprint and emissions intensity, are available

in a lagged fashion at the firm level in the fourth quarter of each calendar year for the previous

calendar year. For example, a firm reporting their emissions to the EPA in October of 2016

would be reporting the emissions from each of their facilities between January 2014 through

December 2015. Therefore, I use the information as it is available to the broader market from

the quarter it is released to the third quarter of the next calendar year, akin to a predictive

exercise. Specifically, for a calendar quarter frequency, the biodiversity footprint is available

for firm i for all of its facilities in the beginning of quarter four, tQ4, as follows,

Biodiversity Footprinti,[tQ4,tQ4+3] =

√
Emissions Nearby Protected Areasi,tQ4

Total Emissions by Firmi,tQ4

, (3)
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until until the next three quarters tQ4+3. Similarly, emissions intensity,

Emissions Intensityi,[tQ4,tQ4+3] =

√
Total Emissionsi,tQ4

Total Assetsi,tQ4

, (4)

is calculated as the total emissions across all facilities owned by firm i in tQ4 divided by the

total assets of the firm reported at the beginning of tQ4.

Figure 4 presents the log waste released nearby protected areas and the total waste

released. In Appendix A, I show that the correlation between this “biodiversity footprint”

and emissions intensity used in prior studies (Hsu et al., 2023) is low, differentiating this from

prior work. I use this biodiversity footprint measure to understand whether it is priced in

the equity market or whether the externality is internalized through regulation or taxation.

Generally, I find little empirical evidence of this loss being incorporated.

3.1 Risk premiums

I estimate risk premiums using two-pass regressions (Fama and MacBeth, 1973). This in-

volves first estimating beta exposure to firm characteristics and Fama-French factors, then

estimating premiums using cross-sectional regressions of returns on betas each month. Re-

turns are recorded on a monthly frequency and firm characteristics at a quarterly frequency

with a lag of one quarter. The Biodiversity Footprint and Emissions Intensity are available

at the beginning of the fourth quarter for the following year.

Table 5 produces the estimates from two separate Fama-Macbeth regressions. The first

column excludes industry fixed effects while the second column includes Fama-French 10

industry fixed effects. I find that neither the biodiversity footprint nor the emissions intensity

measures produce statistically significant risk premiums when using equally-weighted returns.

This finding is in line with Garel et al. (2023) who show that a systematic risk premium does

not exist for firms with large biodiversity footprints according to the Iceberg Data Labs.
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3.2 Attention to biodiversity

To test whether greater attention towards biodiversity risks triggers changes in returns for

those firms with greater footprints, I use an event study methodology around the Kunming

Declaration, an event previously found to affect abnormal returns (Garel et al., 2023).

Using the day of the adoption of the Kunming Declaration, October 13, 2021, I calculate

abnormal returns defined as the returns above each firm’s beta exposures to the market,

small-minus-big, and high-minus-low, portfolios estimated over a window of [-531, -31] days

prior to the event. I perform panel regressions of the following specification,

Daily abnormal return i,t = β0 + β1Biodiversity Footprinti × Postt + η + γt + εi,t, (5)

where I regress daily abnormal returns on an interaction term between the biodiversity foot-

print and an indicator variable Post. The indicator is equal to 1 if denoting the days after

the event, inclusive of the event and zero if before the event. I include Fama-French 10 in-

dustry fixed effects, η, day fixed effects, γt and cluster at the firm-level. The standalone post

event fixed effect is therefore subsumed by the day fixed effect. β1 represents the difference

in abnormal returns for firms with a greater biodiversity footprint.

Table 6 presents regression results across various time thresholds from 7 to 3 days sur-

rounding the event. The results show that the returns for firms that produce all of their

emissions nearby biodiverse areas increase by 30 basis points surrounding the Kunming Dec-

laration. Nonetheless, there appears to be little statistical significance of these estimates as

only using the days, [-4, +3], produce a coefficient significant at the 10 percent level. Inter-

estingly, the coefficient on the interaction term is positive, the opposite of the relationship

found in Garel et al. (2023).
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3.3 Government intervention

In this section, I identify whether this externality may be internalized through govern-

ment intervention by way of federal enforcement cases through the EPA. I use the ICIS-

FE&C database, which offers information on federal administrative and judicial cases related

to various environmental statutes. These include the Clean Air Act (CAA), Clean Wa-

ter Act (CWA), Resource Conservation and Recovery Act (RCRA), Safe Drinking Water

Act (SDWA), Section 313 of the Emergency Planning and Community Right-to-Know Act

(EPCRA), Toxic Substances Control Act (TSCA), Federal Insecticide, Fungicide, and Roden-

ticide Act (FIFRA), Comprehensive Environmental Response, Compensation, and Liability

Act (CERCLA or Superfund), and the Marine Protection, Research, and Sanctuaries Act

(MPRSA). The database contains information on the cases put forth by the EPA at the

facility level, the resulting penalties, compliance costs, and recovery amounts awarded to the

EPA. I merge this database with the TRI database.

I aim to determine if facilities emitting near protected areas incur different costs when

facing enforcement cases. I calculate a cost variable that aggregates: the total federal penalty

assessed or agreed upon, the total cost of all Supplemental Environmental Projects (SEPs) for

the case, the dollar value sum of compliance action amounts, and the cost recovery amount

ordered or agreed to be repaid to the U.S. EPA, due to the Superfund per administrative

or judicial settlement. This variable is conditional on a case being made against the facility.

This Costs variable is then used in a specification as follows:

Costsi,t = β0+β1Protected+β2Releases+β3Releasesi× Protectedt+γXi,t+η+ρ+εi,t, (6)

where Releases are the square root of the total chemical releases of the facility and Protected

is an indicator variable if the facility is 12 km away from a protected area. Xi,t represents

2010 U.S. Census variables such as number of houses, minority population, and population

density within a 5 km radius of the facility. η represents industry by year fixed effects and ρ
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are state fixed effects. Standard errors are clustered at the facility level.

Table 7 presents regression results with varying use of fixed effects and controls. Across

the three columns, greater releases are associated with higher costs. The coefficients in the

second row suggests that facilities near protected areas incur slightly larger costs, around

$187, when the Federal government intervenes. However, there is a negative coefficient on

the interaction term, indicating that greater releases from a facility nearby a protected region

is negatively related to costs. This suggests a size effect in that greater releases by larger firms

may push down the costs they incur through legal channels. Overall, the costs associated

with releasing emissions nearby biodiverse regions appears economically minimal.

4 Disclosures

Next, I attempt to understand why the biodiversity footprint is not resolved either through

equity markets or government intervention. I focus on a reporting channel as firms incentives

to voluntarily report their violations may be low as evidence indicates that agents will often

conceal information detrimental to their performance. In essence, a moral hazard problem can

arise if the firm has incentives to misrepresent or underreport their negative environmental

impacts.

4.1 Reporting to government

I seek to understand whether there these facilities voluntarily disclose their violations to the

EPA. The ICIS-FE&C database contains information on whether the enforcement action was

the result of self-disclosure by the facility. After conditioning on a facility having a case with

the EPA, I calculate the number of enforcement actions that a facility has per year. Then,

I calculate Disclosures as the ratio of voluntary disclosures to total enforcement actions

taken over the same year. If Disclosures is equal to 1, this would mean that all enforcement

actions would be a result of self-disclosures from he facility.

20



Using Disclosures, I define a linear probability specification of the following form:

Disclosurei,t = β0 + β1Protected + β2Releases

+β3Releasesi × Protectedt + γXi,t + η + ρ+ εi,t,

(7)

where Releases are the square root of the total chemical releases of the facility and Protected

is an indicator variable if the facility is 12 km away from a protected area. Xi,t represents

2010 U.S. Census variables such as number of houses, minority population, and population

density within a 5 km radius of the facility. η represents industry by year fixed effects and ρ

are state fixed effects. Standard errors are clustered at the facility level.

Table 8 presents results using varying fixed effects at the facility level. The dependent

variable, bounded between 0 and 1, reflects this likelihood. The results indicate a signifi-

cant negative relationship between the square root of pollutant releases and self-reporting

behavior. Furthermore, facilities situated near protected areas are less likely to self-report

violations, with an associated coefficient of 3.1% decrease in likelihood compared to facilities

not nearby such areas. Interestingly, the interaction term between protected status and re-

leases is positive, highlighting that the adverse effect of releases on reporting probability is

mitigated when a facility is near a protected area.

The empirical results reveal a nuanced landscape of moral hazard in environmental self-

reporting practices, particularly in the context of facilities proximal to protected, biodiverse

areas. The analysis suggests that facilities releasing a smaller number of emissions exhibit

greater moral hazard, as they are less likely to self-report violations. However, the interaction

term suggests that as a facility’s emissions increase, potentially signaling a more significant

environmental catastrophe, the likelihood of self-reporting heightens. Thus, larger emissions,

which could attract greater regulatory scrutiny and public concern, compel facilities to dis-

close violations despite the moral hazard influences present in protected regions.
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4.2 Reporting in financial statements

I use the self-reported scores developed by Giglio et al. (2023) to measure biodiversity risk

of the firms in my sample. They use regular expression searches to extract biodiversity-

related sentences from 10-K statements with a biodiversity dictionary. They develop three

different scores: an aggregate count that combines biodiversity opportunities and risk, a score

to capture when a firm expresses a concern in the 10-K about regulations, and a sentiment

based measure that captures negative sentiment or rising risk. The first two scores are binary

variables indicating whether biodiveristy or regulation risk is discussed at all and the third is

a discrete variable which is a summation of the number of positive and negative sentiments

measured. As an added caveat, the percent of mentions of biodiversity in 10-Ks as measured

by Giglio et al. (2023), is very low. Specifically, the aggregate and regulation measures

account for only 4.25% and 3.04% of occurrences in my sample, respectively.

Using the three scores as dependent variables, I perform ordinary least squares regres-

sions with firm and year fixed effects with the percent of total emissions in protected areas

as the dependent variable. The first two columns of Table 9 are linear probability models

with the third being simple OLS regression. For the first column, a one-standard deviation

increase in the percent of emissions significantly decreases the number of mentions of biodi-

versity in 10-Ks by 0.02. The results of the second column illustrate that a similar increase in

emissions in biodiverse areas leads to 0.01 fewer mentions of biodiversity regulation for firms.

Finally, I find no significant relationship between negative mentions of biodiversity risk and

emissions.

4.3 Voluntary disclosures

As an additional exercise, I collect data from the CDP’s 2023 report on biodiversity. I

extract responses to the question, “Does your organization have activities located in or near

biodiversity-sensitive areas during the reporting year?”. Specifically, I create a binary variable

which is equal to 1 if the company reports that it has operations near biodiversity-sensitive
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areas and 0 if it reports that it does not or does not assess it. I regress this binary variable

on the biodiversity footprint, emissions intensity, and lagged quarterly firm level data either

in 2020, 2021, 2022, or 2023. Table 10 presents the results of these linear probability models.

Overall, I find no relationship between toxic footprints or emissions intensity on reporting if

a firm has activities nearby biodiverse sensitive areas.

These results suggest that these polluting firms do not self-disclose the impact of their

emissions footprint on biodiversity in their 10-K filings. This finding relates to prior literature

that find that 10-K disclosures can be an unreliable measure of material risks. Bingler et al.

(2022) find that climate disclosures are mostly “cheap talk” and Gostlow (2020) who shows

that Form 8-K filings are better predictors of firm performance during the COVID-19 crisis

than disclosures in 10-Ks. Taking this interpretation into account, the market could be

underpricing this biodiversity risk due to the lack of clarity on emission footprints or moral

hazard.

5 Conclusions

This study provides evidence that chemical emissions detrimentally affect the environment,

directly causing biodiversity loss. The analysis reveals that the US equity market fails to

price this externality, while facilities located near biodiverse regions incur marginally higher

regulatory penalties compared to others. The consistent market response likely stems from

inadequate disclosure of environmental impacts through governmental channels, voluntary

disclosures, or financial reports. Specifically, suggestive evidence indicates that facilities near

biodiverse regions often do not self-report violations, raising concerns of moral hazard.
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6 Figures

Figure 1: Carbon Disclosure Project question: Where have you published information about
your organization’s response to biodiversity-related issues?

Figure 1 presents information from the Carbon Disclosure Project for the question “Where have you
published information about your organization’s response to biodiversity-related issues?”. Answers at
the firm level are either “Regulatory”, “Voluntary”, “None”.

Figure 2: Toxic Release Inventory Facility Locations

Figure 2 presents the locations of Toxics Release Inventory facilities in the contiguous United States as
reported by the Environmental Protection Agency.
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Figure 3: Protected Areas in the Contiguous United States

Figure 3 presents a spatial map of protected areas in the contiguous United States as defined by the
World Database on Protected Areas.
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Figure 4: Total Waste Released Near Protected Areas

Figure 4 presents a time-series of the total log emissions released by all TRI facilities in the US and
whether the emissions are within three miles of a protected area (solid line). The dashed line is the
summation of all emissions that are more than three miles away from a protected region. The left graph
weights the chemical release by its toxicity according to the the EPA’s Risk-Screening Environmental
Indicators (RSEI) model. The graph on the right presents the unweighted totals.
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Figure 5: Growth in built-up area surrounding the first reporting date of the TRI facility

Figure 5 presents the year over year log growth in built up area in a 500 meter area around the Toxics
Release Inventory facility coordinates. This is calculated for facilities in the contiguous United States.
Spatial data for built-up area is obtained from the National Land Cover Database fractional impervious
product which is available from 1985-2023. Time zero is the year that the facility first reports to the
TRI program.

Figure 6: Difference in reporting year and estimated construction year

Figure 6 presents the difference in the first reporting year of a TRI facility and the estimated construction
year using a jump detection algorithm. The jump detection algorithm classifies the construction date
of a facility as first time the year over year growth of the built up area in the 500 m radius of the
coordinates provided by to TRI is over 0.473. This number, 0.473, is the average year over year growth
of built up area of all facilities in the sample. Time zero is the first reporting date of the facility to the
TRI.
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Figure 7: Growth in built-up area using the construction date of a TRI facility

Figure 7 presents the year over year log growth in built up area in a 500 meter area around the TRI
facility coordinates. The firms here are first filtered using a jump detection algorithm. The jump
detection algorithm classifies the construction date of a facility as first time the year over year growth
of the built up area in the 500 m radius of the coordinates provided by to TRI is over 0.473. Time zero
is therefore the identified construction date of the
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Figure 8: Coefficient on interaction term for lead at various distances from facilities

Figure 8 presents estimates of interaction terms that measure the difference in the average lead concen-
tration in water bodies closer to and farther away from TRI facilities. The dependent variable is the
average lead measurement in a year at a monitoring station according to the Water Quality Portal. The
specification interacts two indicator variables, Construct and Distance. Construct is a 0/1 variable that
equals 1 if the construction date is between [0,4] years of the date identified using the jump-detection
algorithm, and zero if between two to five years prior [-2,-5]. Distance is an indicator equal to zero if a
lead monitoring station is farther away from a facility and one if it is closer to a facility. For example,
an x-axis value of 4 indicates that distance equals zero if monitoring stations are 5-30 km away from a
facility and one if the station is 500 m - 4 km away. Statistically significant positive interaction terms
suggest facilities closer to water bodies show higher lead concentrations. Estimates are double clustered
at the facility-monitoring station level.
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Figure 9: Stacked Difference-in-Difference estimate of lead concentration after construction
of facility

Figure 9 presents an event-plot of coefficients from a stacked difference-in-differences estimation measur-
ing the difference in lead concentration in bodies of water within 500 m to 8 km of a facility compared
to that found 9-30 km away after a facility is constructed. Treated monitoring stations are those closer
when the facility is constructed and untreated are those stations that have yet to be treated or between
9-30 km away. The base year is the year before the construction date of the facility as identified by the
jump detection algorithm. Confidence intervals at the 95% level.
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Figure 10: Coefficient on interaction term for vertebrate population loss at various distances
from facilities

Figure 10 presents estimates of interaction terms that measure the difference in the vertebrate population
counts closer to and farther away from TRI facilities. The dependent variable is the effort corrected
vertebrate counts at a survey site according to the PREDICTS database (Hudson et al., 2017). The
specification interacts two indicator variables, Construct and Distance. Construct is a 0/1 variable that
equals 1 if the construction date is between [0,4] years of the date identified using the jump-detection
algorithm, and zero if between two to five years prior [-2,-5]. Distance is an indicator equal to zero if a
survey site is farther away from a facility and one if it is closer to a facility. For example, an x-axis value
of 4 indicates that distance equals zero if a vertebrate survey site is 5-30 km away from a facility and one
if the site is 500 m - 4 km away. Statistically significant negative interaction terms suggest survey sites
closer to facilities have lower vertebrate population counts than those farther away. Standard errors are
based on clusters at the facility level.
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Figure 11: Stacked Difference-in-Difference estimate of vertebrate population after construc-
tion of facility

Figure 11 presents an event-plot of coefficients from a stacked difference-in-differences estimation mea-
suring the difference in vertebrates in survey sites within 500 m to 12 km of a facility compared to survey
sits found 13-30 km away after a facility is constructed. The dependent variable is the effort corrected
vertebrate counts at a survey site according to the PREDICTS database (Hudson et al., 2017). Treated
sites are those closer when the facility is constructed and untreated are those survey sites that have yet
to be treated or between 13-30 km away. The base year is the year before the construction date of the
facility as identified by the jump detection algorithm. Confidence intervals at the 9
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Table 2: Stacked Difference-in-Difference estimate of lead concentration after construction of
facility

Table 4 presents the results from a stacked difference-in-differences estimation measuring the difference
in lead concentration in bodies of water within 500 m to 8 km of a facility compared to that found
9-30 km away after a facility is constructed. Treated monitoring stations are those closer when the
facility is constructed and untreated are those stations that have yet to be treated or between 9-30 km
away. The base year is the year before the construction date of the facility as identified by the jump
detection algorithm. The average built up area is calculated for both the nearer and further area from
the Annual National Land Cover Database. Statistically significant positive interaction terms suggest
facilities closer to water bodies show higher lead concentrations. There are facility by monitoring station
fixed effects that subsume the distance variable. Year fixed effects are also included. Standard errors,
in parentheses, are double clustered at the facility-monitoring station level. Significance at the 1%, 5%,
and 10% levels is denoted by ***, **, *.

(1)

Pre 1 Years -0.138
(0.972)

Pre 2 Years -0.447
(0.959)

Pre 3 Years 0.509
(0.776)

Pre 4 Years -1.066
(0.977)

Post 1 Years 3.792∗∗∗
(1.158)

Post 2 Years 1.812∗
(1.054)

Post 3 Years 2.904∗∗
(1.442)

Post 4 Years 3.878∗∗∗
(1.343)

Post 5 Years 3.852∗∗
(1.496)

Built-up Area, Near -0.464∗∗∗
(0.028)

Built-up Area, Far 0.580∗∗∗
(0.064)

FacilityxStation Yes
Year Yes
Adj R Squared 0.178
Observations 823314
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Table 4: Stacked Difference-in-Difference estimate of vertebrate count after construction of
a facility

Table 4 presents estimates from a stacked difference-in-differences estimation measuring the difference
in vertebrates in survey sites within 500 m to 12 km of a facility compared to survey sits found 13-
30 km away after a facility is constructed. The dependent variable is the effort corrected vertebrate
counts at a survey site according to the PREDICTS database (Hudson et al., 2017). Treated sites
are those closer when the facility is constructed and untreated are those survey sites that have yet to
be treated or between 13-30 km away. The base year is the year before the construction date of the
facility as identified by the jump detection algorithm. I include facility, year, survey study, land use,
and ecoregion fixed effects. The average built up area is calculated for both the nearer and further area
from the Annual National Land Cover Database. Statistically significant negative interaction terms
suggest survey sites closer to facilities have lower vertebrate population counts than those farther away.
Standard errors are clustered at the facility level. Significance at the 1%, 5%, and 10% levels is denoted
by ***, **, *.

(1)

Pre 1 Years 17.041
(11.115)

Pre 2 Years 0.738
(1.727)

Pre 3 Years 14.427∗
(7.820)

Pre 4 Years 2.644
(4.871)

Post 1 Years -9.892
(6.628)

Post 2 Years -27.965∗∗
(12.066)

Post 3 Years -47.134∗∗
(19.798)

Post 4 Years -14.658
(27.422)

Post 5 Years -6.472∗
(3.355)

Built-up Area, Far 31.564∗∗∗
(5.979)

Built-up Area, Near -4.644∗∗∗
(1.199)

Facility Yes
Year Yes
Study Yes
Land Use Yes
Ecoregion Yes
Adj R Squared 0.847
Observations 63990
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Table 5: Fama Macbeth Regressions

Table 4 presents risk premiums and standard errors of Fama Macbeth regressions with the firm level
biodiversity footprint and emissions intensity. The biodiversity footprint of a firm is calculated as
the square root of total emissions from a firm’s emissions divided by all emissions according to the
Toxics Release Inventory dataset. Fama and French (2015) five factors are included along. Various firm
level control variables are included such as log assets—these are lagged values from one quarter ago.
Significance is denoted at the 1%, 5%, and 10% levels by ***, **, *.

(1) (2)

Biodiversity Footprint -0.000 -0.000
(0.000) (0.000)

Emissions Intensity 0.002 0.000
(0.002) (0.001)

MktRF 0.379 0.350
(0.260) (0.264)

SMB 0.100 0.104
(0.156) (0.153)

HML -0.094 -0.115
(0.199) (0.202)

RMW -0.092 -0.064
(0.139) (0.142)

CMA -0.086 -0.147
(0.125) (0.127)

Assets, log 0.003∗ 0.008∗∗
(0.002) (0.003)

Tobin’s Q 0.000 0.003
(0.003) (0.003)

Book to Market -0.001 -0.002
(0.001) (0.001)

Leverage 0.000 0.001∗∗
(0.000) (0.000)

Return on Equity 0.000 0.000
(0.000) (0.000)

Plant, Property, Equipment 0.000 0.000
(0.000) (0.001)

Industry FEs No Yes
Average R Squared 0.129 0.151
Observations 216756 216367
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Table 6: Event Study Surrounding Kunming Declaration

Table 4 presents regressions documenting the stock price reactions to the Kunming Declaration which
was signed October 13, 2021. Biodiversity footprint and emissions intensity are at the firm level. The
biodiversity footprint of a firm is calculated as the square root of total emissions from a firm’s emissions
divided by all emissions according to the Toxics Release Inventory dataset. Various event windows are
used around this date. Post is a indicator variable equal to 1 if time is equal October 13, 2021 plus
additional days above the column. It is equal to zero for the days before. Abnormal returns are returns
in excess of the market, small-minus-big, and high-minus-low factors. Significance is denoted at the 1%,
5%, and 10% levels by ***, **, *.

(1) (2) (3) (4) (5) (6)
[-7,+6] [-6,+5] [-5,+4] [-4,+3] [-3,+2] [-2,+1]

Biodiversity Footprint 0.069 -0.036 -0.071 -0.280∗∗ -0.187 -0.292∗
(0.092) (0.095) (0.104) (0.122) (0.127) (0.158)

Post × Biodiversity Footprint 0.026 0.202 0.137 0.335∗ 0.309 0.287
(0.125) (0.132) (0.148) (0.171) (0.195) (0.234)

Emissions Intensity -0.001 0.002 0.004 0.006 0.006 0.015
(0.004) (0.005) (0.005) (0.007) (0.008) (0.013)

Post × Emissions Intensity 0.001 -0.003 -0.006 -0.005 -0.005 0.001
(0.007) (0.008) (0.009) (0.009) (0.014) (0.019)

Industry FE Yes Yes Yes Yes Yes Yes
Day Yes Yes Yes Yes Yes Yes
Adj R Squared 0.026 0.032 0.035 0.039 0.030 0.012
Observations 5390 4620 3850 3080 2310 1540
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Table 7: Government monitoring and facility enforcement costs

Table 7 presents regressions documenting the relationship between the total federal penalties and the
square root of toxic chemicals released by a facility. The sample comprises all enforcement cases reported
in the ICIS-FE&C database by the EPA. The variable “Protected” equals 1 if a facility is within 12 km of
a protected area and 0 otherwise. Control variables include the number of houses, minority population
percentage, and population density within a 5 km radius, sourced from the 2010 U.S. census. Significance
is denoted at the 1%, 5%, and 10% levels by ***, **, *.

(1) (2) (3)
$ Costs $ Costs $ Costs

Releases, sqrt 0.686∗∗∗ 0.658∗∗∗ 0.626∗∗∗
(0.095) (0.097) (0.096)

Protected=1 231.273∗∗∗ 173.071∗∗ 187.120∗∗
(81.145) (83.273) (80.424)

Protected=1 × Releases, sqrt -0.499∗∗∗ -0.467∗∗ -0.415∗∗
(0.181) (0.188) (0.175)

Houses -0.000 -0.001
(0.002) (0.002)

Minority Pop, Perc -1.609 -1.091
(2.018) (2.357)

Pop Density -0.014 0.005
(0.048) (0.058)

IndustryxYear Yes Yes Yes
State No No Yes
Adj R Squared 0.298 0.304 0.309
Observations 15252 15143 15143
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Table 8: Facility self reporting violations and emissions near protected areas

Table 8 presents results from linear probability models documenting the relationship between the square
root of toxic chemicals released by a facility and whether a violation was self-reported by the facility.
The sample comprises all enforcement cases reported in the ICIS-FE&C database by the EPA. The
variable “Protected” equals 1 if a facility is within 12 km of a protected area and 0 otherwise. Control
variables include the number of houses, minority population percentage, and population density within
a 5 km radius, sourced from the 2010 U.S. census. Significance is denoted at the 1%, 5%, and 10%
levels by ***, **, *.

(1) (2) (3)

Releases, sqrt -0.004∗∗∗ -0.005∗∗∗ -0.005∗∗∗
(0.001) (0.001) (0.001)

Protected -2.122∗∗ -3.288∗∗∗ -3.105∗∗∗
(0.924) (0.956) (0.956)

Protected × Releases, sqrt 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗
(0.001) (0.001) (0.001)

Houses 0.000 0.000
(0.000) (0.000)

Minority Pop, Perc -0.065∗∗∗ -0.076∗∗∗
(0.022) (0.025)

Pop Density -0.001 -0.001
(0.001) (0.001)

IndustryxYear No Yes Yes
State No No Yes
Adj R Squared 0.158 0.161 0.176
Observations 15252 15143 15143
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Table 9: Relationship Between Self-Reporting Biodiversity in 10-Ks and Emissions in Biodi-
verse Areas

Table 9 presents results from linear probability models documenting the relationship between metrics
from Giglio et al. (2023) and the biodiversity footprint of the firm. The biodiversity footprint of a
firm is calculated as the square root of total emissions from a firm’s emissions divided by all emissions
according to the Toxics Release Inventory dataset. Various firm level control variables are included such
as log assets—these are lagged values from one year ago. Significance is denoted at the 1%, 5%, and
10% levels by ***, **, *.

(1) (2) (3)
Aggregate Regulation Negative

Biodiversity Footprint -0.006 -0.006 0.005
(-0.292) (-0.329) (0.274)

Emissions Intensity 0.001∗∗ 0.001∗∗ 0.001∗
(2.463) (2.302) (1.755)

L.Assets, log 0.004 0.004 -0.005
(0.713) (0.724) (-0.592)

L.Tobin’s Q 0.002 0.000 0.000
(1.405) (0.279) (0.192)

L.Return on Equity -0.000 -0.002 0.002
(-0.002) (-0.147) (0.064)

L.Book to Market 0.010∗ 0.007∗ 0.006
(1.832) (1.675) (0.570)

L.Leverage -0.017 -0.022 0.025
(-0.738) (-1.120) (0.916)

L.Plant, Property Equipment 0.076 0.050 0.115
(1.098) (0.903) (1.278)

Firm FE Yes Yes Yes
Year FE Yes Yes Yes
ADJ R Squared 0.518 0.527 0.400
Observations 29027 29027 29027
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Table 10: Relationship between voluntary reporting of biodiversity impact in the carbon
disclosure project and biodiversity footprint

Table 10 presents results from linear probability models documenting the relationship between firms
mentioning they have a biodiversity impact and their biodiversity footprint. The biodiversity footprint
of a firm is calculated as the square root of total emissions from a firm’s emissions divided by all
emissions according to the Toxics Release Inventory dataset. Various firm level control variables are
included such as log assets—these are lagged values from one year ago. Significance is denoted at the
1%, 5%, and 10% levels by ***, **, *.

(1) (2) (3) (4)
2020 2021 2022 2023

Biodiversity Footprint -0.016 0.011 0.021 0.050
(-0.522) (0.355) (0.658) (1.451)

Emissions Intensity 0.002 0.001 -0.001 -0.002
(0.884) (0.370) (-0.423) (-0.843)

L.Assets, log 0.055∗∗∗ 0.058∗∗∗ 0.058∗∗∗ 0.057∗∗∗
(4.905) (4.936) (5.070) (4.872)

L.Tobin’s Q 0.004 0.004 0.011 0.021
(0.362) (0.431) (0.722) (1.151)

L.Return on Equity 0.090 0.651∗ -0.668 -0.710
(1.595) (1.737) (-1.268) (-1.335)

L.Book to Market 0.054∗ 0.094 0.087 0.117∗
(1.902) (1.518) (1.263) (1.860)

L.Leverage 0.056 0.047 -0.019 -0.028
(0.521) (0.391) (-0.157) (-0.240)

L.Plant, Property Equipment 0.356∗∗∗ 0.331∗∗∗ 0.433∗∗∗ 0.355∗∗∗
(3.573) (3.362) (4.096) (3.525)

Industry FE Yes Yes Yes Yes
ADJ R Squared 0.232 0.237 0.226 0.220
Observations 800 783 769 753
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A Appendix A

A.1 Firm level biodiversity footprint

First, I develop a measure of a firm’s toxic footprint and contrast this with an emissions

intensity measure (Hsu et al., 2023). I define the toxic footprint of a firm as the square

root of the emissions released within a 15-km radius of a protected area divided by the total

emissions reported. I define emissions intensity as the total emissions reported by the firm

divided by the total assets of a firm. I show in Figure 12 the time series correlation between

the two metrics. Generally, I find a low correlation coefficient between emission intensity and

toxic footprint suggesting that the toxic footprint is differentiated from the one used in (Hsu

et al., 2023).

Figure 12: Correlation coefficient of biodiversity footprint and emissions intensity

Figure 12 presents correlation coefficients of

Figure 13 presents a scatter plot of the mean, standardized values of the toxic footprint

and emissions intensity metrics of the Fama-French 48 industries. Generally, most industries

have fairly low values of emission intensities and footprints. Some, however, are standouts.

Gold, mining, and coal mining sectors have relatively high values of either toxic footprints
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or emissions intensity. Another standout is the “Other” industry which includes Steam & air

conditioning supplies, Irrigation systems, and Sanitary services. This industry has a large

emission intensity but low toxic footprints.

Figure 13: Industries with high emissions and toxic footprints

Figure 13 presents the mean, standardized values of emission intensity and toxic footprint in each
Fama-French 48 industry sector.
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