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Abstract

Corporate bonds’ exposure to climate risks is surrounded by substantial un-
certainty. This climate beta uncertainty is both economically and statisti-
cally significantly priced in the cross-section of bond returns. Understanding
this uncertainty is crucial, as it influences risk premia and the effectiveness
of bonds as hedging instruments against climate risks. Since climate expo-
sures exhibit distinct pricing patterns depending on return definitions, their
impact on bond valuations varies. For total returns, bonds exposed to spe-
cific climate indices appear to offer potential hedges against future climate
outcomes, but they trade at lower prices. For duration-adjusted returns,
a higher climate beta is associated with higher future bond returns, indi-
cating that greater exposure to climate risks commands a return premium
once interest rate effects are controlled for. The results suggest that the
hedging capacity of corporate bonds primarily stems from their linkage to
duration-matched long-term government bonds, while credit returns—albeit
small—compensate investors for bearing climate risk exposure.
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1. Introduction

As climate change shocks become more frequent, companies face increased
vulnerabilities to disruptions; in August 2024, Porsche reduced car pro-
duction in Germany due to flooding at an aluminum supplier in Switzer-
land.2 Such incidents highlight how climate risks can disrupt entire supply
chains, potentially lowering operating income, increasing financial pressure
and weakening creditworthiness (Acharya et al., 2022; Pankratz and Schiller,
2024). Moreover, rising awareness of climate change risks is driving capital
reallocation in financial markets; in July 2022, the European Central Bank
(ECB) prioritized purchasing corporate bonds from issuers with strong cli-
mate performance, using a scoring system based on emissions, decarboniza-
tion goals, and climate disclosures.3 Therefore, integrating climate risks into
investment decisions is becoming increasingly important (Moldovan et al.,
2024), but accurately measuring their impact on corporate bond prices re-
mains challenging (Krueger et al., 2020; Giglio et al., 2021; Campiglio et al.,
2019). This challenge arises because a comprehensive climate risk assessment
must account for multiple climate scenarios and conduct a location-specific
analysis of the entire supply chain. As a result, precisely estimating the
climate risk premium is difficult, with significant uncertainties regarding its
sign and magnitude (Rebonato et al., 2023).

One approach is using market-based methods, such as estimating the
covariance between asset returns and climate proxies—known as climate be-
tas—to understand the asset pricing implications of climate risks (Hafez and
Xie, 2016; Flammer, 2021; Jung et al., 2023; Dietz et al., 2018). Some studies
have used meteorological or geographical climate measures, such as abnor-
mal temperature (Barnett et al., 2020), precipitation (Hong and Kacperczyk,
2009), and sea level (Allman, 2022). However, recent research has expanded
to incorporate climate-related news to model investor beliefs. Through tex-
tual analysis, researchers capture attention and sentiment in multiple dimen-
sions related to regulatory changes and natural disasters (Engle et al., 2020;
Faccini et al., 2021; Ardia et al., 2023; Alekseev et al., 2021; Bua et al., 2024;
Apel et al., 2023). Some studies have adopted simpler approaches, such as
analyzing Google search volume for climate-related terms (Brøgger and Kro-

2https://www.ft.com/content/8b988cfb-d2b0-47fd-841f-dcc0de437134
3https://www.ecb.europa.eu/press/pr/date/2022/html/ecb.

pr220704~4f48a72462.en.html
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nies, 2020) or measuring the frequency of uncertainty-related language in
climate discourse (Gavriilidis, 2021). However, there is uncertainty on how
to measure the risks of climate change (Painter, 2013; Barnett et al., 2020;
Barnett, 2023).4

By design, some indices differ according to the construction method, the
sources they use and the specific dimensions of climate risk they track. In
this context, Maeso and O’Kane (2023) compare the volume-based against
advanced natural language processing methods to construct climate news
indices, finding that volume-based indices are more effective in capturing
market reactions. In addition, the frequency of news aggregation involves
a trade-off: daily news captures immediate market reactions while monthly
aggregation smooths fluctuations, but risks overlooking short-term impacts.
Likewise, the focus of climate news indices varies. For example, Bua et al.
(2024); Apel et al. (2023) focus on transition and physical risks, while Ardia
et al. (2023); Faccini et al. (2021) address climate policies, environmental
impacts, and social issues.5 However, the mechanisms linking these risks re-
main unclear, complicating climate risk assessments (Lemoine, 2021; Barnett
et al., 2020).

This paper examines the implications for asset pricing of the uncertainty
surrounding climate beta exposures for US and European corporate bonds.
Climate beta uncertainty for each bond is defined as the cross-sectional di-
vergence of different climate beta estimates. Significant differences between
estimates from various approaches suggest high uncertainty, indicating con-
siderable disagreement about climate risks. Conversely, similar estimates
across approaches reflect a consensus on the asset’s exposure to climate risk.
The study investigates how this uncertainty affects bond pricing by analyz-
ing the relationship between climate beta uncertainty and bond risk premia.
Specifically, it tests whether investors demand a premium for bearing climate
beta uncertainty and whether this premium varies across market conditions,
industries, and firm characteristics. The findings offer insights into how mar-
ket participants incorporate climate risk into bond valuations and the role

4The measurement of climate change risks is challenging, as they are unobservable until
they materialize, and the underlying data-generating process is unknown. In addition,
theoretical frameworks provide limited guidance on constructing risk proxies or estimating
climate betas. In practice, estimates are based on historical data available.

5This distinction can be subtle and difficult to discern in textual data. For example,
policy actions that mitigate physical risks often lead to the creation of new transition risks.
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of heterogeneous beliefs about climate exposure in shaping asset prices. Fur-
thermore, the study uses duration-adjusted returns to account for credit risk
returns (van Binsbergen et al., 2025; Andreani et al., 2023; Bessembinder
et al., 2008; Diep et al., 2021).6 Failing to adjust for interest rate returns
can lead to erroneous conclusions, especially when the relationship between
interest rates and credit is negative, which can cause shifts in the direction
of climate exposures.

From an asset pricing perspective, the hedging hypothesis suggests that
investors seeking protection against climate-related risks are accepting lower
returns on bonds that hedge against these risks (Merton, 1973). In contrast,
the risk-return trade-off implies that climate-exposed bonds, seen as riskier
due to the exposure to climate-related risks, should offer higher expected
returns to compensate for these risks (Bannier et al., 2023; Duan et al.,
2021). Several studies have identified the hedging hypothesis, showing that
bonds with higher climate betas tend to have lower future returns (Huynh
and Xia, 2020; Lalwani, 2024; Benkraiem et al., 2025). However, there is
also evidence that investors demand higher returns on bonds vulnerable to
physical or regulatory shocks, indicating a potential premium associated with
this exposure (Bats et al., 2024). For example, companies with high carbon
emissions face greater regulatory risks and thus provide higher yield spreads,
particularly after the Paris Agreement (Seltzer et al., 2022).

Hedging climate risks has become a key focus in recent research, in order
to enhance portfolio risk management (Andersson et al., 2016; Roston, 2021;
Jurczenko, 2023; de Silva and Tenreyro, 2021). However, managing multiple
climate risks presents challenges, as perfect hedges are rare and costly. When
hedging is not possible, investors should be compensated for risk exposure.
Climate uncertainty becomes crucial when assets have multiple climate expo-
sures with different signs, preventing them from being effective hedges, and
thus requiring a premium. Evaluating uncertainty and climate risks is crucial
as it influences firms’ climate change disclosures, especially post-Paris Agree-
ment (Sautner et al., 2023; Danisman et al., 2025), or after climate-related
shocks (Seltzer et al., 2020; Baker et al., 2016).

6Studies on corporate bonds often use total returns in excess of the 1-month risk-
free rate. This approach adds noise by including returns from long-term risk-free assets,
making it difficult to isolate credit and illiquidity returns. This is especially problematic
for investment grade bonds, where credit and illiquidity risks are marginal (Andreani et al.,
2023)
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The paper is structured as follows. The introduction provides an overview
of current climate change indices, related literature, and hypothesis develop-
ment. Section 2 presents the climate news and corporate bond data. Section
3 outlines the methodology and presents the empirical results. Section 4
offers a discussion and conclusion.

1.1. Related literature

The seminal studies by Engle et al. (2020) and Bessec and Fouquau (2020)
focus on climate sentiment through the textual analysis of articles from the
Wall Street Journal. Similarly, the Media Climate Change Concern Index
(MCCC) developed by Ardia et al. (2023) analyze eight US newspapers and
identifies 40 climate-related topics that influence green and brown stock re-
turns. Pástor et al. (2022) utilize the MCCC index to assess temporal in-
vestor preferences with respect to climate news. Moreover, Andriollo et al.
(2024) demonstrates that the MCCC is significant in explaining US corpo-
rate bond portfolios, even after accounting for robust estimations. Beyond
the MCCC, several researchers have developed alternative climate indices.
Faccini et al. (2021) build four climate news indices based on natural disas-
ters, global warming, international summits, and climate policy. In related
work, Apel et al. (2023) focus on transition risks linked to environmental
standards and renewable energy costs, while Bua et al. (2024) examine Eu-
ropean transition and physical risks. Our work also draws on alternative
approaches to measuring climate risk attention. We align with Brøgger and
Kronies (2020), who gauge investor attention through Google search volumes
for climate change, and Gavriilidis (2021), who quantify articles containing
climate and uncertainty terms. A summary of the various climate change
indices considered in this study is presented in Table 10.

Huynh and Xia (2020); Duan et al. (2021) study climate news effects
on US corporate bond returns. Huynh and Xia (2020) employs the WSJ
index from Engle et al. (2020), while Duan et al. (2021) utilizes carbon
emissions data from S&P Trucost and incidents from RepRisk. Their findings
indicate that increased exposure to climate change correlates with diminished
future bond returns, highlighting the influence of climate risk on asset pricing.
Investors concerned about climate risks tend to favor bonds from companies
with superior environmental performance, often willing to pay a premium for
such securities. Huynh and Xia (2020); Duan et al. (2021); Lalwani (2024)
find that climate risk sensitivity leads to lower returns, which aligns with the
changes in investor preferences noted by Pástor et al. (2022).
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Moreover, Lalwani (2024) finds that bonds that covariate highly only
news related to global warming earn lower returns. Huynh and Xia (2020)
focus on the hedging hypothesis and test the pricing implication of excess
demand for assets that hedge against climate risk. They find that investors
in US corporate bond markets accept lower future returns on bonds that are
good hedges against climate risks. They suggest that while the negative sign
is consistent with the asset pricing implications of demand for bonds with
high potential to hedge against climate risk, the small coefficient may point
to the fact that the market has not fully priced in climate risk. Addition-
ally, Lalwani (2024) use Ardia et al. (2023) finding that bonds that covary
highly with global warming news earn lower returns. Comparable results in
magnitude to those of Huynh and Xia (2020), they show that the pricing
effect is small. In contrast, Boermans et al. (2024) find a positive climate
risk premium in bonds with higher betas related to the climate transition.
In particular, Bats et al. (2024) use European climate news from Bua et al.
(2024) that differentiate between transition news and regulatory news. They
find that only regulatory news significantly impacts bond pricing. Moreover,
Lin and Zhao (2023) builds on Gavriilidis (2021) by incorporating a climate
uncertainty index (CPU) based on news, finding that climate uncertainty’s
effects are similar to those of other economic and political uncertainties;
Kayani et al. (2024) examine the heterogeneous impacts of CPU on sectoral
returns. The research presented in this study contributes to the debate on
climate risk pricing in corporate bond markets by demonstrating that results
vary when credit risk is isolated.

1.2. Hypothesis development
Previous research has assessed climate risk primarily through total bond

returns, which capture both credit risk and long-term interest rate fluctua-
tions. Duration-adjusted returns isolate climate risk impacts by accounting
for bond price sensitivity to interest rate changes and removing interest rate
movement effects (van Binsbergen et al., 2025). Climate risks influence in-
vestor sentiment and credit creditworthiness, suggesting that climate beta’s
impact on corporate bond returns may differ depending on whether total
returns or duration-adjusted returns are used as the measure (Capasso et al.,
2020). This leads to the following hypothesis:

Hypothesis 1 The impact of climate beta on corporate bond returns varies
significantly when measured using total returns versus duration-adjusted re-
turns.
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Standard asset pricing theories suggest a positive correlation between risk
and expected returns, as investors seek compensation for uncertainty (Mer-
ton, 1973). However, these models typically assume that parameters (in this
case, climate beta) are known with certainty, even though they are unobserv-
able and subject to estimation error (Hollstein et al., 2020; Chen and Demirer,
2022). This uncertainty, particularly regarding climate change risks, can in-
fluence capital allocation decisions (Barnett, 2023). The mixed evidence on
the relationship between climate risks and bond performance complicates un-
derstanding whether climate beta or the uncertainties surrounding climate
risks are properly priced into corporate bonds.

Moreover, the existence of multiple climate indices with varying effects
on bond pricing highlights the market’s difficulty in measuring and pricing
climate risk. When investors are uncertain about climate risk exposure, they
may demand higher compensation for bonds with higher dispersion exposures
from different climate indices. This uncertainty may lead to higher credit risk
premiums. Therefore, it is hypothesized that bonds with larger variations
in climate betas will show higher future returns, reflecting an uncertainty
premium beyond climate sensitivity.

Hypothesis 2 A bond’s climate risk uncertainty Unc(βCC) is positively
related to future returns.

Investor perception and response to climate risks evolve as these risks ma-
terialize. Barnett et al. (2020) argue that materialization reduces uncertainty,
enabling a more accurate assessment of the scope and impact of climate risk.
This improved understanding leads to two opposing effects: while reduced
uncertainty stabilizes market expectations, it may simultaneously diminish
the influence of climate risk on bond returns as markets adjust to realized
risks. Although investors generally demand higher returns to compensate for
uncertainty, the predictability gained from the realized climate risks could
decrease the market sensitivity to climate exposure. The following hypothe-
sis proposes that as climate risks materialize and uncertainty decreases, the
positive relationship between climate risk exposure and future returns weak-
ens.

Hypothesis 3 The positive relationship between a bond’s climate risk expo-
sure and future returns weakens when climate risks materialize.
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2. Data and summary statistics

This study draws on data from various sources. It begins with a descrip-
tion of selected climate indices from the literature, followed by the construc-
tion of the climate change uncertainty index. The next subsection presents
bond-level data for the US and Europe from TRACE and Markit IBOXX.
Firm-level data are sourced from Jensen et al. (2023). The bonds are matched
using bond CUSIP to issuer COMPUSTAT GVKEY for the US, using the
mapping provided by Fang (2024). For the EU, bond ISIN to issuer COM-
PUSTAT GVKEY using the Capital IQ mapping table. Descriptive statistics
for the variables are provided in Table 2 and Table 3, respectively.

2.1. Climate news data

2.1.1. Climate change indices

The list of climate change news indices is: the WSJ and CHNEG from
Engle et al. (2020); the Media Climate Change Concerns (MCCC) Aggre-
gate, Business Impact (Bus.), Environmental impact (Env.), Societal Debate
(Soc.), and Research (Res.) clusters from Ardia et al. (2023); the Climate
Policy (Clim Pol.), International Summits (Int. Summ), Global Warming
(Glob. Warm.), and Natural Disasters (Nat. Dis.) from Faccini et al. (2021),
the Transition Regulatory (TRI) index from Apel et al. (2023); the Physical
and Transition indices from Bua et al. (2024); the Natural Disasters (Nat.
Dis.) index from Manela and Moreira (2017), and form Bybee et al. (2023);
the Google Search Volume index on climate change; the Climate Policy Un-
certainty (CPU) from Gavriilidis (2021); and the Climate Change Sentiment
(CCsent) index from Brøgger and Kronies (2020).

Additionally, the MeCCO index incorporates climate news volume from
US and European newspapers, ensuring coverage from both regions. Ar-
ticles from the MeCCO database serve as the primary sources, with news
collected through LexisNexis, ProQuest, and Factiva, spanning 126 media
outlets across 58 countries.7 MeCCO selects articles containing terms such
as climate change or global warming.8 The focus remains on Europe and

7Available at: https://scholar.colorado.edu/concern/datasets/nz806067t.
8In german: klimawandel or globale erwärmung ; in spanish: calentamiento global or

cambio climático.
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North America.9 From 2004 to December 2023, the aggregated index in-
cludes 45 European and 11 North American sources (Hawley et al., 2021).10

Climate indices measuring weather events complement this approach.
These include land surface temperature anomalies (Temp), the quasiperi-
odic Pacific Ocean temperature anomaly (Nino) from the National Oceanic
and Atmospheric Administration, and the Actuaries Climate Index (ACI).

Table 1: Summary Statistics: Climate Change indices

N. mean SD. 5th 25th median 75th 95th

MeCCO US + EU 246 0.68 0.34 0.19 0.45 0.69 0.90 1.21
MeCCO US 246 0.66 0.40 -0.03 0.40 0.69 0.97 1.22
MeCCO EU 246 0.68 0.34 0.21 0.48 0.69 0.90 1.21
WSJ: Engle et al. (2020) 402 0.54 0.19 0.34 0.40 0.50 0.63 0.89
CHNEG: Engle et al. (2020) 120 0.21 0.12 0.10 0.13 0.17 0.25 0.44
MCCC Agg: Ardia et al. (2023) 258 1.26 0.56 0.51 0.84 1.11 1.67 2.31
MCCC Bus.: Ardia et al. (2023) 258 1.07 0.43 0.47 0.74 1.01 1.31 1.86
MCCC Env.: Ardia et al. (2023) 258 1.26 0.59 0.50 0.84 1.13 1.61 2.37
MCCC Soc.: Ardia et al. (2023) 258 1.22 0.64 0.43 0.76 1.06 1.63 2.31
MCCC Res.: Ardia et al. (2023) 258 1.04 0.44 0.50 0.74 0.96 1.26 1.78
Clim. Pol: Faccini et al. (2021) 282 0.78 0.76 0.06 0.22 0.55 1.11 2.13
Int’l Summ.: Faccini et al. (2021) 282 0.51 0.79 0.03 0.10 0.20 0.65 1.74
Glob. Warm.: Faccini et al. (2021) 282 0.53 0.49 0.10 0.21 0.40 0.70 1.38
Nat. Dis.: Faccini et al. (2021) 282 0.85 0.64 0.19 0.40 0.65 1.16 2.06
TRI.: Apel et al. (2023) 252 0.00 0.00 -0.00 -0.00 0.00 0.00 0.00
Trans.: Bua et al. (2024) 228 0.08 0.01 0.06 0.07 0.08 0.09 0.11
Phys.: Bua et al. (2024) 228 0.08 0.01 0.06 0.07 0.08 0.09 0.10
Nat. Dis.: Manela and Moreira (2017) 1514 -0.01 0.02 -0.05 -0.02 -0.00 0.00 0.01
Nat. Dis: Bybee et al. (2023) 402 0.56 0.31 0.35 0.40 0.47 0.65 0.99
GSVI 244 -0.00 2.62 -3.66 -0.55 0.00 0.36 2.47
CPU: Gavriilidis (2021) 446 0.07 0.39 -0.43 -0.21 0.02 0.28 0.75
CCsent: Brøgger and Kronies (2020) 156 -0.08 7.29 -12.71 -2.65 -0.21 2.11 11.78
Nino 249 0.01 0.81 -1.16 -0.60 -0.07 0.47 1.57
ACI 755 0.27 0.33 -0.21 0.02 0.13 0.58 0.92
Temp (ab.) 247 0.01 0.15 -0.18 -0.08 0.01 0.09 0.23

Table 1 provides descriptive statistics for the climate indices. Specifically,
the table reports the mean, standard deviation, median, and the 5th, 25th,

9According to the ECB (ECB, 2017), investors outside the euro area (rest of the world)
held 29.6% of the total market. Given the global distribution of bondholders, a news index
must reflect both US and European sources.

10Appendix B details the construction method. Table ?? lists the newspapers used.
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75th, and 95th percentiles for each index.11 Figure 4 in the appendix shows
the correlation heatmap among the various climate risk indices. The indices
are divided mainly into two groups: one with positive correlations, including
the MeCCO, MCCC, and Faccini et al. (2021) indices (shown in red), and
another with lower correlations, comprising natural physical indices along
with transition and physical indices (shown in blue).This grouping suggests
that the correlations are primarily influenced by methodological similarities
among the

To capture sudden shifts in climate news, an AR(1) model is used to
estimate unexpected changes in climate indices. Past studies (Pástor et al.
(2022); Engle et al. (2020); Ardia et al. (2023)) analyze market responses
to unexpected climate news, specifically comparing green and brown stock
performance. According to Ardia et al. (2023), unexpected news influences
market reactions, as expected news is typically already factored into prices.
The AR(1) model, represented by the equation (1), defines the climate index
at time t as a function of its prior value and an error term ut, representing
innovation.

ClimateIndexj
t = ρ0 + ρ× ClimateIndexj

t−1 + uj
t

CCj
t = uj

t

(1)

2.2. Corporate bond data

2.2.1. TRACE

The US sample includes data from the Trade Reporting and Compliance
Engine (TRACE) and constituent bonds from the Bank of America (BAML)
Investment Grade indices. The dataset, sourced from Dickerson et al. (2023);
van Binsbergen et al. (2025), provides total and duration-adjusted returns,
and includes equity and accounting data from CRSP and COMPUSTAT.
This data is publicly available for download at openbondassetpricing.com/
data. Following Andreani et al. (2023); Dickerson et al. (2023), bonds with
insufficient issue size (below $ 150M pre-Nov 2004 or $ 250M post-Nov 2004
for IG bonds per BAML index rules), zero-coupon and convertible bonds,
defaulted bonds, and those with less than one year remaining to maturity
are excluded.

11Table 10 provides additional details on the sources used to construct the indices,
including their descriptions, frequency, and time period.
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Table 2: Summary Statistics: US sample

N. mean SD. 5th 25th median 75th 95th

Panel A: Bond
Ret (rtot) 569750 0.19 2.77 -3.71 -0.61 0.17 1.13 3.91
Dur-Adj (rdur) 563247 0.11 2.44 -2.70 -0.46 0.09 0.74 3.04
Bond Price 569749 106.77 12.31 92.40 100.23 104.67 111.46 129.20
YTM 567744 3.50 1.80 0.95 2.28 3.37 4.57 6.17
CS 567954 1.53 1.30 0.36 0.78 1.28 1.92 3.39
Rating 569750 2.41 0.60 1.00 2.00 2.00 3.00 3.00
Duration 567954 7.17 4.87 1.45 3.29 5.77 11.05 16.38
Illiq 569620 0.53 7.43 -0.09 0.01 0.05 0.24 1.78
VaR95 366255 3.17 2.52 0.71 1.46 2.55 4.30 7.21
Amt Out ($) 569750 812973 684093 250000 400000 600000 1000000 2201664
Offering Amt ($) 569750 820763 709646 250000 400000 600000 1000000 2243830

Panel B: Issuer
ME(log) 569750 10.63 1.24 8.55 9.79 10.61 11.55 12.52
Debt/BE 560903 0.66 2.49 0.23 0.38 0.50 0.64 1.29
ROE 557029 0.36 11.86 -0.01 0.07 0.12 0.20 0.56
IdioRisk 569692 1.23 0.91 0.51 0.76 1.02 1.42 2.56

Panel C: Estimaded betas
βMKT
tot 315435 0.09 0.44 -0.48 -0.10 0.05 0.24 0.79

βTERM
tot 315435 -0.99 1.19 -3.19 -1.56 -0.75 -0.26 0.47

βDEF
tot 315435 -1.07 3.44 -6.84 -2.55 -0.69 0.62 3.50

βTED
tot 315435 -2.43 8.28 -13.89 -3.44 -0.86 0.66 4.75

βMKT
dur 312262 0.07 0.49 -0.57 -0.14 0.02 0.24 0.87

βDEF
dur 312262 0.53 2.58 -2.82 -0.39 0.36 1.34 4.23

βTED
dur 312262 -1.68 5.25 -10.43 -2.96 -0.69 0.42 3.86

Panel D: Aggregated climate change betas
Med(βCC)tot 315435 -0.10 0.35 -0.71 -0.25 -0.08 0.07 0.43
Med(βCC)dur 312262 0.01 0.30 -0.47 -0.12 0.02 0.15 0.49
Mean(βCC)tot 315435 -0.07 0.81 -1.35 -0.46 -0.09 0.32 1.28
Mean(βCC)dur 312262 -0.11 0.63 -1.19 -0.38 -0.06 0.20 0.81

Panel F: Uncertainty climate change betas
Unc(βCC)MAD

tot 315435 0.81 0.62 0.18 0.37 0.63 1.06 1.98
Unc(βCC)MAD

dur 312262 0.64 0.55 0.12 0.26 0.48 0.83 1.72
Unc(βCC)Stdtot 315435 2.23 2.13 0.35 0.82 1.53 2.94 6.36
Unc(βCC)Stddur 312262 1.75 1.79 0.24 0.59 1.14 2.23 5.33

Note: The table presents summary statistics for the US sample, including bond, issuer,
and estimated betas. The statistics include the number of observations (N), the mean,
standard deviation (SD), and percentiles (5th, 25th, median, 75th, and 95th) for each
variable.
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2.2.2. Markit IBOXX

The EU sample includes data from the Markit IBOXX EURO Corpo-
rate Index (January 2004 to December 2023) includes 4,548 investment-grade
bonds with a BBB rating or higher, a maturity of at least one year, and a
minimum outstanding amount of e500 million.12 The filters applied to the
European sample are similar to those used for the US sample. After exclud-
ing convertible, sinking, and floating bonds, 3,881 bonds remain, representing
114,047 month-bond observations. Markit also provides information on bond
issuance, including the underwriter, yield, offer price, offer date, maturity,
and other characteristics. Markit credit ratings represent the linearized av-
erage of ratings from Fitch Ratings, S&P Global Ratings, and Moody’s.

2.2.3. Total and duration-adjusted returns

As mentioned earlier, distinguishing between total and duration-adjusted
(credit) returns is crucial to estimate climate exposures. To achieve this,
total returns are first calculated using the methodology from Bessembinder
et al. (2008),

rtoti,t =
Pi,t + AIi,t + Cpi,t
Pi,t−1 + AIi,t−1

− 1 (2)

where Pi,t is the price of bond i at the end-of-month t, AIi,t is the accrued
interest, and Cpi,t is the coupon payment, if any.13 Then, the construction
of duration-adjusted returns follows van Binsbergen et al. (2025). Given
the fixed nature of corporate bond coupons, the duration decomposition can
be computed using Macaulay duration, which represents the time-weighted
present value of bond cash flows, expressed as:

Dt =
∞∑
t=1

wt,ktk (3)

12Please refer to for detailed rules and index calculations of the EUR Corporate indices
https://ihsmarkit.com/products/indices.html.

13For the EU, prices are sourced from end-of-month quotes, while for the US, transac-
tion prices are used. While quoted data typically provide advantages in cross-sectional
comparability and reduced noise, transaction prices more accurately reflect realized mar-
ket values (Biais et al., 2006). The choice of methodology is mainly influenced by data
availability constraints, since transaction-level data for the EU corporate bond market is
currently unavailable.

12

https://www.markit.com/Company/Files/DownloadFiles?CMSID=910be37be7154e13bbb18aa81e801e90
https://ihsmarkit.com/products/indices.html


Table 3: Summary Statistics: EU sample

N. mean SD. 5th 25th median 75th 95th

Panel A: Bond
Ret (rtot) 114019 0.18 2.77 -3.72 -0.55 0.18 1.10 3.86
Dur-Adj (rdur) 113848 0.05 1.52 -1.74 -0.27 0.07 0.45 1.78
Bond Price 114019 104.88 9.40 92.25 100.63 104.17 108.64 118.51
YTM 114019 2.25 2.43 -0.06 0.49 1.38 3.43 7.00
CS 113848 0.87 1.17 -0.14 0.39 0.65 1.08 2.51
Rating 114019 2.50 0.60 1.00 2.00 3.00 3.00 3.00
Duration 114019 5.23 2.92 1.46 3.02 4.75 6.84 10.44
Illiq 114019 0.63 0.54 0.18 0.33 0.50 0.73 1.50
VaR95 68481 2.15 1.95 0.52 1.01 1.59 2.57 5.44
Amt Out (e) 114019 929070 472191 546974 609765 797048 1086977 1796649
Offering Amt (e) 114019 773561 356454 500000 500000 700000 925800 1500000

Panel B: Issuer
ME(log) 114019 10.00 1.08 8.09 9.34 10.14 10.79 11.52
Debt/BE 113400 0.57 0.72 0.22 0.38 0.49 0.63 0.98
ROE 112417 0.11 0.49 -0.04 0.06 0.10 0.15 0.27
IdioRisk 113488 1.19 0.69 0.54 0.79 1.03 1.39 2.31

Panel C: Estimated betas
βMKT
tot 66590 0.14 0.36 -0.30 -0.04 0.10 0.28 0.69

βTERM
tot 66590 -0.73 1.12 -2.70 -1.13 -0.50 -0.11 0.53

βDEF
tot 66590 -0.82 3.30 -6.30 -2.23 -0.63 0.67 3.94

βTED
tot 66590 -2.53 8.42 -14.12 -4.59 -1.70 -0.02 9.19

βMKT
dur 65190 0.06 0.31 -0.37 -0.10 0.03 0.19 0.56

βDEF
dur 65190 0.01 1.63 -2.28 -0.83 -0.06 0.67 2.65

βTED
dur 65190 -0.87 3.54 -5.69 -1.70 -0.45 0.34 3.01

Panel D: Aggregate climate change betas
Med(βCC)tot 66590 -0.16 0.37 -0.83 -0.34 -0.12 0.07 0.32
Med(βCC)dur 65190 -0.03 0.17 -0.30 -0.11 -0.02 0.06 0.20
Mean(βCC)tot 66590 -0.03 0.81 -1.32 -0.40 0.01 0.38 1.15
Mean(βCC)dur 65190 0.03 0.33 -0.50 -0.09 0.05 0.19 0.47

Panel F: Uncertainty climate change betas
Unc(βCC)MAD

tot 66590 0.78 0.60 0.18 0.38 0.63 1.00 1.86
Unc(βCC)MAD

dur 65190 0.34 0.27 0.09 0.17 0.27 0.43 0.82
Unc(βCC)Stdtot 66590 2.22 2.03 0.35 0.88 1.67 2.89 5.87
Unc(βCC)Stddur 65190 0.93 0.88 0.17 0.38 0.67 1.18 2.48

Note: The table presents summary statistics for the EU sample, including bond, issuer,
and estimated betas. The statistics include the number of observations (N), the mean,
standard deviation (SD), and percentiles (5th, 25th, median, 75th, and 95th) for each
variable.
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where wt,k represents the present value weight of the kth cash flow, and tk
denotes the time until that cash flow occurs. To calculate duration-matched
risk-free rates, we use ECB benchmark interest rates derived from AAA-rated
euro sovereign bonds. These rates cover maturities of k = {1, 2, 3, 4, 5, 7, 10, 15, 20, 30}
years. Following Swinkels (2019), monthly returns are derived for the k-
period zero-coupon bonds using the ECB yield curve. The modified dura-
tion Dk,t of a risk-free bond at par value is then approximated using yield-
to-maturity Yk,t and remaining maturity Mk,t, as shown in the following
equation:

Dk,t(Yk,t,Mk,t) =
1

Yk,t

[
1− 1

(1 + 0.5 · Yk,t)2
·Mk,t

]
(4)

The bond’s convexity, denoted as Ck,t, captures the non-linear relationship
between price and yield, and is defined as follows:

Ck,t(Yk,t,Mk,t) =
2

Y 2
k,t

[
1− 1

(1 + 0.5 · Yk,t)2
·Mk,t

]
− 2 ·Mk,t

Yk,t · (1 + 0.5 · Yk,t)2
·Mk,t+1

(5)
Then the kth-period return recbk,t is calculated using:

recbk,t (Yt−1, Yk,t,Mk,t) = Yt−1−Dk,t · (Yk,t−Yt−1)+
1

2
·Ck,t · (Yk,t−Yk,t−1)

2 (6)

Note that for monthly returns, Yk,t−1 in the first term must be expressed
as (1 + Yk,t)

1/12 − 1 of the annual yield, while duration and yields in other
terms maintain annual units. When interest rates remain constant, the sec-
ond and third terms become zero, equalizing realized and expected returns
(Swinkels, 2019). The duration adjustment measures excess returns relative
to the duration-matched risk-free rate. It is calculated as the bond’s total
return minus the interpolated risk-free rate for the same duration:

rduri,t = rtoti,t − recbi,t (7)

Tables 2 and 3 present summary statistics for bond-month observations
from September 2004 to September 2022. While EU total and duration-
adjusted returns are converted to USD using Compustat exchange rates, EU
bond prices remain in euros to preserve the standard face value of 100. Eu-
ropean bonds yield an average monthly return of 0.18% (2.16% annualized),
slightly lower than the US average of 0.19%. Both markets exhibit the same
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volatility. Duration-adjusted returns are significantly lower at 0.11% and
0.05%, respectively, reflecting compensation for credit risk.The gap between
total and duration-adjusted returns is driven by Treasury returns rather than
credit risk.

The EU sample has an average yield to maturity (Y TM) of 2.25% and an
average credit spread (CS) of 0.87%, with bond durations ranging from 1.46
years (5th percentile) to 10.44 years (95th percentile). In the US, the yield
to maturity (Y TM) is 3.50%, and the credit spread (CS) is 1.53%. Bond
durations vary more widely, from 1.45 years (5th percentile) to 16.38 years
(95th percentile). Illiquidity (Illiq) is lower in the US ( 0.53) than in the EU
(0.63). Due to the higher number of issuances, the total outstanding amount
in the US corporate bond market is larger.

2.2.4. Climate betas

For each bond i in each month t, the climate beta β(j) is estimated from
the monthly rolling regression of the bond’s total (duration-adjusted) excess
returns on innovations in the monthly climate change index j, using a 36-
month window with a minimum of 24 monthly return observations.14 The
model is specified in equations (8), and controls for market excess returns
(Mkt), illiquidity (ILLIQ), term spread (TERM), default spread (DEF )
and Treasury-EuroDollar rate spread (TED). Note that the term spread
is excluded for duration-adjusted return estimation, as its effect is already
incorporated by using corporate bond excess returns over the matched trea-
suries.

Total Returns Duration-Adjusted Return

rtoti,t − rf,t = αi,t + β
(j)
i,t CCj

t

+ βMkt
i,t Mktt + βILLIQ

i,t ILLIQt

+ βDEF
i,t DEFt + βTED

i,t TEDt

+ βTERM
i,t TERMt

+ εi,t

rduri,t = αi,t + β
(j)
i,t CCj

t

+ βMkt
i,t Mktt + βILLIQ

i,t ILLIQt

+ βDEF
i,t DEFt + βTED

i,t TEDt

+ εi,t

(8)

14To simplify notation, a climate beta is estimated separately for each climate index us-

ing total (tot) or duration-adjusted returns (dur). When necessary, the subscripts β
(j)
ret(i,t)

or β
(j)
tot(i,t) will specify the return used for the estimation. If no subscript is provided, the

statement applies in both cases.
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2.2.5. Climate beta uncertainty

The uncertainty of the climate beta is calculated using the mean absolute
deviation over the median (MAD) between the estimates of the Climate be-
tas, following the methodology outlined by Hollstein et al. (2020); Chen and
Demirer (2022).15 The the climate beta uncertainty, UncMAD

r(i,t) , is computed
as follows:

Unc(βCC)MAD
r(i,t) =

1

Nt − 1

Nt∑
j=1

∣∣∣β(j)
r(i,t) −Med(βCC)r(i,t)

∣∣∣ (9)

where Nt represents the number of available climate indices at time t,16

and Med(βCC)r(i,t) denote the median of the climate beta across all climate
indices for the bond i at time t. These estimates of climate beta uncertainty
are calculated for both excess total and duration-adjusted returns, where r
represents either tot or dur, respectively.

For robustness, the uncertainty of the climate beta is estimated using the
standard deviation (Std), calculated as follows:

Unc(βCC)Stdr(i,t) =

√√√√ 1

Nt − 1

Nt∑
j=1

(
β
(j)
r(i,t) −Mean(βCC)r(i,t)

)2

(10)

Here, Nt again represents the number of climate indices, andMean(βCC)r(i,t)
denotes the average climate beta estimates for bond i at time t, and r repre-
sents tot or dur, respectively. Table 4 presents the correlations between the
returns and the uncertainty (aggregated) climate betas. The negative corre-
lations between median climate betas and uncertainty indicate that higher
median values associate with lower dispersion measured by MAD, and vice
versa. This relation appears in both the US and EU samples. Figure 1 shows
the time series of the aggregate climate beta uncertainty (and median) along
the other climate beta estimates.

15As noted by Hollstein et al. (2020), CAPM market betas are not directly observable
and are influenced by estimation uncertainties that depend on the sample period and
methods used. Recent research indicates that market beta uncertainty is priced in stock
returns in the US, and uncertainty from oil beta estimations is priced in international
markets Chen and Demirer (2022).

16Figure 3 in the appendix shows the number of available climate indices over time.
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Figure 1: Time Series of Climate beta aggregates
These figures plots the (standardized) time series of the cross-sectional value-weighted
average of the beta uncertainty measure (in purple), the median climate beta (in blue)
along with the other climate indices (in grey). US total returns (top left), US duration-
adjusted returns (top right), EU total returns (bottom left), and EU duration-adjusted
returns (bottom right).
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Table 4: Correlations: returns and climate betas

1 2 3 4 5 6 7 8 9 10

Panel A: US
1 Ret (rtot) 1.00
2 Dur-Adj (rdur) 0.73 1.00
3 Mean(βCC)dur 0.03 0.05 1.00
4 Unc(βCC)Stddur 0.03 0.04 -0.42 1.00
5 Med(βCC)dur -0.03 0.03 0.59 -0.02 1.00
6 Unc(βCC)MAD

dur 0.04 0.04 -0.37 0.94 -0.06 1.00
7 Mean(βCC)tot -0.01 0.04 0.58 -0.15 0.43 -0.18 1.00
8 Unc(βCC)Stdtot 0.09 0.07 -0.04 0.54 0.01 0.57 0.14 1.00
9 Med(βCC)tot -0.08 0.01 0.40 -0.07 0.72 -0.17 0.60 -0.04 1.00
10 Unc(βCC)MAD

tot 0.05 0.04 -0.15 0.61 -0.11 0.82 -0.02 0.93 -0.20 1.00

Panel B: EU
1 Ret (rtot) 1.00
2 Dur-Adj (rdur) 0.82 1.00
3 Mean(βCC)dur -0.05 -0.01 1.00
4 Unc(βCC)Stddur 0.11 0.07 -0.09 1.00
5 Med(βCC)dur -0.13 -0.03 0.62 -0.14 1.00
6 Unc(βCC)MAD

dur 0.07 0.04 -0.17 0.94 -0.23 1.00
7 Mean(βCC)tot -0.03 0.00 0.72 -0.11 0.49 -0.16 1.00
8 Unc(βCC)Stdtot 0.15 0.10 -0.08 0.67 -0.11 0.66 0.03 1.00
9 Med(βCC)tot -0.16 -0.04 0.50 -0.21 0.80 -0.32 0.65 -0.09 1.00
10 Unc(βCC)MAD

tot 0.08 0.05 -0.19 0.70 -0.26 0.86 -0.19 0.92 -0.33 1.00

Note: This table displays the correlations between the returns and the aggregated and
uncertainty climate betas for the US and EU samples.
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3. Methodology & empirical findings

This section presents the model and results, beginning with an examina-
tion of the impact of using duration-adjusted returns versus total returns on
selected climate indices.

3.1. The impact of climate betas on total and duration-adjusted returns

This part analyzes the relationship between a bond’s climate-change beta
and its one-month ahead total and duration-adjusted returns. Based on
Huynh and Xia (2020), we estimate the following model specification:

ri,t+1 = α + γjβ
(j)
i,t + δ′Xi,t + θi + τ + εi,t (11)

for climate change index j, for bond i month t, the model includes bond-level
control variables such as downside risks, maturity, rating, amount outstand-
ing, liquidity, bond market beta, term spread beta (for total returns only),
default spread beta, and TED spread beta. In addition, issuer-level variables
such as idiosyncratic risk, leverage ratio, market capitalization, and return
on equity are considered. Fixed effects for issuer (θi), time (τ), and Fama-
French 17 industries (υ) are incorporated to account for the unobserved het-
erogeneity between different time periods, issuers, and industries.17 Control
variables are winsorized cross-sectionally at the 1st and 99th percentiles, and
standardized cross-sectionally by region to control for outliers. The model is
estimated for total and duration-adjusted returns, separately.

Table 5 reports the regression coefficients for one-month-ahead total and
duration-adjusted returns, regressed on three climate betas: WSJ, MCCC,
and MeCCO. These indices aggregate various climate topics and are used
in previous studies, enabling comparisons. Columns 1 and 2 present results
for the US, while columns 3 and 4 display results for the EU. All estimates
account for fixed effects at the issuer, time, and industry levels. The analysis
explores the impact of aggregate climate attention and sentiment on returns
in both regions.

17Fixed effects are used to account for biases from unobserved heterogeneity, macroe-
conomic trends, seasonality, and industry-specific factors. It captures both cross-sectional
differences and time-varying betas. More importantly, it produces robust standard errors
clustered at the firm level, which mitigates serial correlation issues within firms (Petersen,
2008). This is relevant for corporate bonds, which experience high attrition due to bond
maturities or defaults. Although there have been only 33 instances of IG defaults since
2004, 1,400 out of 4,352 bonds have exited the sample, representing 30% of it.
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Table 5: Panel Regressions Bond Returns on selected Climate Change Betas

US EU

Tot Dur Tot Dur

1 2 3 4

Panel A: WSJ from Engle et al. (2020) [2005-2016]

β
(wsj)
tot -0.02* 0.01

(-1.92) (0.13))

β
(wsj)
dur 0.03*** 0.05*

(3.50) (1.66)

Obs. 145466 145132 29803 28434
Adj. R2 0.268 0.255 0.358 0.324

Panel B : MeCCO from Benham et al. (2020) [2004-2022]

β
(MeCCO)
tot -0.04**** -0.17***

(-3.50) (-8.33)

β
(MeCCO)
dur 0.04*** 0.00

(3.60) (0.41)

Obs. 283714 282765 63314 62176
Adj. R2 0.399 0.343 0.504 0.482

Panel C : MCCC from Ardia et al. (2023) [2004-2022]

β
(MCCC)
tot -0.04*** -0.15***

(-3.99) (-7.38)

β
(MCCC)
dur 0.03*** -0.01

(4.56) (-0.40)

Obs. 285216 284263 63546 62176
Adj. R2 0.398 0.342 0.503 0.482

Controls Yes Yes Yes Yes
Issuer FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes

Note: This table presents the results from the panel regressions of one-month-ahead bond
(Total and Duration-Adjusted) returns on βCC. Panel A reports the estimates using the
WSJ index from Engle et al. (2020). Panel B reports the estimates using the MeCCO
index from Benham et al. (2020). Panel C reports the estimates using the MCCC index
from Ardia et al. (2023). Columns 1 and 2 report the regression results for the US sample.
Columns 3 and 4 report the regression results for the EU sample. t-statistics are presented
in parentheses using issuer-level clustered standard errors. *, **, and *** indicate statis-
tical significance at the 10%, 5%, and 1% level, respectively.
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Panel A presents the results using the WSJ index from 2005 to 2016,
revealing regional differences in the impact of climate exposure on bond re-
turns. A one-unit increase in the WSJ beta is associated with a 0.02 per-
centage point decrease in future total bond returns, statistically significant
at the 10% level. This indicates that higher climate exposure is related to
lower future returns. This result supports the hedging hypothesis and is in
agreement with previous findings in Huynh and Xia (2020); Lalwani (2024).
For duration-adjusted returns, the WSJ beta is associated with a 0.03 per-
centage point increase in future returns, statistically significant at the 5%
level. This finding contrasts with the total return results and supports the
risk-return trade-off hypothesis, implying that exposure to climate risks is
priced with higher future credit returns. These findings suggest that in the
US, climate risk captured by the WSJ index negatively affects total returns
but is priced positively in duration-adjusted returns. In the EU, although
no clear relationship emerges for total returns, the WSJ index has a signif-
icant positive effect on duration-adjusted returns, with a coefficient of 0.05,
statistically significant at the level 5%.

Panel B, using the MeCCO index from 2004 to 2022, reveals a negative
and significant relationship between climate betas β

(MeCCO)
tot and total returns

in the US (-0.04), in contrast to the positive coefficient between β
(MeCCO)
dur

and duration-adjusted returns (0.04), both statistically significant at the 1%
level. This further supports the distinction between a climate discount for
total returns and a climate premium for duration-adjusted returns. In the
EU, the coefficient for total returns is negative (-0.17), indicating higher costs
for hedging climate risks, likely due to stronger climate policies, stricter sus-
tainability regulations, and greater sensitivity to climate risks. These factors
suggest that investors may accept even lower returns. However, the duration-
adjusted return coefficient remains statistically insignificant, reinforcing the
absence of a credit climate premium in the EU (Bats et al., 2024).

Panel C, based on the MCCC index from 2004 to 2022, reveals the same
negative coefficient between climate beta β

(MCCC)
tot and total returns in the US

(-0.04), and a similar positive coefficient for duration adjusted returns (0.03).
Not surprinsingly, the estimates from the MeCCO and MCCC betas align
closely, as both indices use similar sources.18 Overall, the results suggest a

18Figures 7 and 8 in the appendix compares the evolution of these indices over time,
showing similar variations.The time-series show a correlation of 0.61 with all MeCCO
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generally negative effect of climate betas on total returns, while the effect on
duration-adjusted returns varies by region and climate index.

3.2. Distribution of climate betas loadings

Figure 2 presents the coefficients (loadings) of the remaining climate in-
dices, including aggregated indices, topic-specific indices, and climate indi-
cators, estimated using the model (11). A significant challenge in analyzing
these indices is their varying observation periods. Since not all indices are
available consistently over time, mainly due to infrequent updates from the
authors, data gaps may exist. These limitations must be considered when
interpreting the results and comparing trends across indices. To address this,
two sets of sub-samples are presented. The subplots in the left column show
results from a reduced sample period (2010-2016), during which all climate
indices have available data. This removes temporal disparities and allows for
direct comparisons of the coefficients; however, this reduces the sample size
considerably. In contrast, the right-column subplots use the full available
data for each climate index, highlighting how variations in the sample period
can substantially influence the estimated coefficients.

The indices are sorted in ascending order on estimations based on total
returns; at the bottom are those indices with negative coefficients (e.g., those
that provide climate hedges) and at the top those indices that provide posi-
tive coefficients (those that give a premium). For example, the first subplot
on the top left shows the coefficients for US returns, where indices from Ar-
dia et al. (2023) on topics such as business, environmental research, and the
aggregate index are among those that offer better climate hedges for total
returns. However, for duration-adjusted returns the coefficients become less
negative (or even positive). In contrast, climate indices with positive coeffi-
cients are somewhat related to physical risks, such as NatDis of Bybee et al.
(2023), climate policies of Faccini et al. (2021), and temperature, which are
correlated with higher future returns (Balvers et al., 2017). Their coefficient
on duration-adjusted returns are even higher. Interestingly, the WSJ index
shows a negative but insignificant coefficient during this period. However, it
becomes positive and significant when considering the entire available period.
Similarly, for other indices, when the full sample with available observations

newspapers and 0.89 with MCCC’s newspapers (New York Times, Washington Post, Los
Angeles Times, Wall Street Journal, USA Today, and Associated Press).
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Figure 2: Coefficients for total and duration adjusted returns for US (top) and
EU (bottom) The left subplots show obvservations where all climate indices are avaialble
(2010-05 to 2016-03); the right subplots display the coefficients across all available months
for each index.
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is considered, some indices that were negative and significant become posi-
tive or insignificant, for example the climate index from Brøgger and Kronies
(2020). The order of the coefficients of the indices varies by region, in the
EU the indices that offer better hedges are MeCCO and Global Warming
from Faccini et al. (2021). Considering all indices, the evidence suggests
that climate risks are priced in corporate bonds.19

These findings support Hypothesis 1, showing that climate beta affects
corporate bond returns differently for total versus duration-adjusted returns.
Bonds with higher climate beta show on average lower total returns (climate
discount) but higher duration-adjusted returns (climate premium).

3.3. Climate beta aggregation or dispersion?

This part considers different approaches to aggregated climate betas us-
ing the median and dispersion with the climate beta uncertainty measured
by MAD. Table 4 presents the pairwise correlation coefficients between the
returns and the aggregated and uncertainty climate betas.20

The results show that the climate beta Med(βCC) shows a significant
negative relationship with the total returns in the two regions. In the US,
the coefficient is -0.06, while in the EU, it reaches -0.15, suggesting a stronger
inverse relationship between climate beta and returns in the European mar-
ket. For duration-adjusted returns, Med(βCC) has a positive and significant
effect in the US, with a coefficient of 0.04, while in the EU, the coefficient is
insignificant. This reveals that higher climate betas are associated with lower
total returns in both regions. However, the significance of duration-adjusted
returns is positive and significant only in the US.

Looking at the beta uncertainty of the climate, as captured by Unc(βCC)MAD,
the results reveal a clear positive relationship on future bond returns for all
samples and return measures. This suggests that investors demand a risk
premium for bonds with a higher uncertainty about climate risk exposures.

19Figure 5 in the appendix shows the p-value distribution for significance of the different
climate indices. The p-values are adjusted using Benjamini and Hochberg (1995) to ac-
count for multiple testing at the 5% threshold. Despite this, many climate indices remain
significant in predicting returns, both positively or negatively.

20Figure 4 shows the correlations between the climate indices (in some cases exceed-
ing 0.7). To address potential multicollinearity, climate betas are aggregated using
mean/median values and uncertainty measures (MAD/standard deviation). Subsequent
analyzes employ median and MAD for their robustness to outliers.

24



Table 6: Panel Regressions of Bond Returns on Climate Change: Interaction
Between Median Climate Beta and Uncertainty

US EU

1 2 3 4 5 6

Panel A: Total Returns
Med(βCC) -0.06*** -0.12*** -0.15*** -0.16***

(-5.12) (-8.69) (-8.05) (-3.53)
Unc(βCC)MAD 0.09*** 0.09*** 0.13* 0.13**

(6.38) (5.96) (1.80) (2.22)
Med(βCC) × Unc(βCC)MAD 0.04*** 0.01

(3.93) (0.26)

Obs 285216 285216 285216 63546 63546 63546
Adj. R2 0.398 0.398 0.399 0.503 0.501 0.503

Panel B: Duration-Adjusted Returns
Med(βCC) 0.04*** 0.03*** -0.01 -0.05*

(4.88) (2.71) (-1.29) (-1.90)
Unc(βCC)MAD 0.05*** 0.05*** 0.06*** 0.06***

(4.39) (4.32) (2.91) (3.30)
Med(βCC) × Unc(βCC)MAD 0.01 0.02

(0.68) (0.93)

Obs. 284263 284263 284263 62176 62176 62176
Adj. R2 0.342 0.342 0.343 0.482 0.482 0.483

Controls Yes Yes Yes Yes Yes Yes
Issuer FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes

Note: This table presents the results from the panel regressions of one-month-ahead bond
(Total and Duration-Adjusted) returns, examining the interaction between median climate
beta, Med(βCC), and climate beta uncertainty, Unc(βCC)MAD. Columns 1 to 3 report
the regression results for the US sample. Columns 4 to 6 report the regression results
for the EU sample. Definitions of all variables are provided in the Appendix. All models
include issuer, industry, and time fixed effects. t-statistics are presented in parentheses
using issuer-level clustered standard errors. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% level, respectively. Model specifications are presented at the
bottom of the table.
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For total returns, the coefficients range from 0.09 to 0.13, indicating a higher
premium in the EU market. For duration-adjusted returns, the coefficients
are somewhat lower, 0.05 to 0.06.

The results are consistent with Hypothesis 2, indicating that a bond’s
climate risk uncertainty Unc(βCC) is positively related to its future returns.
As climate risk uncertainty increases, investors demand higher compensation
for bonds with uncertain climate risks, leading to higher future returns.

3.4. Climate beta uncertainty interactions

Columns 3 and 6 of Table 6 investigate how the interaction between the
median climate betaMed(βCC) and the climate beta uncertainty Unc(βCC)MAD

influences the bond returns. Understanding this interaction is critical, as it
helps assess whether climate beta uncertainty and aggregated climate beta
exposure amplifies or mitigates the impact bond performance. Significant
and positive results are found only in column 3 for the total returns of the
US sample, where the interaction term Med(βCC)×Unc(βCC)MAD is pos-
itive and significant (0.04). This suggests that as both the median climate
beta and its uncertainty increase, the relationship with bond returns becomes
less negative. The negative median climate beta suggests that bonds with a
higher median climate beta generally offer hedging benefits (although lower
returns/higher prices), but this effect is partially offset when uncertainty in-
creases, as shown by the positive interaction term. Higher aggregated climate
betas coupled with increased climate beta uncertainty diminish the hedging
benefits of bonds, reflecting a classic risk-return trade-off.

The findings reveal a nuanced interplay between aggregated climate beta
and uncertainty in bond returns. While the median climate beta negatively
impacts returns, climate change uncertainty exhibits a positive effect. The
inconsistent interaction suggests that markets potentially price these fac-
tors separately—climate beta reflecting direct climate risk exposure, and un-
certainty capturing the deviation of climate risk exposures, thereby driving
higher returns as investors demand compensation for increased ambiguity.

3.5. Climate beta uncertainty and climate change shocks

This part investigates the impacts of climate change shocks on the coeffi-
cients of climate uncertainty. Previous findings indicate differences between
expected risks of climate change and the materialization of such risks (Balvers
et al., 2017; Barnett, 2023; Baker et al., 2024a). The aim is to understand
how different climate change shocks affect this relationship. To explore these
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Table 7: The impact of climate change shocks on climate change exposures

US EU

1 2 3 4 5 6 7 8

Panel A: Total Returns
Unc(βCC)MAD 0.11*** 0.27*** 0.09*** 0.10*** 0.28*** 0.22 0.15** 0.12

(5.85) (6.64) (6.10) (6.48) (2.89) (1.61) (2.13) (1.51)
Paris× Unc(βCC)MAD -0.02 -0.25***

(-1.08) (-4.94)
Reg(grant) × Unc(βCC)MAD -0.21*** -0.10

(-4.46) (-1.14)
Reg(unpri) × Unc(βCC)MAD -0.00 -0.11*

(-0.03) (-1.66)
Phy × Unc(βCC)MAD -0.00 0.08*

(-0.18) (1.75)

Obs. 287092 287092 287092 287092 63546 63546 63546 63546
Adj. R2 0.402 0.403 0.402 0.402 0.502 0.501 0.501 0.501

Panel B: Duration-Adjusted Returns
Unc(βCC)MAD 0.03* 0.27*** 0.06*** 0.07*** 0.10*** 0.12** 0.06*** 0.05**

(1.67) (6.66) (4.65) (5.30) (3.64) (2.57) (2.82) (2.11)
Paris× Unc(βCC)MAD 0.05** -0.08***

(2.49) (-3.37)
Reg(grant) × Unc(βCC)MAD -0.25*** -0.07*

(-5.73) (-1.72)
Reg(unpri) × Unc(βCC)MAD -0.05** -0.02

(-2.05) (-0.40)
Phys× Unc(βCC)MAD -0.07*** 0.06**

(-3.37) (2.43)

Obs. 284263 284263 284263 284263 62176 62176 62176 62176
Adj. R2 0.342 0.344 0.342 0.342 0.483 0.482 0.482 0.482

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Issuer FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Note: This table presents regression results examining the impact of climate change un-
certainty and the moderating role of climate change shocks on one-month ahead bond
returns. The climate change shocks consist of dummy variables for the Paris Agreement
(post-December 2015), regulatory shocks from Grantham reg(grant) or UNPRI reg(unpri),
and physical disasters from EM-Data Phys. Panel A presents total returns, and Panel B
reports duration-adjusted returns. Columns 1 to 4 report results for the US sample, while
columns 5 to 8 show results for the EU sample. Definitions of all variables are provided in
the Appendix. All models include issuer, industry, and time fixed effects. t-statistics clus-
tered at the issuer-level are reported in parentheses. Statistical significance is indicated
by ***, **, and * for the 1%, 5%, and 10% levels, respectively.
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effects, the analysis focuses on the interaction terms between climate change
shocks, such as regulatory and physical disasters, climate uncertainty, and
future bond returns. The results are presented in Table 7, which shows the
extent to which the bonds’ returns react to climate change shocks in relation
to their climate change exposures.

Data on climate disasters are sourced from the Center for Research on
the Epidemiology of Disasters (CRED), covering over 15,000 extreme weather
events. The analysis filters for events causing 100+ deaths or damages ex-
ceeding 0.1% of GDP, then aggregates monthly disaster counts for the EU
and US, following Baker et al. (2024b). Climate regulation data comes from
the Grantham Research Institute and UNPRI, with manual verification of
signing months, focusing on EU and US regulations. Here, Reg(grant) and
Reg(unpri) represent regulations from these sources, while Phy denotes phys-
ical climate shocks.

The findings indicate that climate beta uncertainty Unc(βCC)MAD gen-
erally increases both total and duration-adjusted bond returns in the US
and EU markets, with coefficients ranging from 0.03 to 0.28. However, vari-
ous climate-related shocks can significantly alter these effects. For example,
the Paris Agreement has differing impacts across regions (insignificant in
US total returns but significantly negative in the EU at -0.25). Further-
more, regulatory shocks Reg(grant) and Reg(unpri) show primarily negative
effects (especially pronounced for Grantham in the US at -0.21 to -0.25),
while physical climate shocks exhibit contrasting effects in the US (-0.07 for
duration-adjusted returns) compared to the EU (positive effects ranging from
0.06 to 0.08).

According to hypothesis 3, the findings indicate that as climate uncer-
tainty decreases, the positive impact of climate risk exposure on future re-
turns weakens, supporting the hypothesis that predictability reduces the mar-
ket’s reaction to climate risks.

3.6. Economic implications

To assess the economic significance of Unc(βCC)MAD in estimates of 0.13
(total) and 0.06 (duration-adjusted) for the US, a one-standard-deviation in-
crease in climate beta uncertainty 0.61 (0.52) leads to a rise in next month’s
bond excess return of 7.93 bps (3.12 bps). Similarly for the EU, with esti-
mates of 0.09 (0.05), a one-standard-deviation increase 0.60 (0.26) results in
a 5.4 bps (1.3 bps) increase in bond excess returns.
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This can also be interpreted in terms of the dollar cost of debt issuance
by assuming that an average firm issues a new corporate bond with the same
characteristics as the average bond. For the US, given the average bond
price of $106.77 and the average offer amount of $820,763, an increase in
total bond returns of 7.93 bps results in a higher debt cost of $6.94 million
(106.77 × 820, 763 × 0.0108). In contrast, an increase in duration-adjusted
returns of 3.12 bps leads to a cost of $2.73 million which reflects the cost of
debt when isolating long-term interest risks. For the EU, the average bond
price is e104.88, and the offering amount is e773,561. With an increase of
5.4 bps (1.3 bps), this results in a higher cost of debt of e4.38 million for
total returns and e1.05 million for duration-adjusted returns.

Although the cost of debt due to climate change uncertainty will be the
same for the issuer, the decomposition highlights two key components: the
duration risk arising from changes in interest risk and the credit-specific risk.
The duration-adjusted estimation isolates issuer-specific risks by removing
interest rate fluctuations, revealing the impact of credit-specific climate risk
uncertainty on debt costs. For the US, these credit-specific climate risks
contribute about 40% of the total cost due to climate uncertainty, while for
the EU, it is 23%. This underscores the need for issuers to consider climate-
related uncertainties in financial planning and risk management, as these
factors significantly affect their overall cost of capital.

4. Discussion & conclusion

Exposure to climate uncertainty carries a statistically significant positive
price of risk. Previous research indicates that exposure to climate change
correlates with future lower performance (Engle et al., 2020; Huynh and Xia,
2020), suggesting that a higher demand for assets more exposed to climate
risks increases their price and reduces average returns. Therefore,tThe im-
pact of climate beta on returns depends on the measure used. For duration-
adjusted returns, climate beta is positively associated with bond returns,
indicating that higher risk yields higher returns when interest effects are
removed. For total returns, the link is negative—a phenomenon known as
greenium. When climate risks rise, total returns drop because of interest
rate movements. Investors treat these bonds as safe havens, much like gov-
ernment bonds in market stress. This flight-to-safety drives prices up and
yields down, leading to a greenium. However, when isolating credit returns,
higher climate risk degrades credit quality, lowering prices, and raising yields.
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Barnett and Yannelis (2024) demonstrate that long-term climate damage ex-
pectations depress bond yields, particularly for long-maturity instruments.
These results emphasize the need for further research on climate risks in
corporate and sovereign bond pricing.

Multiple climate dimensions and indices prevent a unified measure of
risk. However, when the exposure to these indices diverges considerably,
there is a positive premium paid given the inability to hedge climate risks.
This provides a compensation for being exposed to multiple climate risks;
however, the compensation is small. As climate change poses systemic risks
that are largely unhedgeable, traditional bond markets may not adequately
reflect the true costs associated with climate change.

In examining regional differences, in the US, the sign of the climate beta
estimates shifts between positive (when using duration-adjusted returns) and
negative (when using total returns), consistent with the observations dis-
cussed above. In contrast, in EU, both the duration-adjusted climate betas
and the total return climate betas are negative. This consistent sign in Eu-
ropean markets suggests that bonds exposed to climate factors tend to have
lower returns, even after accounting for interest rate sensitivity. The dif-
ference between the US and Europe reflects the varying dynamics in how
climate risks are integrated into bond prices across these markets. European
investors may have a stronger preference for climate-aligned assets, leading
to lower yields (and thus lower returns) for such bonds due to higher demand.
This could be influenced by Europe’s more advanced ESG frameworks and
stricter climate policies, such as the EU Taxonomy and Sustainable Finance
Disclosure Regulation, which reinforce the effect greenium and indicate a
more mature integration of climate risks in the pricing of European bonds
(Bats et al., 2024). For climate beta uncertainties, both regions price them
positively with both return measures. This pricing implies higher debt costs
for issuers. It offers compensation for carrying out the risks.

In conclusion, uncertainty about climate risk matters for the corporate
bond market. Climate risk spans multiple dimensions, and various prox-
ies provide different measurements. As it remains largely undiversifiable,
bonds may not effectively hedge these risks or provide adequate compensa-
tion. Initially, investors appear to pay a premium for bonds with high climate
exposure. However, duration-adjusted returns show that these bonds yield
higher returns after controlling for interest rate risk. This outcome reflects
an increase in credit risk and debt costs due to climate sensitivity. Investors
may choose these bonds based on duration factors rather than credit funda-
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mentals.
The findings on climate beta uncertainty have key implications for in-

vestors and policymakers. For investors, understanding its impact of climate
beta uncertainty on bond pricing is essential for developing climate-resilient
strategies and identifying credit risks. For policymakers, integrating climate
beta uncertainty into regulatory frameworks is critical to enhancing finan-
cial system resilience. This requires improving scoring systems based on
emissions, decarbonization goals, and disclosures, while also accounting for
climate uncertainties. This study serves as a starting point for integrating cli-
mate beta uncertainty into investment and regulatory frameworks, strength-
ening resilience to climate change (Danisman et al., 2025).
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Figure 3: Climate change indices over time
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Figure 5: P-values controlling for multiple hypothesis testing
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B. Online Appendix for climate beta uncertainty in corporate bonds

The online appendix contains details on the construction of the MeCCO
climate index and supplementary results not reported in the main manuscript.

Climate Change Media Attention Index (MeCCO).

The aggregation takes inspiration from previous methodologies Gavriilidis
(2021); Brøgger and Kronies (2020); Baker et al. (2016); Ardia et al. (2023);

Engle et al. (2020). Formally, the ClimateIndex
(MeCCO)
t index is computed

as follows. The newspaper s publishes ns,t articles discussing topics about
climate change & global warming in month t = {1, . . . , T}. Barkemeyer
et al. (2018) show that the media coverage exhibits a deterministic trend,
low signal-to-noise ratio, and seasonal patterns in some newspapers.

Table 9 provides the list of newspapers in MeCCO. To address heterogene-
ity between sources, we standardize media coverage by newspaper source, as
done by Ardia et al. (2023); Da et al. (2011). In month t, we first demean
the news volume for each newspaper, ns,t, using its rolling average of 36
months, then divide by its rolling standard deviation of 36 months. Next,
we construct ClimateIndex

(MeCCO)
t by aggregating the source-specific data

and scaling by the number of sources, St.

ClimateIndex
(MeCCO)
t = h(

1

St

S∑
s=1

ns,t − ns,t

σs,t

) (B.1)

where ns,t and σs,t are the mean and standard deviation computed from t−36
to t, and h(·) is an increasing concave function that simulates saturation and
boredom effects caused by a decline in media attention (Barkemeyer et al.,
2018; Ardia et al., 2023).21

This construction ensures that the index in month t the available data
is up to month t (and does not have forward-looking bias) contrary to se-
lecting the standard deviation and average of the source sample. Doing this
gives more importance to within-newspaper variation rather than variation
between newspapers. Note that the length of the rolling window makes the
interpretation of ClimateIndex

(MeCCO)
t relative to its window values. This

21We replace h(·) for the square root function. The logarithmic transformation and the
24 rolling window are tested for robustness, yielding similar results.
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Table 9: Newspapers from MeCCO database
This table reports the European Newspaper and North American coverage of news articles
about climate change and global warming. The dataset is provided by the Media and
Climate Change Observatory (MeCCO) database. The sample period is from January
2004 to December 2023.

Newspaper Country Total Yearly Avg. Monthly

Avg. SD Min Max

Jyllandsposten Denmark 7935 33.17 32.79 18.37 6 165
Politiken Denmark 9694 39.98 40.06 20.50 6 184
Berlingske Tidende Denmark 6735 27.58 27.83 19.23 4 202
Daily Mail and Mail on Sunday England 11463 48.60 47.37 34.19 7 167
Guardian and Observer England 54696 225.64 226.02 146.10 40 981
Telegraph and Telegraph on Sunday England 22225 91.92 91.84 46.49 14 305
The Daily Mirror and Sunday Mirror England 11423 47.97 47.20 41.39 4 268
Times and The Sunday Times England 47261 195.82 195.29 130.63 20 812
Sun and News of the World or Sunday Sun England 11965 49.21 49.44 42.23 1 330
Helsingin Sanomat Finland 12789 53.13 52.85 36.89 4 202
Ilta-Sanomat Finland 3642 15.80 15.05 15.61 0 87
Agence France Presse France 38032 156.36 157.16 110.77 15 735
Le Monde France 10377 43.78 42.88 23.39 2 123
Le Figaro France 6841 28.69 28.27 18.80 3 101
Süddeutsche Zeitung Germany 20967 87.92 86.64 50.80 1 278
Die Tageszeitung Germany 9197 38.20 38.00 24.91 2 156
Irish Times Ireland 14979 62.32 61.90 36.35 12 207
La Repubblica Italy 4156 18.31 18.55 15.37 0 110
Corriere della Sera Italy 5036 21.25 20.81 18.29 0 92
Associated Press North America 31807 131.85 131.43 86.59 12 439
The Canadian Press North America 45908 194.56 189.70 159.31 15 1202
Globe & Mail North America 18602 76.65 76.87 41.66 18 236
National Post North America 22090 90.40 91.28 154.86 0 933
Toronto Star North America 18256 74.77 75.44 44.53 14 301
United Press International North America 9068 36.68 37.47 18.65 9 144
Los Angeles Times North America 13671 56.97 56.49 27.36 8 129
New York Times North America 42994 182.67 177.66 146.28 21 646
USA Today North America 3856 16.39 15.93 8.55 0 55
Wall Street Journal North America 3978 16.16 16.44 11.20 1 93
Washington Post North America 16782 69.57 69.35 39.66 8 239
Aftenposten Norway 6159 24.94 25.45 14.96 5 86
Dagbladet Norway 3174 12.93 13.12 9.61 2 70
VG Norway 3208 13.01 13.26 8.76 1 64
Correio da Manhã Portugal 3065 17.55 16.93 20.56 0 165
Izvestiya Russia 799 3.43 3.43 3.21 0 21
Rossiskaya Gazeta Russia 2160 8.89 8.93 6.50 0 42
Nezavisimaya Gazeta Russia 1728 7.33 7.14 5.31 0 31
Komsomolskaya Pravda Russia 662 3.14 3.04 2.37 0 16
El Páıs Spain 16580 68.53 68.51 45.57 7 281
El Mundo Spain 14773 60.57 61.05 41.87 7 218
La Vanguardia Spain 10399 43.59 42.97 26.93 5 144
Expansión Spain 6033 25.85 24.93 20.36 1 137
Dagens Nyheter Sweden 6235 25.87 25.76 17.14 2 91
Aftonbladet Sweden 3019 12.71 12.63 10.73 1 60
Expressen Sweden 2706 11.23 11.42 11.63 1 76

Total 617125 57.15 56.81 40.77 6 254
Total European 390113 47.80 47.60 32.23 5 206
Total North American 227012 86.06 85.28 67.15 10 402
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normalization accounts for a possible evolution in the news coverage of the
media.

Figure 6 shows the evolution of the aggregated MeCCOt index (level,
from Jan. 2004 to July 2024) with European newspapers and combined with
American newspapers. The index spikes at major climate events. Looking
over the 18-year time horizon, four peaks are particularly large: the 2007
IPCC report, the 2009 Copenhagen UN Climate Change Conference, the
2015 Paris Agreement, and the 2019 EU Green taxonomy. Moreover, the in-
dex tends to be higher after the Paris Agreement. In comparison, American
newspapers do not spike as much during the 2019 EU Green Taxonomy. This
discrepancy could be attributed to differences in coverage from the newspa-
pers used to build an aggregated index, raising questions about American
coverage of European climate issues.

Table 10: Climate News Indices: Description

Indices Authors Sources Frequency Period

Attention

Climate salience Brøgger and Kronies (2020) Google Trends Monthly 2005/01 - 2017/12
Google Search
Volume Index
(GSVI)

Google Google Trends Monthly 2004/01 - 2023/12

Sentiment

WSJ Climate Change
News Index

Engle et al. (2020) Wall Street Journal Monthly 1984/01 - 2018/05

CH Negative Climate Engle et al. (2020)
Crimson Hexagon: WSJ, NY Times,
Washington Post, Reuters, BBC,
CNN, and Yahoo News.

Monthly 2006/06 - 2018/05

Media Climate Change
Concerns (MCCC)

Ardia et al. (2023)
DowJones Factiva, ProQuest,
and LexisNexis.

Daily 2003/01 - 2018/06

Overall index Faccini et al. (2021) Reuters Monthly/Daily 2000/01 - 2019/11

Transition Risk Index
(TRI)

Apel et al. (2023)
Dow Jones Newswires, Reuters,
NY Times, The Washington Post,
BBC, WSJ, MSN, and CNN.

Monthly/Weekly 2000/01 - 2020/12

Transition & Physical
Risk Indices

Bua et al. (2024) Reuters News (Europe) Daily 2005/01 - 2023/12

Nat. Dis. Manela and Moreira (2017)
Wall Street Journal
(Front-page articles)

Monthly/Daily 2002/01 - 2016/03

Nat. Dis. Bybee et al. (2023) Wall Street Journal Monthly/Daily 2002/01 - 2017-06

Uncertainty

Climate Policy
Uncertainty Index (CPU)

Gavriilidis (2021)
Boston Globe, Chicago Tribune, LA
Times, Miami Herald, NY Times,
Tampa Bay Times, USA Today, WSJ.

Monthly 2000/01 - 2021/12
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Figure 6: MeCCO Climate Index
Aggregate media coverage of climate change or global warming articles in Europe and US,
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