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Abstract

We construct a novel physical risk factor using a portfolio of REITs, long on those

with properties highly exposed to climate risk and short on those with less exposure.

Combined with a transition risk factor, we assess U.S. insurers’ climate risk through

operations and $13 trillion in asset holdings. Estimating dynamic climate betas, we

find higher stock return sensitivity to the physical risk among insurers operating in

riskier regions and to transition risk among those holding more brown assets. Us-

ing these betas, we calculate capital shortfalls under climate stress scenarios, offering

insights into insurers’ resilience to climate risks.
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1 Introduction

Climate change is increasing the frequency and severity of natural disasters, exposing

firms to physical climate risks. While measuring this exposure is crucial for risk man-

agement and policy decisions, it has proven challenging. Understanding insurance com-

panies’ exposure to climate risk is particularly vital, as these institutions serve as the

primary risk-sharing mechanism for households and businesses facing natural disasters.

This raises a pressing question: can the insurance sector withstand the stress of climate

change? This question takes on added significance given insurers’ pivotal role in the fi-

nancial system, especially as the largest investor group in corporate bonds. Their expo-

sure to climate risk could therefore serve as a key channel through which climate change

threatens broader financial stability.

Our study addresses these challenges. First, we develop a novel physical risk factor

to capture changes in climate risks. This factor is based on a portfolio of Real Estate In-

vestment Trusts (REITs), taking long positions in properties highly exposed to climate risk

and short positions in those with lower exposure. Second, we combine this measure with

a transition risk factor following Jung et al. (forthcoming) to assess insurers’ climate risk

exposure, both through their operations and their $13 trillion financial asset holdings. Im-

portantly, our methodology extends beyond the insurance sector, offering a generalizable

framework for measuring climate risk exposure across diverse firms and industries.

A priori, it is unclear how property and casualty (P&C) insurers’ operations are af-

fected by physical climate risks. One perspective suggests significant vulnerability: insur-

ers face potentially large losses from extreme weather events and shifting climate patterns,

particularly when natural disasters become more frequent and intense than anticipated.

This heightened tail risk is especially concerning given documented evidence of insur-

ers’ financial constraints (Ge 2022; Ge and Weisbach 2021), as extreme losses can lower

insurers’ firm value (Froot et al. 1993). However, countervailing forces could potentially

buffer insurers against these negative effects. Insurers may adapt by adjusting premiums
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upward in high-risk regions to reflect increased hazards. Moreover, intensifying natural

disasters could drive greater demand for insurance coverage, benefiting insurers. These

two different perspectives underscore the need for a comprehensive empirical measure of

insurers’ exposure to physical climate risk.

In addition to physical risk affecting P&C insurers’ operations, both physical and tran-

sition climate risks can affect the $13 trillion of financial asset holdings held by P&C and

life insurers. Physical climate events could reduce the value of financial assets. For ex-

ample, a rise in sea level or hurricanes can cause damage to coastal properties, thereby

decreasing the value of mortgage bonds (Nguyen et al., 2022; De Marco and Limodio,

2023). Insurers’ assets are also exposed to transition risk, which arises from policy, tech-

nology, and preference changes toward less carbon-intensive economies. Insurers heavily

invested in fossil fuel companies would likely experience a decrease in asset value as fossil

fuel reserves become “stranded” (Litterman et al., 2021).

Measuring insurers’ exposure to climate change risks faces multiple challenges. First,

data on future climate scenarios and projections are inherently uncertain and rely on var-

ious modeling assumptions. While historical data can provide some insights, it fails to

address the challenge that perceptions of physical risks can shift without direct experience

of climate change events. Furthermore, climate risks are dynamic because new hazards

can emerge and existing ones can intensify. Insurers’ exposure is also dynamic because

responses from insurers, investors, and households will likely evolve over time. For ex-

ample, insurers’ exposure can change as they adjust their operations, such as deciding

where to sell policies.

We use a novel approach to overcome these challenges in assessing insurers’ climate

risk exposure. Our methodology involves three steps. First, we construct several equity

portfolios (factors) that are designed to decline in value as physical risk increases. Second,

we estimate insurers’ stock return sensitivity (i.e., climate beta) to these physical risk fac-

tors from the first step. Third, we use the climate beta estimates to compute the expected
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capital shortfall of insurers conditional on climate stress. By relying solely on publicly

available stock market data, our approach addresses the challenge arising from the lack

of adequate and reliable data. Additionally, we address the second challenge mentioned

above by inferring market perceptions of future climate risk from asset prices. By esti-

mating climate beta dynamically, we circumvent the need to assume static operational

portfolios for insurers.

In the first step, we construct several physical risk factors, with our primary factor de-

rived from returns on REITs. By observing the locations of properties held by each REIT,

we measure REIT-level physical risk exposure by merging location data with county-

specific climate risk measures. We then form a portfolio with a long position in the riskiest

REITs and a short position in the safest REITs.

The ideal physical risk factor should move with changes in expected physical climate

risks, which are difficult to measure. One main way for physical climate risk to manifest

itself is through intensified disasters. When disasters are expected to be more severe and

frequent, the factor should go down in value. As such, the factor should be negatively

exposed to disasters and also fall following realized disasters. Therefore, a feasible val-

idation exercise is to test whether our factor falls when climate-related natural disasters

occur. Our event study analyses confirm the factor’s desired sensitivity to climate risk:

REITs with more exposure to counties with high physical risk, on average, experience a

relatively more severe decline in stock returns following severe natural disasters. As a

result, when expected physical climate risks increase, i.e., when we expect more frequent

and/or severe disasters due to climate change, our factors should fall in value.

Having established the validity of the physical risk factor, we estimate P&C insurers’

stock return sensitivity to it, referred to as the physical climate risk beta. To capture the time-

varying nature of this beta, we employ the dynamic conditional beta model proposed in

Engle (2002, 2016), which allows for volatilities and correlations to be time-varying. The

estimated physical climate betas are positive, suggesting that on average, insurers suffer
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when climate risk increases. These betas change over time and co-move with insurers’

disaster losses and attention to climate change. Specifically, the average physical climate

beta shows a strong correlation with insurers’ losses from homeowners’ insurance (0.43)

and the first principal component of news-based climate risk indices (0.58).

To better understand variations in physical climate beta estimates, we examine insur-

ers’ underwriting activities. We test whether insurers writing more policies in riskier re-

gions tend to have higher physical climate betas. To measure underwriting portfolio riski-

ness, we combine two components: (1) the geographic distributions of insurers’ premiums

earned across states and (2) the physical risk level of each state, measured by each state’s

muni bonds’ physical climate beta. Using these components, we construct each insurer’s

Policy Portfolio Physical Climate Beta, calculated as the weighted average of state-level phys-

ical betas, where the weights correspond to the share of premiums earned from each state.

Our findings show that this beta is significantly and positively correlated with insurers’

market-based physical climate beta, supporting the notion that our market-based physical

climate beta estimates can proxy for insurers’ exposure to physical risk.

Using the estimated physical climate betas, we calculate insurers’ expected capital

shortfall in a climate stress scenario, termed CRISK, following the framework in Jung

et al. (forthcoming) and Brownlees and Engle (2017a). We choose a severe, yet plausi-

ble scenario to calibrate the stress level: the climate risk factor experiences the lowest one

percentile of its six-month return distribution. By combining expected equity losses from

beta estimates with balance sheet data, such as size and leverage, we estimate the capital

shortfall needed to meet prudential requirements. To isolate the effect of physical climate

stress from concurrent capitalization, we calculate marginal CRISK (mCRISK), represent-

ing the additional capital shortfall conditional on the climate stress. We focus on mCRISK

as the primary metric, as it isolates the leverage effect. We find that aggregate mCRISK

has been rising over time, peaking at $10 billion in 2021. This corresponds to 3.3% of the

aggregate market cap and 7% of the aggregate NAIC-reported equities.
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To measure insurers’ exposure to transition climate risk, we follow Jung et al. (forth-

coming) and use a stranded asset portfolio that takes a long position in fossil fuel assets

and a short position in the market. Using this portfolio, we measure insurers’ stock re-

turn sensitivity to the transition risk factor, the transition climate risk beta. This exercise

focuses on life insurers, given their significantly larger financial asset portfolios ($9.9 tril-

lion) compared to P&C insurers ($3.3 trillion). The estimated transition climate betas show

a notable increase during the 2019-2020 period, coinciding with the collapse of fossil fuel

prices, heightened attention to climate risk, and an increase in climate-related regulations

(Jung et al., forthcoming; Jung and Hannaoui, 2024).

To further examine the variations in life insurers’ transition climate beta, we use de-

tailed insurer asset holding data. We focus on corporate bond holdings, which account

for an average of 34% of life insurers’ invested assets, making it their largest investment

category (Ge and Weisbach 2021). By linking corporate bonds to their respective indus-

tries using CUSIP and NAICS, we identify bonds exposed to transition risk. To measure

industry exposure to transition risk, we estimate each industry’s transition climate beta.

Based on this approach, we show that insurers with a higher proportion of corporate bond

investments in industries facing greater transition risk exhibit higher market-based tran-

sition climate betas. This correlation is statistically significant, offering validation to our

measure of insurers’ transition beta.

The estimated transition mCRISKs of life insurers are substantial. Using the CRISK

framework, we compute and aggregate the transition mCRISK for each life insurer. The

aggregate marginal CRISK of life insurers rose sharply in 2020 and 2021, driven by the

increase in climate beta, peaking at $70 billion—equivalent to 27% of their aggregate mar-

ket capitalization. Notably, marginal transition CRISK is concentrated among large life

insurers.

In the final analysis, we evaluate the exposure of both P&C insurers and life insurers

to physical, transition, and market risks concurrently, quantifying their combined risk as

5



compound CRISK (CCRISK), following the methodology of Engle (2023). CCRISK repre-

sents the maximum capital shortfall that an insurer would experience under compound

stress with a 1% probability. This methodology can assess insurers’ resilience when mul-

tiple risks materialize simultaneously. High tail dependence, where extreme declines in

one factor (e.g., physical risk) increase the likelihood of extreme declines in another (e.g.,

market risk), can lead to underestimation of risk if ignored. CCRISK adjusts for tail de-

pendence, capturing the co-movement of risks in extreme scenarios.

Our analysis shows that the aggregate marginal CCRISK rose in 2020, peaking at $380

billion and remaining relatively high through 2022.1 This value represents the extra capital

shortfall associated with a 1% probability compound tail event involving triple stress. Of

the total of $380 billion, the aggregate marginal CCRISK for P&C insurers was $140 billion,

or 51% of their market cap, while for life insurers, it was $240 billion, representing 66% of

their market cap. Overall, these findings suggest that the economic impact of compound

climate risk on the insurance sector could be substantial.

While the market-based approach has many benefits, one limitation is that it is directly

applicable only to listed financial firms. To address this, we propose an approach to esti-

mate the mCRISK of unlisted insurers, building upon the framework of Engle and Jung

(2023) and Engle et al. (2024). We estimate the CRISK of unlisted insurers by imputing

their climate beta using state-level premium data. Our estimate of the aggregate mCRISK

of unlisted insurers ranges between $0.6 and $3.6 billion, as of 2021.

Another limitation is that our approach can capture climate change risk only to the

extent that the market prices the risk. This raises the question of whether equity market

investors account for climate risk. Our finding that our physical risk factors respond to

natural disasters suggests that the equity market prices physical climate risk. Similarly,

Jung et al. (forthcoming) document that transition factors respond to transition-related

1For context, aggregate systemic risk (SRISK), which represents the marginal expected capital shortfall
conditional on market stress, of the US financial sector increased by $460 billion during the global financial
crisis of 2007-2008.
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events, such as the signing of the Paris Agreement. Additionally, a growing body of liter-

ature has found evidence that physical climate risk is priced in the financial market.2 In

particular, a few studies document that the residential real estate market prices physical

climate risks (Bernstein et al., 2019; Baldauf et al., 2020; Giglio et al., 2021a; Ge et al., 2022).

Contribution to Literature This paper contributes to the growing body of literature

studying the effect of physical climate risk in various asset markets, including equities

(Acharya et al., 2022; Alekseev et al., 2022), fixed income (Acharya et al., 2022; Goldsmith-

Pinkham et al., 2022; Painter, 2020; Auh et al., 2022; Liu et al., 2021; Hong et al., 2023), real

estate (Giglio et al., 2021b; Bernstein et al., 2019; Baldauf et al., 2020; Ge et al., 2022), and

REIT (Rehse et al., 2019; Feng et al., 2022; Salisu et al., 2024).3 We propose a novel ap-

proach to measure forward-looking physical climate risk, which is new to the literature.

Specifically, we develop a physical risk factor designed to decrease in value as physical

risk intensifies. Additionally, through event study analyses, we empirically demonstrate

the decline in the proposed physical risk factor after natural disaster events with signif-

icant damages. Our factor is potentially useful for measuring the physical risks of firms

beyond the insurance sector.

This paper is closely related to Jung et al. (forthcoming), who propose a market-based

approach called CRISK to measure climate transition risk exposure of financial institu-

tions. We contribute beyond the existing CRISK framework in two important ways. First,

we construct a physical risk factor and propose a way of measuring physical risk expo-

sure, which can be applied to all public firms beyond the insurance sector. Second, we

2For example, in the equity market, Acharya et al. (2022) find that firms with one standard deviation
higher heat stress exposure have exhibited a consistent 45 basis points increase in unlevered expected annual
returns on stocks. Gostlow (2021) finds evidence suggesting that hurricane risk commands a positive equity
risk premium. In the fixed-income market, Auh et al. (2022) document that natural disasters have significant
negative impacts on the prices of municipal bonds in affected areas. In the real estate market, Ge et al. (2022)
conclude flood risk has been priced in the real estate markets through flood insurance premiums, Ouazad
(2022) employs deep out-of-the-money options to study investor beliefs on wildfire risk, highlighting the
pricing of such risk in investor portfolios. There is a growing body of literature documenting that transition
risk is priced in equity market (e.g., Engle et al., 2020; Choi et al., 2020; Alekseev et al., 2022; Zhang, 2024).

3Acharya et al. (2023); Giglio et al. (2021a); Hong et al. (2020); Krueger et al. (2020); Brunetti et al. (2022)
provide comprehensive reviews of the literature on climate risk and financial system.
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focus on insurers, recognizing the critical importance of analyzing their physical risk ex-

posure to comprehensively assess their climate risk exposure. Unlike banks, P&C insur-

ers’ liabilities predominantly stem from policyholder claims and obligations which can be

directly exposed to physical climate risk. This distinction underscores the unique nature

of insurers’ risk profiles and necessitates a distinct approach to evaluating their climate

risk.

Additionally, this paper contributes to the literature studying the impact of climate

change on the insurance sector. We are the first paper, to our knowledge, to come up

with measures of forward-looking physical risks faced by insurers. Previous studies (Ha-

gendorff et al., 2015; Howerton and Bacon, 2017; Schuh and Jaeckle, 2023) have examined

the relationship between disasters and insurers’ stock prices. Some studies suggest that

increased physical climate risk leads to an increase in demand for insurance. If insurers

are able to adjust premia appropriately, physical climate risk might not adversely impact

expected profits (Alekseev et al., 2022; Grimaldi et al., 2020).

However, other studies find that disasters and climate risk impose negative effects

on insurers. Ge (2022) document that following P&C divisions’ losses due to unusual

weather damages, life divisions change prices in order to generate more immediate fi-

nancial resources. Ge and Weisbach (2021) find that when P&C insurers become more

constrained due to operating losses (damage caused by weather shocks), they shift to-

wards safer bonds on the asset side. Oh et al. (2022) find that insurers face regulatory

frictions in setting rates that adequately reflect rising risks. Massa and Zhang (2021) doc-

ument that property and reinsurance companies react to Hurricane Katrina by liquidating

some of their corporate bond holdings at fire-sale prices. While these papers suggest that

insurers are implementing risk management strategies, it is not clear to what extent in-

surers could manage their risk of undercapitalization in the face of abrupt physical or

transition risk realizations. In addition, Wagner (2022), Sastry et al. (2024), and Ge et al.

(2024) find that households reduce insurance coverage when faced with rising insurance
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premiums, suggesting that insurers’ total profits can decline even if they can fully price in

disaster/climate risk in their policies.

Some insurers may not be adversely affected by rising climate risk, e.g., because they

are less financially constrained or they focus on business lines with less regulatory fric-

tions (such as commercial lines). Some insurers may be more adversely affected, as argued

by a leading insurance rating agency, AM Best.

“In AM Best’s view, climate change represents the largest of these risks. With

frequency and severity of weather-related events on the rise, insurers have

been impacted severely by related losses, and pricing based on past experi-

ence remains challenging as catastrophe models have not yet fully considered

the new normal." [AM Best, 2020]

The arguments on both sides highlight the need to comprehensively assess each insurer’s

climate risk exposure. By relying on a stock market-based approach, we essentially con-

sider the total effect of climate risk on each insurer. Indeed, our results suggest that some

insurers often have negative physical climate exposure, meaning that their stock returns

increase when the expected climate risks rise, although on average insurers have positive

exposure to physical risk.

Our paper also contributes to the literature on insurers and their risks. A concurrent

paper by Powell et al. (2022) studies insurers’ resilience to climate risk using insurers’ past

financial data. In addition, Acharya and Richardson (2014) investigate whether insurers

may be a source of systemic risk. Koijen and Yogo (2021) uncover insurers’ interest rate

and equity market risk exposure through their variable annuity business. Koijen et al.

(2024) study aggregate lapsation risk in the life insurance sector. By studying insurers’

exposure to climate risk using a market-based approach, we complement the other studies

in understanding risks faced by the insurance sector.
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Outline of the Paper The remainder of the paper proceeds as follows: Section 2 de-

scribes the data. Section 3 develops physical climate risk factors. Section 4 analyzes P&C

insurers’ exposure to physical climate risk. Section 5 examines the impact of natural dis-

asters on insurer loss, profit, rating, and stock performance. Section 6 studies life insurers’

exposure to transition climate risk. Section 7 analyzes compound risk, and Section 8 con-

cludes.

2 Data

2.1 Data Sources

Drawing from the insurance literature and recognizing that different types of insurers

may face distinct climate risks, we classify insurers into two categories: P&C insurers and

life insurers.4 Our sample period covers 2000 to 2022.5

Our analysis uses these key data sources: (i) REIT property holdings data to construct

physical risk factors; (ii) natural disaster event data to capture climate-related physical

risk; (iii) stock and corporate bond data to construct market-based climate risk factors; and

(iv) insurers’ asset holdings and operational exposure data to investigate the relationship

between climate risk and insurers’ assets and liabilities.

Real Estate Investment Trust Property Holdings Data. We obtain data on the property

holdings of real estate investment trust (REIT) from S&P Capital IQ. The data set provides

details about the properties’ location and characteristics, including their size and value at

annual frequency. Covering the years 2010 to 2022, the data set encompasses more than

88,000 distinct properties. We use all publicly traded REITs for which property locations

4We identify P&C insurers using the NAICS (North American Industry Classification System) code
524126. Then we manually look up each firm’s main focus and delete insurers who are not property (and
casualty) insurance, multi-line insurance, specialty insurance, or reinsurance firms. We identify life insurers
using SIC (Standard Industrial Classification) code 6311. Then we combine our data with Koijen and Yogo
(2022) life insurer list to create our final list of life insurers.

5For some analyses, we focus on a subset of this sample period due to data unavailability.
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are disclosed. This covers 86% of all US REIT stocks, identified by CRSP share code 18,

excluding those identified as financial institutions.6 We combine this data with FEMA’s

county-level risk score (or expected losses) to measure REIT-level risk exposure and with

CRSP to construct physical risk factors.

Natural Disaster Related Data. We use two types of natural disaster-related data: ex-

ante disaster risk metrics and ex-post realized disaster events. The former is used for

constructing physical climate risk factors, while the latter validates these factors in event

studies.

We use the National Risk Index (NRI) from the Federal Emergency Management Agency

(FEMA) to measure county-level climate risk across the United States. The NRI aggregates

data on 18 different hazard types, including hurricanes, wildfires, floods, and droughts, to

generate a composite risk score for each county. These scores reflect not only the frequency

and magnitude of hazards but also the county’s exposure, vulnerability, and resilience to

such events. We use the 2023 version of the NRI, which provides a single snapshot of

risk levels at the county level, as historical data is not available. This dataset is merged

with the REIT property location data to construct physical climate risk factors. Panel A of

Figure 1 illustrates the county-level distribution of FEMA scores, indicating that coastal

regions in the Southeast and wildfire-prone areas in the West exhibit the highest physical

risk.

To validate our physical risk factors, we employ the Billion-Dollar Weather and Cli-

mate Disasters Database maintained by National Oceanic and Atmospheric Administra-

tion (NOAA), which tracks daily weather and climate events causing at least one billion

dollars in damage from 1980 to 2023. These events include various types of hazards, such

as hurricanes, floods, and wildfires. The database provides event start and end dates,

and CPI-adjusted costs, allowing us to identify the timing and impact of major natural

disasters in event studies. Panel B of Figure 1 presents the summary statistics of Billion

6Banks (GICs 4010, diversified financials (GICS 4020), and insurance (GICS 4030).
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Dollar disaster events, highlighting hurricanes, droughts, and wildfires as the most de-

structive shocks. While hurricanes, winter disasters, and winds typically last less than

a week, flooding, wildfires, and droughts can persist for months. For analyses requir-

ing county-level damage data over time, we use the Spatial Hazard Events and Losses

Database for the United States (SHELDUS), as the Billion-Dollar Weather and Climate

Disasters Database lacks location-specific information.

Stock, Municipal Bond and Corporate Bond Data. In the construction of physical risk

factors, we use REIT stock returns from CRSP-Compustat merged data set. Addition-

ally, we gather corporate bond information from the Mergent Fixed Income Securities

Database (FISD), municipal bond characteristics from the Mergent Municipal Bond Database,

and municipal bond transaction data from the Municipal Securities Rulemaking Board’s

(MSRB’s) municipal bond transaction database.7 These bond data are used for the valida-

tion of climate beta estimates.

Insurers’ Asset Holdings and Operational Exposure Data. In order to measure insur-

ers’ liability-side exposures to physical risk, we utilize individual insurers’ direct premi-

ums earned (DPE) at the state-year level in homeowners’ multiple peril line and com-

mercial multiple peril line8 from the National Association of Insurance Commissioners

(NAIC) and SNL Financial. To study the relationship between insurers’ climate risk and

their asset holding, we obtain insurers’ holding data from Schedule D Part 1 of the Annual

statement.
7We thank authors of Acharya et al. (2022) for sharing their crosswalk to link municipal bond issuers

with their corresponding county locations.
8We do not include less relevant business lines, including Auto, Product Liability, or Fire and Allied

Lines Combined (which encompasses both wildfire and other fires resulting from electricity, faulty wiring
or gas explosions.)
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2.2 Insurer Sample Characterization

Our main analysis focuses on listed insurance companies to examine their climate risk

exposure. Table 1 summarizes key characteristics of insurers, while Table A.1 provides

insurer-level characteristics for the top ten P&C and life insurers, ranked by average mar-

ket capitalization from 2000 to 2021.9

2.2.1 P&C Insurers

If an insurer’s operation is well diversified across a number of states, even if it collects

a large amount of premiums in a risky state, its diversification can dampen the effect of

its total exposure to the risky states. To gauge the degree of each insurer’s operational

portfolio diversification across states, we compute Herfindahl-Hirschman Index (HHI):

Portfolio Concentrationi,t = ∑
s∈S

Premium Exposure2
i,s,t (1)

where Premium Exposurei,s,t is insurer i’s share of premium earned in state s in year t. A

higher value indicates a lower level of diversification, implying that the insurer predom-

inantly sells policies in a small number of states. A value of 1 indicates that the insurer

sold 100% of its policies in a single state. The average portfolio concentration by state is

7%, while the range is between 4% and 15%.

We also examine the reinsurance intensity, defined as the ratio of insurance ceded to

nonaffiliated insurers or reinsurers relative to direct premiums. We calculate reinsurance

intensity for the home and commercial multiple peril lines. The reinsurance intensity

varies substantially across insurers, ranging from less than 1% to 21%. We exploit these

cross-insurer variations in operational portfolios and characteristics to validate the climate

beta estimates.
9American International Group is analyzed separately due to its unique specialization.
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2.2.2 Life Insurers

Life insurers hold large corporate bond portfolios on their asset side. To assess life in-

surers’ corporate bond portfolio exposure to transition risk, we compute a brown share,

defined as the fair value of brown corporate bonds divided by the fair value of all corpo-

rate bonds held by the insurer. While there can be many ways to define brown industries,

we use, as a first approximation, the top four industries expected to be most adversely af-

fected by carbon taxes, based on the general equilibrium model of Jorgenson et al. (2018):

coal mining, gas mining, gas utilities, and electric utilities.10 Then, we merge CUSIP-year-

level holding data with Mergent and Compustat databases using 6-digit CUSIP to get the

NAICS industry for each corporate bond.

Panel B of Table A.1 presents the brown share measure. We find that the average brown

share is 14.7%, indicating that life insurers’ corporate bond portfolio can be substantially

exposed to transition risk. We exploit the cross-sectional variation in the compositions of

the insurers’ corporate bond portfolios to validate transition climate beta estimates. This

analysis does not depend on the definition of brown industries but considers all industries

using industry-level climate beta estimates.

3 Climate Risk Factors

We construct various physical climate risk factors by forming portfolios that are designed

to decrease in value as physical climate risk rises. In this section, we describe how we

construct these factors, discuss their advantages over potential alternative methods, and

empirically test their validity. We also briefly describe transition climate factors from Jung

et al. (forthcoming).

10Jung et al. (2023) takes these general equilibrium model estimates to assess the transition risk exposure
of banks.
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3.1 Physical Climate Risk Factors

Our first proposed factor is constructed using returns on real estate investment trusts

(REIT). Real estate has a long asset life, making it uniquely exposed to long-term climate

risk. A few studies have found that real estate prices are sensitive to long-term climate

risk (Bernstein et al., 2019; Giglio et al., 2021b; Baldauf et al., 2020; Keys and Mulder, 2020;

Ge et al., 2022). Most publicly-traded REITs in the US disclose their property portfolios,

allowing investors to observe which REITs have more assets in regions prone to high phys-

ical risk. Given the evidence that physical climate risk is priced in real estate, we can infer

investors’ expectations of physical risk from REIT returns.

To build the REIT factor, we first merge REIT property locations with FEMA’s county-

specific physical risk scores and expected annual losses (EAL) to obtain the REIT-level

physical risk exposure. While the rank correlation between the FEMA physical risk score

and EAL is 1, their distributions differ; the risk score has a long left tail, whereas the EAL

has a long right tail. We use EAL for the baseline as its dollar unit is more directly inter-

pretable, and use risk scores to check for robustness. To compute the REIT-level physical

risk exposure, we take the simple average EAL of the property locations. For robustness,

we also take the weighted average EAL where the weight is either property size or value.

The REIT-level physical risk exposure is subsequently combined with their returns to

sort them into quartile portfolios.11 We construct the REIT factor as the return from hold-

ing long positions in the top portfolio (riskiest REITs) and short positions in the bottom

portfolio (safest REITs). Within each portfolio, we compute either equal-weighted returns

or value-weighted returns. Panel (A) of Figure 2 shows the 6-month return on the result-

ing value-weighted REIT physical risk factor.

Figure A.1 plots the distribution of REIT-level physical risk exposure over time. In the

11We aim to balance having sufficient observations in each portfolio with maintaining a meaningful con-
trast between the top and bottom portfolios. Using only two bins reduces the distinction between these
portfolios due to the skewed distribution (long right tail) of the REIT-level physical risk exposure. Although
three and four bins yield similar results, four bins produce sharper responses in the validation exercise.
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cross-section, the figure confirms that there is a substantial variation in exposure. A key

driver behind the cross-REIT variation in the exposure is the varying degree of diversifi-

cation across REITs. Figure A.2 plots the histogram of the Herfindahl-Hirschman Index

(HHI) at the REIT-level computed based on the number of properties in each county, and

it suggests that there is a substantial variation. Given that the FEMA risk metrics are

constant over time, the time variation in REIT-level physical risk is entirely attributed

to changes in the REITs’ property portfolio over time. Therefore, the mild decrease in

average REIT physical risk exposure over time can be interpreted as REITs tilting their

portfolios towards safer areas on average.

We construct variations of the main REIT factor to evaluate the robustness of our anal-

ysis. We utilize an alternative location-specific risk measure (FEMA risk score rather than

EAL), and implement different methods for calculating REIT-level risk exposure (prop-

erty size-weighted or value-weighted) and portfolio returns (equal-weighted or value-

weighted). We find that these variations have little impact on our results in event studies

or climate beta estimation.

Unlike conventional climate shocks measured by temperatures or certain specific types

of natural disasters, our approach offers distinct advantages. First, our factor is market-

based, allowing us to incorporate the expectations of investors and reduce the reliance

on uncertain geophysical climate models. Second, our approach can assess the impact of

physical climate risks on firms located across the U.S., rather than being limited to specific

locations experiencing rising temperatures or disasters. Focusing on specific disasters or

geographical areas does not fully capture the systemic implications of climate risk. Finally,

our market-based approach provides higher-frequency data compared to approaches that

rely on sparse event series. Climate events such as extreme temperatures or natural disas-

ters occur relatively infrequently, making it challenging to capture their effects accurately

using event-based data alone.

We provide additional market-based physical risk factors based on various approaches
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in Appendix IA.D. For example, we construct a factor by sorting stocks based on the

firm-level physical risk score provided by Trucost. Another factor is constructed using

data on US P&C insurers’ premiums across states. We form a portfolio of public P&C

insurers where the weight is each insurer’s premium exposure to the states with high

past damages due to natural disasters based on data from SHELDUS. In Figure IA.E.1,

we show that these factors also respond significantly to large natural disasters, passing

the factor validation test.12 (See detailed discussion in Section 5.2.) However, the Trucost

factor is available only from 2019, and using the P&C insurer factor as the physical climate

factor provides only a relative assessment of risk exposure among insurers, as the climate

beta averages to one by construction. Therefore, while these factors are useful for other

purposes, such as assessing the physical risk exposure of non-insurer sectors, we focus on

the REIT factor to measure insurers’ physical risk exposure.

Physical Climate Factor Responses around Natural Disasters If the REIT factor cap-

tures physical climate risk, we expect the factor to decrease in value after disasters. To

test this hypothesis, we conduct event study analyses using natural disaster events that

caused more than $1 billion in damages. We use the following specification to test the

responses of the physical risk factor to disaster events:

PCFt = α+
20
∑
n=0

γn Shockt−n + bMKT MKTt + εt (2)

where physical climate factor (PCF) denotes the REIT factor, Shockt takes the value of

damage if it was the start date of a natural disaster event, and a value of 0 if there was no

disaster on day t. To control for overall market movements, we utilize the SPDR S&P 500

ETF as the market return, denoted as MKT . The coefficient γ is expected to be negative

since the occurrence of a natural disaster should be bad news for the REITs with larger

weights in our factor, i.e., those with larger exposure to high-risk counties. The standard

12See Figure IA.E.1.
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errors are adjusted using the Newey-West method to account for serial correlation.

Figure 3 shows the cumulative γ coefficient along with a 95% confidence interval. Con-

sistent with the hypothesis, we find that the REIT factor responds significantly negatively

to disasters, with larger damages leading to a greater negative effect. To provide con-

text for the magnitude, multiplying the estimated coefficient of -3% by the mean damage

of $7.35 (billion) yields an average response of approximately -22% over 20 days. Given

that the factor is standardized to have a mean of zero and a standard deviation of one,

this response is not exceptionally large. However, we observe that the response remains

statistically significant and persistently negative over the 20-day window.

3.2 Transition Climate Factor

Following Jung et al. (forthcoming), we use the stranded asset factor as a proxy of transi-

tion risk. This factor is derived from the stranded asset portfolio developed by Litterman

et al. (2021) and the World Wildlife Fund. The composition of the factor includes a 70%

long position in VanEck Vectors Coal ETF (KOL), a 30% long position in Energy Select

Sector SPDR ETF (XLE), and a short position in SPDR S&P 500 ETF Trust (SPY). The ratio-

nale behind this factor is that, during the transition towards a low-carbon economy, assets

in the fossil fuel industries face the risk of devaluation and stranding. Consequently, the

return on a stranded asset portfolio serves as a proxy measure that reflects market expec-

tations regarding future climate transition risk. Jung et al. (forthcoming) document that

this factor tends to fall following climate policy-related events.

Panel (B) of Figure 2 shows the 6-month cumulative returns of the market portfolio

(SPY), transition risk factor (stranded asset factor), and physical risk factor (REIT factor).

We report summary statistics and correlations of these factors in Table A.2 and Table A.3.
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4 Insurers’ Physical Risk Exposure

In this section, we analyze P&C insurers’ exposure to physical climate risk. We begin by

estimating the physical climate beta using the physical climate factor constructed from

Section 3.1. Then, we examine the correlation between insurers’ physical climate beta and

a measure of risk based on their operational portfolios. Lastly, we compute their expected

capital shortfall conditional on physical climate stress.

4.1 Physical Climate Beta

Following the standard factor model approach, we specify the model for insurer i’s stock

return as follows:

ri,t = βMkt
i,t MKTt + βPhysical

i,t PCFt + εi,t (3)

where ri,t is the stock return on insurer i, MKTt is the market return measured as the

return of S&P 500 ETF, and PCFt denotes the physical climate factor (REIT factor). In-

cluding the market factor in the model helps to control for confounding factors, such as

the COVID shock and aggregate demand shock, that may influence both insurer stock re-

turns and the physical risk factor. βMkt
i,t and βPhysical

i,t measure the sensitivity of insurer i

to overall market risk and physical risk. We call βPhysical
i,t physical climate beta.

We begin by examining the average time-series variation in physical climate beta,

shown in Figure 4. The figure shows that physical climate beta changes over time, un-

derscoring the importance of dynamic estimation. In addition, the average climate beta

remains positive for most of the sample period, with a notable peak during 2020 and 2021.

We propose two potential drivers of this overall time variation, supported by sug-

gestive evidence. First, we show that the average physical climate beta co-moves with

insurers’ losses incurred by extreme weather events. An ideal analysis would be to com-

pare the two variables at the insurer-time level; however, insurers typically do not report

weather-related losses separately. To address this limitation, we assume that weather-
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related losses represent a constant proportion of total losses resulting from homeowners’

insurance and overlay the average value with the average climate beta in Figure A.6. The

correlation between the two is 0.43. Furthermore, for insurers that do report losses from

extreme weather events, we anecdotally document a close comovement between physi-

cal climate beta and weather-related losses, as illustrated by examples from Allstate and

Cigna in Figure IA.A.1. Second, we find suggestive evidence showing that attention to

climate change risk plays an important role. To measure the attention to climate change

risk, we take the first principal component of six news-based climate change risk indices

from climate finance literature.13 Figure A.7 illustrates the positive comovement between

physical climate beta and climate attention, with a correlation of 0.58.

Figure A.4 plots insurer-level physical climate betas over time, showing a strong co-

movement across insurers. Time fixed effects explain 18% of the variation in physical

climate betas, while insurer fixed effects explain 5%, indicating that time-varying factors

have stronger explanatory power than time-invariant insurer characteristics. As a robust-

ness test, we include four additional asset pricing factors, size, value, investment, and

profit factors, and we find that the physical climate beta variations remain consistent (Fig-

ure IA.A.2), mitigating concerns about other confounding factors.

4.2 Insurers’ Physical Climate Beta and Their Operational Exposure

To understand both time-series and cross-sectional variation in the physical climate beta,

we examine insurers’ operational exposure across states. We hypothesize that insurers

with more policies in higher-risk regions exhibit higher physical climate beta. To test this,

we construct a measure of the riskiness of P&C insurers’ portfolio of insurance policies, us-

ing two ingredients: (1) the geographic distributions of insurers’ direct premiums earned

across states and (2) the physical risk level of the locations.

We measure the latter using the sensitivity of municipal bond returns to the physical
13Since these indices are typically quarterly, we correlate them quarterly. See Jung and Hannaoui (2024)

for more details.
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risk factor. Prior studies (e.g. Auh et al., 2022) document that municipal bonds experience

negative cumulative abnormal returns following natural disasters. Goldsmith-Pinkham et

al. (2022) find that sea level rise exposure risk is priced in municipal bond markets. These

findings suggest that physical climate risk is likely priced in the municipal bond market.

4.2.1 A Measure of County Exposure to Physical Climate Risk: Municipal Bond Ab-

normal Returns

Sample Municipal Bonds. We combine municipal bond transaction data and character-

istics data to construct a panel of municipal bond returns. The transaction data, sourced

from the Municipal Securities Rulemaking Board (MSRB), include CUSIP, trade date, traded

price, and type of transaction. Additional bond information, such as issue amount, CUSIP,

and issue ID, is obtained from the Mergent Municipal Bond Database. We merge the

MSRB and Mergent datasets by CUSIP to locate each municipal bond. Our final sample

includes 150,666 bonds issued by 1,386 counties, with price data covering January 2005

through June 2022. We focus on counties with a sufficient number of bond transactions (at

least 10 times per quarter), which results in a sample of 295 counties.14

Municipal Bond Return Estimation. To account for the infrequent trading of munic-

ipal bonds, we employ the repeat sales model in computing returns, following Auh et

al. (2022). The key idea is to compute the average of all municipal bond returns within

the same county weighted by issue amount and trading interval. We calculate volume-

weighted price averages for all intra-day trades for each day. Then, we use the last avail-

able price of the month to obtain monthly prices. (See Appendix IA.C for more details on

the implementation of the repeat sales model.)

Using the computed county-month level municipal bond returns, we estimate the

physical climate beta for each county at a monthly frequency following the specification

14We also remove data errors by excluding observations with time to maturity of more than 100 years,
coupon rate more than 20%, or a price lower than $50 or greater than $150 (on a $100 notional).
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(3). Because insurers’ operational footprints (e.g., direct premium earned) are comprehen-

sively available only at the state level, we aggregate county-level municipal bond physical

climate betas to the state level. For this aggregation, we focus on counties with positive

climate betas and use extreme values from each county’s distribution to compute state-

level climate betas. Insurers are more likely to experience losses from unexpected claims

related to severe weather events in risky counties (associated with positive climate betas),

while they do not have a corresponding advantage or significant gains from policies in ar-

eas with negative climate betas.15 Therefore, we retain counties with positive climate beta

and measure a state’s climate beta as the 99th percentile of the climate beta of municipal

bonds across all counties within the state. We focus on the right tail of the climate betas

for each state, as insurers are likely to face the highest climate risk from municipalities

most exposed, while the effects on some municipalities may be muted due to the nature

of their cash flows. The results are robust to using the 95th percentile, or maximum value,

instead of the 99th percentile.

4.2.2 Insurer Policy Portfolio Climate Beta

Using the state-month municipal bond physical climate beta estimate as a proxy for the

physical risk exposure of each state, we evaluate the riskiness of each insurer’s policy

portfolio. This is feasible because we observe each insurer’s policy portfolio composition

(premiums earned from each state). We construct insurer i’s policy portfolio physical

climate beta at time t as:

Policy Portfolio Physical Climate Betai,t = ∑
s∈S

wi,s,t β
Physical
s,t (4)

where the weight wi,s,t is the share of insurer i’s premiums from state s in year t. βPhysical
s,t

denotes the physical climate beta of state s in year t, detailed above.

15It is possible for insurers to charge higher than actuarially fair premiums in counties with negative
climate betas (to subsidize other counties). However, we assume this effect is not first-order.
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We test whether market-based physical climate beta (of insurers) captures the riskiness

of their policy portfolio using the following OLS specification:

βPhysical
it = a+ b Policy Portfolio Physical Climate Betait+ Insurer Controls+ δi+ εit (5)

The dependent variable, βPhysical
it is insurer i’s time-averaged daily climate physical beta

for each year. Control variables include size, leverage, reinsurance intensity, and risk-

based capital ratio. The size is defined as the log of the total assets. Leverage is defined as

1 plus its book value of liabilities divided by its market value of equity.

Table 2 shows the results. Column (2) includes insurer control variables, and column

(3) adds insurer fixed effects to control for unobservable time-invariant insurer charac-

teristics. Column (4) adds time-fixed effects. Standard errors are clustered at the insurer

level. In all specifications, we find that b is positive and significant. These findings im-

ply that the physical climate beta of insurers reflects the geographical regions in which

they operate and the associated physical risk levels of those regions, thereby adding to

the economic validity of the climate beta estimates.

4.3 Physical CRISK and Marginal CRISK

Using our physical climate beta measure, we compute the expected capital shortfall con-

ditional on physical climate stress. We consider a scenario in which the physical climate

factor falls substantially, corresponding to a 1% quantile of the return distribution, over

six months. Following the framework of Jung et al. (forthcoming), CRISK is defined as the
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expected capital shortfall conditional on climate stress:

CRISKit = Et[Capital Shortfalli | Climate Stress] (6)

= Et [k(Dit +Wit)−Wit | Climate Stress] (7)

= kDit − (1− k) (1−LRMESit)︸ ︷︷ ︸
=exp(βClimate

it log(1−θ))

Wit (8)

where Wit is the market value of equity, Dit is the book value of debt, k is the prudential

ratio of equity to assets, and θ is the climate stress level. We set the prudential capital

fraction k to 8%, motivated by typical capital requirements for financial institutions (e.g.,

capital adequacy ratio). Therefore, the capital shortfall term in equation (6) can be inter-

preted as the difference between the prudential level of equity, 8% of quasi assets (the sum

of D and W ), and the equity that the financial institution holds, W . We calibrate θ to 17%

for physical risk, as 17% decline corresponds to the 1% quantile of the six-month return

distribution. Thus, our climate stress scenario can be associated with a 1% tail event.

To compute the conditional expected value of capital shortfall, we model long-run

marginal expected shortfall (LRMES) based on climate beta and climate stress level, θ, as

shown in equation (8). LRMES is the long-run marginal expected shortfall, defined as

the expected firm equity multi-period arithmetic return conditional on a systemic climate

change event:

LRMESit = −Et

[
Ri
t,t+h|RClimateFactor

t+1,t+h < C
′]

(9)

CRISK is higher for insurers that are larger, more leveraged, and with higher climate beta,

by construction.

Because CRISK is mechanically higher for undercapitalized insurers, we introduce a

related measure called marginal CRISK (mCRISK) to isolate and focus on the effect of

climate risk. mCRISK captures the effect of climate stress in isolation from the realized

undercapitalization as well as the effect of market stress. It is defined as the difference
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between CRISK and non-stressed CRISK:

mCRISKit = (1− k) ·Wit ·LRMESit (10)

We compute mCRISK for each insurer and aggregate it across all listed P&C insur-

ers to measure their aggregate capital shortfall coming from physical climate risk. We

focus on the positive values of mCRISK, as one insurer’s excess capital would not likely

be easily transferrable to reduce another insurer’s capital shortfall.16 Figure 5 plots the

aggregate mCRISK by size group and suggests that the aggregate mCRISK is rising over

time, peaking at $10 billion in 2021, which corresponds to about 3.3% of their aggregate

market cap.17 A caveat is that this likely underestimates the magnitude, as the average

insurer’s book assets representing the insurance arm (from NAIC data) account for only

46% of the holding company’s total book assets (from Compustat). Thus, when scaled to

the equity of the P&C insurance operation, the mCRISK value would exceed 7%, based

on a back-of-the-envelope calculation. The notable increase in 2021 is driven by higher

climate beta, likely due to the factors suggested in Section 4.1. The aggregate marginal

CRISK is more concentrated among large insurers, as the size effect, W dominates the

effect of LRMES in equation (10); while small insurers have slightly higher climate beta,

large insurers have a much larger market cap.

Once we account for the concurrent capitalization of insurers, CRISK, the total expected

capital shortfalls conditional on climate stress are mostly negative. Figure A.8 shows the

estimated physical CRISK of the top ten largest U.S. P&C insurers, and the negative values

can be interpreted as excess capital reserves. Overall, P&C insurers appear to be well cap-

italized and therefore even in a 1-percent tail physical climate event, their expected capital

shortfall is negative. Nevertheless, mCRISK has been increasing over time, underscoring

the importance of continued monitoring despite its current low level of CRISK.

16Brownlees and Engle (2017b) focus on the positive values of CRISK for the same reason. For complete-
ness, we report the non-truncated mCRISK values in Figure A.5.

17We define large insurers as the ones with above median assets, and the rest as small insurers.
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One limitation of our approach is that CRISK can be computed only for listed insur-

ance companies, as it relies on estimating the relationship between a financial firm’s stock

returns and the climate risk factor. To address this, we sketch an approach in Appendix B

to estimate the CRISK of unlisted insurers by imputing their climate beta using state-level

premium data and the coefficients from Table 2. This approach builds on the methods

proposed by Engle and Jung (2023) and Engle et al. (2024). Our estimate of aggregate

mCRISK of unlisted insurers ranges between $0.6 and $3.6 billion, as of 2021.

5 Adverse Impacts of Physical Risk on P&C Insurers and

P&C Insurer Factor

Our findings on P&C insurers’ physical climate betas suggest that their stocks perform

worse as physical climate risk increases (i.e., when the physical risk factor declines). In

this section, we analyze how insurers’ operations and stocks perform following natural

disasters, which is a form of realization of climate risks.

P&C insurers are particularly affected by unexpected large natural disasters due to

their role in providing property coverage against such events. While not all natural dis-

asters are driven by climate change, the projected escalation of physical climate risk, in-

cluding the increased occurrence of floods and wildfires, can cause an unexpected rise in

claim payouts. Indeed, multiple insurance companies have stopped offering coverage in

risky regions or exited the market.18 Such exits reduce the total addressable market and

potential profits of insurers. Therefore, worse-than-expected natural disasters can cause

substantial losses for insurers, leading to a decline in their stock prices.

If insurers can significantly raise premiums or if demand for insurance sharply in-

creases, their stock returns can respond positively to disasters. However, since higher

prices tend to reduce insurance demand (Wagner, 2022; Sastry et al., 2024; Ge et al., 2024),

18https://www.nytimes.com/2023/05/31/climate/climate-change-insurance-wildfires-california
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the overall effect on profitability is unclear. In addition, climate change intensifies dis-

aster risks, increasing tail risks for insurers’ losses. Given evidence of the tightening of

insurance financial constraints after losses (Koijen and Yogo, 2015, 2022; Ge, 2022; Ge and

Weisbach, 2021; Oh et al., 2022), extreme losses can lower insurers’ firm value (Froot et

al. 1993). Moreover, climate change also increases insurers’ reinsurance costs and model-

ing uncertainty, as indicated by the quote below from Progressive Insurance Group’s 2022

climate disclosure.

“Losses and loss adjustment expenses are our largest liability, and severe weather

(e.g., catastrophe events) can have a significant impact on those liabilities. Catas-

trophe events can potentially impact our pricing risks and the availability and

cost of reinsurance. These events may be becoming more severe and less pre-

dictable as a result of climate change. [...] Changes in climate conditions may

adversely impact the accuracy of the modeling tools that we use to estimate

our exposures to catastrophe events." [Progressive Insurance Group, 2022]

Therefore, we assess how natural disasters, which are realizations of some climate risks,

affect P&C insurers’ short- and long-term losses, profits, ratings, and stock returns in this

section.

5.1 Impact of Physical Risk on P&C Insurer Losses, Profits, and Ratings

To understand how P&C insurers are affected by disasters, we estimate their impact on

P&C insurers’ losses, profitability, and rating with the following specification:

Yi,t = β Disaster Lossi,t + Controli,t + γt + δi + ϵi,t (11)

where the independent variable Yi,t is one of the four outcome variables for P&C insurer i

in year t: an indicator of rating downgrade, direct losses incurred, short-term profitability,
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and long-term profitability.19 Disaster Lossi,t represents the weighted average damages

for states, with the weight being the insurer’s exposure in that state, calculated as the

proportion of premiums earned there:

Disaster Lossi,t = ∑
s∈S

[(
Premiumi,t,s

∑s∈S Premiumi,t,s

)
× Log Property Damaget,s

]
(12)

The damage of a state is measured by the property damage based on SHELDUS (in log-

arithms). Control variables include reinsurance intensity, log assets, leverage, and risk-

based capital ratio. γt and δi denote year and insurer fixed effects.

Table 3 shows the results on insurers’ rating downgrade. The positive and significant

coefficients on the disaster loss suggest that following larger disaster damages, P&C in-

surers are more likely to be downgraded. Table 4 reports the results on the loss and prof-

itability. The findings suggest that following more severe disasters, the direct incurred

losses of P&C insurers rise, leading to a decrease in both their short-term and long-term

profitability up to three years afterwards.

The long-term profitability result implies that insurers suffer long-term consequences

due to disasters. One reason could be that downgrades cause a demand reduction. An-

other reason could be that losses tighten financial constraints and reduce the quantity

of insurance that insurers are willing to sell (Froot et al., 1993). A third reason is that

insurers raise premiums (Oh et al., 2022) and experience demand drops as a result (Wag-

ner, 2022; Sastry et al., 2024; Ge et al., 2024). The demand drop is large enough to drive

down profitability despite premium increases. In sum, these results indicate that as cli-

mate change exacerbates natural disasters, insurers are likely to experience worse financial

performance.

19The four regressions differ in their use of time lags: rating downgrades use one-year lags, loss incurred
and short-term profitability use contemporaneous data, and long-term profitability uses a three-year lag.
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5.2 Impact of Physical Risk on P&C Insurer Stock Return and P&C In-

surer Factor

In light of the documented adverse impact of disasters on P&C insurers’ ratings, losses,

and profits, we propose another climate risk factor derived from the stock returns of P&C

insurers and evaluate the validity of the factor by showing that their stock returns are

sensitive to physical risk exposure and decline when disasters occur. The objective of this

exercise is twofold: first, to document the negative impact of natural disasters on P&C

stock returns; and second, to propose another climate risk factor for asset pricing tests or

measuring physical risk exposure of non-insurance firms.

We form a portfolio of all listed U.S. P&C insurers where the weight is the DisasterLoss

from equation (12) divided by each insurer’s market cap. This approach assigns greater

weights to insurers with higher physical risk exposure, proxied by past disaster losses

relative to equity. Although past disaster losses may not perfectly capture physical risk

exposure, insurers commonly use past damage realizations as a primary input in assess-

ing physical risk. As robustness tests, we replace past log property damage with the stan-

dard deviation of past damages and substitute premiums with the underwriting profits

(premiums minus losses). The resulting factors remain highly correlated, supporting the

robustness of our approach. We subtract the risk-free return from the portfolio return to

form a zero-cost portfolio, and define the return on this portfolio as the P&C factor.

Next, we test whether the P&C factor responds to natural disaster events, by regressing

the P&C factor on disaster dummies, controlling for market return:

P&C Factort = α+
20
∑
n=0

γn Shockt−n + bMKT MKTt + εt (13)

Shockt takes the value of 1 if it was the start date of a natural disaster event, and a value

of 0 if there was no disaster on day t. The coefficient γ is expected to be negative if the

occurrence of a natural disaster is bad news for insurers with higher weights in the P&C
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stock portfolio, i.e., those with larger exposure to high-risk states relative to their market

capitalization. The standard errors are adjusted using the Newey-West method to account

for serial correlation.

Figure 6 shows the cumulative γ coefficient along with the 95% confidence interval

and suggests a negative response to the occurrence of natural disasters, consistent with

the hypothesis. We note that the response of the P&C insurer factor to disasters is slower

than that of the REIT factor, possibly due to differences in information transparency. The

impact of disasters on REITs is relatively easier to assess, as property locations are pub-

licly disclosed. In contrast, evaluating the impact on insurance companies is likely more

complex. The details of policies sold by insurers are not publicly available, operational

footprint information is limited to the state level, and reinsurance contract details are of-

ten non-transparent, making it difficult to determine the net exposure of specific insurers.

We conduct a series of robustness tests to ensure the reliability of the event study re-

sults. First, we find that the portfolios constructed using alternative portfolio weighting

exhibit similar responses to natural disaster events (Appendix Figure IA.E.1). Second, re-

sults are consistent when flood events are excluded from the analysis to address the con-

cern that the results are driven by floods that are predominantly covered by the National

Flood Insurance Program (NFIP) rather than private insurers (Appendix Figure IA.E.2).

Third, we find that the results remain robust when we consider the size of the disaster by

defining shock on the start day of the event as the log of damages, rather than the binary

variable indicating the occurrence of the disaster (Appendix Figure IA.E.3). These results

suggest that P&C insurers’ stock returns tend to decline following large natural disasters,

making P&C factor potentially useful for measuring the physical risk exposure of non-

insurance firms. A limitation of using the P&C factor to assess insurers’ own physical

risk exposure is that the resulting CRISK estimates would be ordinal (i.e., relative among

insurers) rather than cardinal, as the weighted average climate beta is mechanically equal

to 1.
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In sum, this section demonstrates that disasters negatively impact P&C insurers’ oper-

ational performance and stock returns, supporting the use of the P&C factor as a market-

based proxy for physical climate risk.

6 Insurers’ Transition Risk Exposure

In this section, we shift our focus to analyze life insurers’ exposure to transition risk, posit-

ing that their assets— particularly corporate bond holdings— can be vulnerable to transi-

tion risk. We focus on life insurers as they have a much larger portfolio of financial assets

($9.9 trillion) than P&C insurers ($3.3 trillion). Similar to Section 4, we first estimate tran-

sition climate beta, and we examine the relationship between our transition climate beta

with a measure based on life insurers’ portfolio of corporate bonds. Lastly, we compute

insurers’ expected capital shortfall conditional on transition climate stress.

6.1 Transition Climate Beta

We estimate the transition climate beta for life insurers using the following model:

ri,t = βMkt
i,t MKTt + βTransition

i,t TCFt + εi,t (14)

where ri,t is the stock return on life insurer i and transition climate factor, TCFt, is the

stranded asset factor developed by Litterman et al. (2021). The intuition behind this factor

is that as transition risk increases, demand for fossil fuel reserves is likely to decline ulti-

mately, making the performance of the fossil fuel sector (relative to the market) a proxy

for transition risk. Jung et al. (forthcoming) show that this factor tends to fall following

“brown" events—events associated with a movement against a greener economy—and it

tends to rise following “green" events (e.g., Paris Agreement), in event studies.

Figure 7 displays the transition climate beta of large U.S. life insurers. From 2000 to
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2019, the climate beta remained near zero but rose sharply in 2020. Time fixed effects ex-

plain a larger proportion of the variation (R-squared of 30%) compared to insurer fixed

effects (R-squared of 9%). Notably, insurers’ transition climate betas increased signifi-

cantly during 2019 and 2020, coinciding with a collapse in fossil fuel prices and increased

attention to climate change risks. This aligns with our finding in Section 2 that the brown

proportion of insurers’ corporate bond portfolios is significant, averaging 14.7%. While

cross-sectional variation in transition climate betas is low until 2019, the magnitude of the

2020 increase varies significantly across insurers. In the next subsection, we explore such

variation using data on insurer asset holdings.

6.2 Insurers’ Transition Climate Beta and their Asset Holdings

In this section, we test whether insurers’ exposure to transition risk, proxied by transition

climate beta, aligns with insurers’ asset holdings. To test this, we focus on life insurers’

bond holdings because their equity holdings tend to be small, which can be partly ex-

plained by the high capital requirements on equities (Koijen and Yogo, 2023). First, to

measure the transition risk exposure of bond portfolios, we construct a panel of bond

portfolio climate betas. For each insurer, we calculate the weighted average climate beta,

where the weights are the proportions of bond holding in the respective industry, and

investments are assigned the climate beta of the respective industries:

Bond Portfolio Transition Climate Betai = ∑
j∈J

wj β
Transition
j (15)

where the weight, wj is the proportion of investment made to the respective industry

j. βTransition
j denotes the transition climate beta of industry j, and it is computed as the

value-weighted average climate beta of firms in each 3-digit NAICS industry. The in-

dustry climate betas are obtained by regressing each industry return on market factor
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and the transition climate factor.20 This approach avoids defining brown industries as

a dummy variable, instead using industry climate beta as a continuous measure. More-

over, by dynamically estimating industry climate betas, it addresses the challenge that the

“brownness" of an industry can change over time.

We compare the insurer transition climate beta estimates with bond portfolio transition

climate beta using the following OLS specification:

βTransition
it = a+ b Bond Portfolio Transition Climate Betait + Insurer Controls + δi + εit

(16)

The dependent variable, βTransition
it is insurer i’s time-averaged daily climate transition

beta for each year. We use the same insurer control variables as in the previous sections.

Standard errors are clustered at the insurer level. Table 5 shows the result. Column (2)

includes insurer control variables. Column (3) adds insurer fixed effects to control for

unobservable time-invariant insurer characteristics. We find that b is positive and signifi-

cant across all specifications, suggesting that insurers’ transition climate beta captures the

transition risk exposure of their asset holdings.

6.3 Transition CRISK and marginal CRISK

Using the CRISK framework, we compute the marginal transition CRISK for each life

insurer and aggregate them up. Figure 8 shows that the aggregate marginal CRISK of

life insurers increased sharply in 2020 and 2021, driven by the rise in climate beta, peak-

ing at $70 billion. This corresponds to 27% of their aggregate market cap. Comparing

small and large life insurers, we find that the marginal transition CRISK is highly concen-

trated among large life insurers, in contrast to the distribution of marginal physical CRISK

shown in Figure 5.

We also examine the transition mCRISK at the individual insurer level (Figure A.10).

20Industry returns are calculated based on the value-weighted returns for each sector, incorporating all
publicly traded companies in the United States. For further details, refer to Jung et al. (forthcoming).

33



Their time-series variation is similar to those of banks analyzed in Jung et al. (forthcom-

ing). The range of insurer mCRISK scaled by market capitalization ranges between -66%

to +31%, and this is comparable to those of banks (-41% to +33%). However, due to size

effects, insurers’ mCRISK values are generally smaller; the maximum for banks is $ 120

billion, while for insurers is less than $15 billion. Once the concurrent capitalization is

considered, many large life insurers exhibit negative transition CRISKs (Figure A.9), a

contrast to the banking sector, where large banks had significant positive CRISK during

2020-2021.

7 Compound CRISK Incorporating Tail Dependence

The previous analyses have focused on either transition risk or physical risk individually.

In this section, we expand our analysis to encompass market, physical, and transition risks

simultaneously, considering both P&C and life insurers. Building upon the methodology

of Engle (2023), we propose a compound CRISK (CCRISK) measure that incorporates tail

dependence.

7.1 Tail Dependence

An important element in extending the analyses to incorporate multiple stresses simul-

taneously is tail dependence, which measures the likelihood of two stresses occurring

conditional on the realization of either one. Unlike correlation, which measures linear re-

lationships, tail dependence provides a better assessment of joint risk under severe stress,

especially when multiple stresses interact non-linearly. For instance, during financial mar-

ket stress, natural disasters may amplify stress levels in the insurance sector, exceeding the

combined effect of each event occurring independently.

Figure 9 plots the empirical tail dependence structure of the three factors. The x-axis

represents the probability of one stress occurring, and y-axis represents the probability of
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both (three) stress events realizing conditional on the realization of a single stress in panels

(a), (b), and (c) (panel (d)). Panel (a) uses daily 6-month return data from 2000-2021, while

panels (b)-(d) use data from 2011-2021, constrained by the availability of the REIT factor.

Between transition and market risk, we find some tail dependence, as presented in

panel (a). As the market stress (or transition stress) gets more extreme (i.e., x-value ap-

proaches zero), the probability of both stresses realizing conditional on the single stress

(y-value) is 13%. However, we do not find tail dependence between transition risk and

physical risk, or between market and physical risk. This may be due to the limited sample

size; in a longer time series, there may be more realizations of simultaneous tail events.21

Considering these tail dependencies, the previous 1-percentile stress quantile is adjusted

to 0.35-percentile stress for each factor.22 This corresponds to 39%, 62%, and 18.6% decline

in market factor, transition factor, and physical factor, respectively.

7.2 Compound CRISK

With the estimated tail dependence estimates and three betas, we can compute compound

CRISK (CCRISK). The three betas are estimated from:

rit = βMkt
it MKTt + βTrans

it TCFt + βPhys
it PCFt + εit (17)

Then, by using the beta estimates, CCRISK can be computed as:

CCRISKit = kDit − (1− k) ·Wit · (1−LRMESit) (18)

21See Figure IA.B.1 showing pair-wise joint distributions. Note that there are no observations in the
bottom left corner in the joint distributions of transition and physical factors or market and physical factors.

22See Appendix IA.B for a detailed description of the estimation methodology.
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where the long-run marginal expected shortfall is computed based on the three beta esti-

mates:

LRMESit = 1− exp
(
βMkt
it log(1− θMkt) + βTrans

it log(1− θTrans) + βPhys
it log(1− θPhys)

)
(19)

The tail dependence is captured by using the adjusted stress levels determined from the

tail dependence parameter estimates from the previous subsection (i.e., θMkt = .39, θTrans =

.62, θPhys = .186).

Analogous to the one-dimensional marginal CRISK, we define marginal compound

CRISK as the difference between stressed CRISK and non-stressed CRISK, where the stress

is the union of three stress events (market stress, transition stress, and physical stress). We

still focus on the 1 percent tail event; that is, the probability of at least one stress event

being realized is 1%. Figure 10 shows that the aggregate marginal CCRISK of P&C insurer

reached $140 billion in 2021, which corresponds to 51% of their market cap. This can

be interpreted as the additional expected capital shortfall in the scenario of triple stress.

The aggregate marginal CCRISK of life insurers peaked at $240 billion in 2021, which is

66% of their market cap. For completeness, we report Figure A.11 showing the estimated

marginal CCRISK for the top 10 P&C insurers and the top 10 life insurers. Combined

together, our estimates suggest that the effect of compound risk can be substantial.23

8 Conclusion

This paper evaluates insurers’ exposure to physical and transition climate risks. We de-

velop a novel physical risk factor by constructing a portfolio of REITs, taking a long po-

sition on those with properties more exposed to physical climate risk and short on those

less exposed. We validate this factor by confirming its negative response to large natu-

23However, due to their low leverage (capital to asset ratio lower than 8% threshold we are using), the
CCRISKs are mostly negative. See Appendix Figure A.12.
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ral disasters. Using this factor, we estimate the dynamic climate betas, which capture the

stock return sensitivity of each insurer to the physical risk factor.

The estimated physical climate betas vary over time, with the average beta strongly

co-moving with insurers’ incurred losses, particularly catastrophe losses from extreme

weather events. We also suggest the importance of climate change attention, finding a

high correlation between a climate attention measure and the average climate beta. In

addition, we find that insurers with greater exposure to risky states tend to have higher

physical climate betas, suggesting that the beta captures P&C insurers’ insurance policy

portfolio exposure to physical climate risk.

Using the climate beta estimates, we compute insurers’ CRISK, the expected capital

shortfall conditional on climate stress, following the approach of Jung et al. (forthcoming).

By construction, insurers with higher leverage have higher CRISK. To isolate the leverage

effect and focus on the effect of climate stress, we also compute insurers’ marginal CRISK,

the difference between CRISK and non-stressed CRISK. We find that the marginal CRISK

for listed US P&C insurers has risen over time, peaking at $10 billion in 2021, coinciding

with increased catastrophe losses and attention to climate change.

We also examine life insurers’ exposure to transition risk. We use the stranded asset

portfolio as the transition risk factor and estimate life insurers’ transition climate beta. We

observe a notable increase in their transition climate beta during the 2019-2020 fossil fuel

price collapse. Empirical validation of climate beta estimates is conducted using granular

data on insurers’ asset holdings and the industry exposure in those holdings. We find

that the market-based transition climate beta reflects insurers’ bond portfolio composition;

insurers with more corporate bonds in transition-risk-impacted industries face greater

transition climate risk. The estimated aggregate transition CRISK for life insurers in the

U.S. also significantly rose by more than $150 billion, equivalent to 28% of their market

cap. Excluding concurrent undercapitalization, the marginal CRISK attributed solely to

transition climate stress increased by more than $85 billion during the same period.
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Finally, we compute compound risk incorporating potential tail dependence among

market risk, transition risk, and physical risk. We find that the aggregate marginal com-

pound risk has increased, peaking at $380 billion in 2021, and remained relatively high.

Overall, our results suggest that climate risk can have an economically substantial impact

on the insurance sector. Looking beyond this paper, fruitful directions for future research

include exploring insurers’ responses to physical and transition climate shocks, specifi-

cally focusing on their adjustments in policy pricing and quantity. This line of research

will provide further insights into insurers’ risk management strategies and their efforts to

address the financial implications of climate change.
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Tables

TABLE 1: INSURER SUMMARY STATISTICS

Panel A: P&C Insurer
count mean sd p25 median p75

Mktcap (Million USD) 269 10.1239 11.4804 3.0334 5.7539 12.6394
Asset (Million USD) 272 38.9925 49.2385 12.6572 23.4862 43.6703
Equity (Million USD) 272 7.3891 6.7931 2.7041 5.0085 9.0921
Reinsurance Intensity (%) 188 7.6025 11.3676 0.0507 1.5493 12.9530
RBC ratio 199 22.2361 34.9039 9.7198 12.1770 18.3883
Leverage 220 0.5413 0.1678 0.5140 0.5866 0.6615

Panel B: Life Insurer
count mean sd p25 median p75

Mktcap (Million USD) 383 20.7701 28.1045 5.1510 12.1301 26.2532
Asset (Million USD) 385 201.0334 229.8982 34.9665 116.3544 241.5602
Equity (Million USD) 385 18.2875 21.4137 5.0604 10.7638 19.6467
Reinsurance Intensity (%) 227 18.2639 30.7368 1.4582 6.1060 22.4524
RBC ratio 306 9.4871 4.0151 6.9155 8.2479 10.5823
Leverage 306 0.8206 0.1156 0.7927 0.8555 0.8907

Notes: This table provides summary statistics of publicly listed U.S. insurers. Panel A covers 21 Prop-
erty & Casualty insurers (2011-2021), and Panel B covers 18 life insurers (2000-2020). Reinsurance intensity,
Risk-based capital (RBC) ratio, and leverage are asset-weighted averages, winsorized at the 5% level.
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TABLE 2: P&C INSURER CLIMATE BETA AND POLICY PORTFOLIO CLIMATE BETA

Physical Climate Beta

(1) (2) (3) (4)

Policy Portfolio Climate Beta 1.537∗∗ 2.123∗∗∗ 2.135∗∗ 7.820∗∗∗

(2.33) (2.96) (2.36) (4.11)

Size -0.015∗∗∗ 0.033 0.022
(-3.43) (0.86) (0.97)

Leverage 0.053 0.290 0.300
(0.83) (1.18) (1.40)

Reinsurance Intensity -0.002 -0.033 -0.073
(-0.04) (-0.52) (-0.89)

RBC ratio 0.000 0.000 -0.000
(1.07) (0.35) (-0.26)

Constant -0.002 0.201∗∗ -0.719 -0.652
(-0.14) (2.77) (-1.12) (-1.60)

Insurer Controls No Yes Yes Yes
Insurer FE No No Yes Yes
Year FE No No No Yes
N 206 188 187 187

Notes: This table shows results from Equation 5. t-statistics are in parentheses. Stan-
dard errors are clustered at the insurer level. The sample comprises all P&C insurers in
the U.S., and the annual data spans from 2011 to 2022. Significance levels: ∗∗∗ p < 0.01;
∗∗ p < 0.05; ∗ p < 0.1.
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TABLE 3: P&C INSURERS’ RATINGS AND WEATHER LOSSES

P&C Insurers’ Rating Downgrade (y) (Downgrade = 1)

OLS Probit

(1) (2) (3) (4) (5) (6) (7) (8)

Disaster Loss (y-1) 0.002∗∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗∗ 0.018∗∗∗ 0.016∗∗∗ 0.018∗∗∗ 0.016∗∗∗

(2.68) (2.53) (2.57) (2.66) (3.61) (3.19) (3.61) (3.21)

Controls No Yes No Yes No Yes No Yes
Time FE No No Yes Yes No No Yes Yes
N 23782 13218 23781 13217 23782 23780 23782 13218

Notes: This table presents results on how P&C insurers’ AM Best ratings are related to disaster loss estimated in
Equation 11. Disaster loss for each P&C insurer is computed as the premium exposure-weighted average of state-
level total property loss due to natural hazards according to SHELDUS (excluding floodings). Disaster Losst,i =

∑s∈S
[(

DPEi,t,s
∑s∈S DPEi,t,s

)
∗ Property Damaget,s

]
. The outcome variable P&C Insurers’ Rating Downgrade (y) is 1 if the change of

P&C Insurers’ Rating from year (y− 1) to year y is negative. Controls are insurers’ assets and leverage. Both ratings use the first
rating that P&C insurers receive in the year. We match P&C insurers’ unexpected weather loss from the end of year (y − 1) to
the change of rating in year y. Controls, when included, contain P&C insurers’ asset and leverage in year y. Columns (1) to (4)
use OLS, and columns (5) to (8) probit. Standard errors are clustered at the individual insurer level. t-statistics or z-statistics are
in parentheses. The sample period is from 1998 to 2020. Significance levels: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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TABLE 4: INSURERS’ OPERATIONAL EXPOSURE TO PHYSICAL RISK VS. REALIZED
LOSS

Panel A: Direct Losses Incurred

Direct Losses Incurred (y)

(1) (2) (3) (4) (5)

Disaster Loss (y) 0.228∗∗∗ 0.153∗∗∗ 0.095∗∗∗ 0.168∗∗∗ 0.104∗∗∗

(14.08) (10.09) (11.30) (10.59) (11.46)

Insurer Controls No Yes Yes Yes Yes
Insurer FE No No Yes No Yes
Time FE No No No Yes Yes
N 21,809 21,809 21,728 21,809 21,728

Panel B: Short-term Profitability

Net Underwriting Gains (y) to Asset (y-1)

(1) (2) (3) (4) (5)

Disaster Loss (y) -0.003∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.005∗∗∗

(-3.54) (-3.58) (-6.95) (-3.49) (-7.28)

Insurer Controls No Yes Yes Yes Yes
Insurer FE No No Yes No Yes
Time FE No No No Yes Yes
N 20,765 20,765 20,704 20,765 20,704

Panel C: Long-term Profitability

Net Underwriting Gains (y) to Asset (y-1)

(1) (2) (3) (4) (5)

Disaster Loss (y-3) -0.001∗∗ -0.001∗∗ -0.001∗∗∗ -0.001 -0.001∗

(-2.01) (-2.19) (-2.58) (-1.36) (-1.65)

Insurer Controls No Yes Yes Yes Yes
Insurer FE No No Yes No Yes
Time FE No No No Yes Yes
N 17,830 17,830 17,761 17,830 17,761

Notes: This table presents results on how P&C insurers’ realized losses are related to phys-
ical risk estimated in Equation 11. P&C insurer-level operational exposure to physical risk is
computed as the weighted average “riskiness" of states where the weight is the insurer’s op-
erational exposure to the respective state. The “riskiness" of state is proxied by the property
damage based on SHELDUS (in logarithms). Realized losses are measured as the direct losses
incurred (Panel A), short-term profitability (Panel B), and long-term profitability (Panel C).
Profitability is computed as the net underwriting gains scaled by lagged asset of the previous
year. The sample comprises all individual P&C insurers, and the data spans from 1997 to 2019.
Standard errors are clustered at the individual insurer level. t-statistics are in parentheses. Sig-
nificance levels: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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TABLE 5: LIFE INSURER CLIMATE BETA AND BOND PORTFOLIO CLIMATE BETA

Transition Climate Beta

(1) (2) (3)

Holding Portfolio Climate Beta 0.950∗∗∗ 1.389∗∗∗ 1.609∗∗∗

(3.48) (4.57) (5.66)

Size 0.007 0.000
(1.02) (0.01)

Leverage -0.018 -0.181∗∗

(-0.14) (-2.23)

Reinsurance Intensity 0.012 -0.053
(0.28) (-1.09)

RBC ratio 0.003 0.006
(0.77) (0.99)

Constant -0.030 -0.209 0.024
(-1.00) (-1.34) (0.14)

Insurer Controls No Yes Yes
Insurer FE No No Yes
N 293 227 227

Notes: This table shows results from Equation 16. t-statistics are in parenthe-
ses. Standard errors are clustered at the insurer level. The sample comprises all
life insurers in the U.S., and the annual data spans from 2001 to 2022. Signifi-
cance levels: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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Figures

FIGURE 1: NATURAL DISASTER DATA DESCRIPTIVE STATISTICS

(A) FEMA RISK SCORE

(B) BILLION DOLLAR LOSS

Harzard Duration (Days) Mean Loss (Billions $) Max Loss(Billions $) Deaths

Hurricane 4 29 190 156
Drought 289 10 39 46
Wildfire 181 7 28 23
Winter 5 4 26 32
Flooding 21 4 14 13
Severe Storm 3 2 13 10

Note: The map shows the county distribution of FEMA scores. The table shows the summary
statistics of Billion Dollar Natural Disasters. Loss is the average total loss across events. The
sample period is 2000-2022.
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FIGURE 2: 6-MONTH RETURNS

(A) PHYSICAL RISK FACTOR

(B) MARKET, TRANSITION, AND PHYSICAL FACTORS

Note: Panel A shows the 6-month cumulative returns of REIT factor. Panel B shows the 6-month
returns of the market portfolio (SPY), transition risk factor (stranded asset factor), and physical
risk factor (REIT factor).
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FIGURE 3: REIT FACTOR RESPONSES AROUND NATURAL DISASTER EVENTS

Note: Cumulative coefficient γ on shockt in PCFt = α+∑20
n=0 γnshockt−n+ θMKTt+ ϵt. shockt

takes the value of damage if it was the start date of a natural disaster event, and a value of 0 if
there was no disaster on day t. In the sample period spanning from 2011 to 2022, a total of
148 natural disaster events were recorded. Each physical risk factor series is standardized by its
volatility. The standard errors are Newey-West adjusted and the band shows 95% confidence
interval.
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FIGURE 4: PHYSICAL CLIMATE BETA OF P&C INSURERS IN THE U.S.

Note: Average Climate beta of P&C insurers in the U.S.. The sample period is from January 2011
to December 2022.

FIGURE 5: AGGREGATE PHYSICAL MARGINAL CRISK OF P&C INSURERS IN THE
U.S.

Note: Aggregate physical marginal CRISK of P&C insurers in the U.S.. The large insurers are the
top large P&C insurers in Table A.1. The sample period is from January 2011 to December 2022.
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FIGURE 6: P&C INSURER STOCKS RESPONSE AROUND NATURAL DISASTER EVENTS

Note: Cumulative coefficient γ on shockt in PCFt = α+∑20
n=0 γnshockt−n+ θMKTt+ ϵt. shockt

takes the value of 1 if it was the start date of a natural disaster event, and a value of 0 if there
was no disaster on day t. In the sample period spanning from 2001 to 2022. Each physical risk
factor series is standardized by its volatility. The standard errors are Newey-West adjusted and
the band shows 95% confidence interval.
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FIGURE 7: TRANSITION CLIMATE BETA OF LIFE INSURERS IN THE U.S.

Note: Climate beta of life insurers in the U.S.. The sample insurers are the top large life insurers
in Table A.1. The sample period is from June 2000 to December 2022.
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FIGURE 8: AGGREGATE TRANSITION MARGINAL CRISK OF LIFE INSURERS IN THE
U.S.

Note: Aggregate transition marginal CRISK of Life insurers in the U.S.. The large insurers are the
top large Life insurers in Table A.1. The sample period is from January 2001 to December 2022.
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FIGURE 9: TAIL DEPENDENCE

Note: Panels (a), (b), and (c) plot λ(u) vs. u, where u = P (x < −θx) = P (y < −θy) = u and
λ(u) = P (y < −θy|x < −θx). x and y denote two factors, and θx and θy denote the associated
stress levels. u can be interpreted as the probability of single stress event and λ(u) can be in-
terpreted as the probability of two (three) stress events conditional on single stress. Panel (a) is
based on the 6-month returns on the factors during 2001-2021; panels (b)-(d) are based on 2011-
2021.
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FIGURE 10: AGGREGATE MARGINAL COMPOUND TRANSITION AND PHYSICAL
CRISK

Note: Aggregate marginal compound CRISK of P&C insurers and life insurers in the U.S.. The
sample period is from January 2012 to December 2022.
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A Additional Tables and Figures

TABLE A.1: TOP 10 INSURER SUMMARY STATISTICS

Panel A: P&C Insurers Summary Statistics

Ticker Insurer Mktcap Asset Equity HHI (%) Reinsurance Intensity(%)

ALL Allstate 10.17 11.74 9.93 6.61 4.40
TRV Travelers 10.10 11.41 9.89 4.94 3.48
PGR Progressive 9.79 10.10 8.81 14.62 0.19
HIG Hartford 9.64 12.22 9.63 5.12 17.24
CNA CNA Financial 9.03 10.99 9.29 4.92 20.71

CINF Cincinnati 8.96 9.77 8.76 7.73 5.27
MKL Markel 8.59 9.61 8.20 4.94 14.23
AIZ Assurant 8.52 10.31 8.43 5.33 21.21
WRB WR Berkley 8.52 9.69 8.11 4.39 3.22
ORI Old Republic 8.31 9.56 8.31 10.91 10.17

Panel B: Life Insurers Summary Statistics

Ticker Insurer Mktcap Asset Equity Corporate Bond Brown Share(%)

MET MetLife 10.52 13.25 10.61 10.52 17.20
PRU Prudential 10.32 13.26 10.40 10.40 13.72
AFL Aflac 10.08 11.37 9.38 9.24 11.83
CI Cigna 9.86 11.11 9.09 8.01 13.99
HIG Hartford 9.64 12.24 9.63 8.90 11.86

AMP Ameriprise 9.62 11.78 8.96 9.29 18.34
LNC Lincoln National 9.19 12.14 9.30 10.36 15.59
VOYA Voya Financial 8.95 12.19 9.39 9.95 12.56
GL Globe Life 8.70 9.76 8.28 8.73 19.46
RGA Reinsurance 8.30 10.20 8.29 8.96 12.74

Note: Panel A shows the summary statistics of P&C insurers. HHI (Risky State Exposure) measures the
degree of each insurer’s operational portfolio diversification averaged across 2000-2021. Reinsurance Inten-
sity is the 95% winsorized, asset-weighted average of individual insurers within the group. Panel B shows
the summary statistics of life/health insurers from 2000 to 2021. The Brown Share represents the ratio of
the fair value of corporate bonds within brown industries to the total fair value of corporate bonds held by
each insurer in each year during the same sample period. We identified brown industries as Coal Mining
(NAICS Industry 2121), Gas Mining (NAICS Industry 211130), Gas utilities (NAICS Industry 2212), and
Electric utilities (NAICS Industry 2211). According to Jorgenson et al. (2018), their estimated drop in indus-
try output under a severe carbon tax scenario ($50 tax, 5% growth rate) are 33.8%, 15.7%, 15.4%, and 12.4%,
respectively. Market cap, Asset Equity, and Corporate Bond are in log.
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FIGURE A.1: REIT-LEVEL PHYSICAL RISK EXPOSURE DISTRIBUTION OVER TIME

Note: Mean, median, 25th percentile, and 75th percentile of physical risk exposure distribution
over time.

FIGURE A.2: PROPERTY LOCATION DIVERSIFICATION ACROSS REITS

Note: Histogram of Herfindahl-Hirschman Index (HHI) computed based on the share of prop-
erties located in each county. (i.e., HHIi = ∑(PSi,c)

2 where PSi,c represents the number of
properties in county c divided by the total number of properties owned by the REIT i.)
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FIGURE A.3: COUNTY DISTRIBUTION OF REITS

(A) RISKIEST REITS

(B) SAFEST REITS

Note: The maps show the county-level distribution of REIT property holdings. Panel A shows
the number of holdings in each county for REITs in the top portfolio (riskiest REITs), while Panel
B shows the distribution for REITs in the bottom portfolio (safest REITs). The sample period is
2021.
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TABLE A.2: SUMMARY STATISTICS OF FACTORS

mean sd p25 p75 count
Market (SPY) 0.0003 0.0124 -0.0046 0.0059 5598
TCF: Stranded Asset -0.0003 0.0142 -0.0074 0.0075 5598
PCF: REIT-based -0.0001 0.0041 -0.0024 0.0023 2831

Note: The sample period is 2002-2023 and all factors are daily.

TABLE A.3: CORRELATION OF FACTORS

Panel A: Pearson Factor Correlations
(1) (2) (3)

Market Risk Factor
(1) SPY ETF 1.00

Transition Risk Factor
(2) Stranded Asset 0.13 1.00

Physical Risk Factor
(3) REIT-based -0.02 -0.00 1.00

Panel B: Orthogonalizd to Fama-French Three Factors
(1) (2) (3)

Market Risk Factor
(1) SPY ETF 1.00

Transition Risk Factor
(2) Stranded Asset -0.07 1.00

Physical Risk Factor
(3) REIT-based 0.02 -0.04 1.00

Note: Panel A shows the daily factor correlations for the period 2002 to 2020. Panel
B shows the corresponding factor correlations after orthogonalizing each factor with
respect to the Fama-French market, size and value factors.
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FIGURE A.4: PHYSICAL CLIMATE BETA OF P&C INSURERS IN THE U.S.

Note: Climate beta of P&C insurers in the U.S.. The large insurers are the to P&C insurers in
Table A.1. The sample period is from January 2011 to December 2022.
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FIGURE A.5: PHYSICAL MARGINAL CRISK OF P&C INSURERS IN THE U.S.

Note: Physical marginal CRISK of P&C insurers in the U.S.. The sample insurers are the top large
P&C insurers in Table A.1. The sample period is from January 2011 to December 2022.
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FIGURE A.6: P&C INSURERS’ PHYSICAL CLIMATE BETA AND HOMEOWNER LOSS

Note: Annual average physical climate beta and homeowner loss from 2011 to 2021. Homeowner
loss is calculated as the ratio of loss incurred to premium. The sample insurers are the top large
P&C insurers in Table A.1, with the average being equally weighted. The correlation is 0.4291.

FIGURE A.7: P&C INSURERS’ PHYSICAL CLIMATE BETA AND CLIMATE ATTENTION

Note: Quarterly average physical climate beta and climate attention from 2011 to 2022. The
sample insurers are the top large P&C insurers in Table A.1, with the average being equally
weighted. The correlation is 0.5768.
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FIGURE A.8: PHYSICAL CRISK OF P&C INSURERS IN THE U.S.

Note: Physical CRISK of P&C insurers in the U.S.. The sample insurers are the top large P&C
insurers in Table A.1. The sample period is from January 2011 to December 2022.
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FIGURE A.9: TRANSITION CRISK OF LIFE INSURES IN THE U.S.

Note: Transition CRISK of life insurers in the U.S.. The sample insurers are the top large life
insurers in Table A.1. The sample period is from June 2000 to December 2022.
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FIGURE A.10: TRANSITION MARGINAL CRISK OF LIFE INSURES IN THE U.S.

Note: Transition marginal CRISK of life insurers in the U.S.. The sample insurers are the top large
life insurers in Table A.1. The sample period is from June 2000 to December 2021.
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FIGURE A.11: MARGINAL COMPOUND CRISK

(A) ESIMATED MCCRISK OF TOP 10 P&C INSURERS

(B) ESIMATED MCCRISK OF TOP 10 LIFE INSURERS

Note: Panel A displays the estimated compound marginal CRISK of P&C insurers in the U.S..
The sample insurers are the top large P&C insurers in Table A.1. The sample period is from
January 2012 to December 2021. Panel B exhibits the estimated marginal compound CRISK of
life insurers in the U.S.. The sample insurers are the top large life insurers in Table A.1. The
sample period is from January 2012 to December 2021.
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FIGURE A.12: COMPOUND CRISK

(A) ESIMATED CCRISK OF TOP 10 P&C INSURERS

(B) ESIMATED CCRISK OF TOP 10 LIFE INSURERS

Note: Panel A displays the estimated compound CRISK of P&C insurers in the U.S.. The sample
insurers are the top large P&C insurers in Table A.1. The sample period is from January 2012 to
December 2021. Panel B exhibits the estimated compound CRISK of life insurers in the U.S.. The
sample insurers are the top large life insurers in Table A.1. The sample period is from January
2012 to December 2021.
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B Unlisted Insurers

Listed insurers’ market share is about 50% as of 2022. In this section, we sketch an ap-
proach to estimate the CRISK of unlisted insurers. We also provide an estimate of mCRISK
based on back-of-the envelope calculations. To compute the physical risk exposure of
non-listed insurers, we build upon the relationship between the physical climate beta,
the policy portfolio physical climate beta, and insurer-level characteristics. Since the pol-
icy composition and characteristics are observable for unlisted insurers, we impute their
physical climate beta based on the estimation result of specification (2) from Table 2 with-
out insurer fixed effects.

One potential concern is the difference between listed and unlisted insurers. While
we cannot fully address this issue, we test the stability of the coefficients by iteratively
excluding one insurer at a time from the sample to ensure that the results in Table 2 are
not driven by any single insurer. Figure B.1 below plots the coefficient estimate when one
insurer is dropped at a time, and it suggests that the main coefficient (on policy portfolio
climate beta) is indeed stable. Similarly, we find that other coefficients are also stable,
suggesting that the they are not driven by any particular insurer.

Applying the coefficient estimates from specification (2) of Table 2 to unlisted insurers,
we find that their average climate beta is lower than that of listed insurers (see Figure B.2).
This is primarily driven by the negative coefficient on size, indicating that smaller insurers
generally exhibit higher climate betas.

To compute the market value of equity, we apply the listed P&C insurers’ average
market-to-book ratio. Then, we can compute the mCRISK of non-listed insurers as:

˜mCRISKit = (1− k) · Book Equityit · (Avg Market-to-book Ratiot) · ˜LRMESit

where
˜LRMESit = 1− exp

(
β̂Climate
it log(1− θ)

)
and β̂Climate

it denotes the fitted value of climate beta based on the insurer i’s portfolio beta
and characteristics at time t.

Based on this back-of-the-envelope calculation, we estimate that the non-listed insur-
ers’ aggregate mCRISK is $1.59 billion as of the end of our sample period, 2021. If we
apply the minimum and maximum values of market-to-book ratio instead of the average
value, we estimate that the unlisted insurers’ aggregate mCRISK ranges between $0.6 and
$3.6 billion, as of 2021.
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FIGURE B.1: COEFFICIENT STABILITY

Note: Coefficient estimates of Policy Portfolio Physical Climate Beta, excluding one insurer at a
time. Each dot represents the coefficient estimate (b) after dropping a single insurer. The band
shows 95% confidence interval.
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FIGURE B.2: PHYSICAL CLIMATE BETA OF LISTED AND NON-LISTED P&C INSURERS

(A) DISTRIBUTION OF INSURERS’ CLIMATE BETA

(B) CLIMATE BETA OVER TIME

Note: Climate beta of listed and non-listed P&C insurers in the U.S.. Non-listed insurers’ betas
are derived from coefficient estimates in the specification (2). Panel (A) presents the histogram
of all insurers’ betas. Panel (B) reports the weighted average of listed and non-listed insurers’
physical climate betas over time. The sample period is from January 2011 to December 2021.
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Internet Appendix to
“Physical Climate Risk Factors and an Application

to Measuring Insurers’ Climate Risk Exposure"

IA.A Additional Results on Climate Beta

FIGURE IA.A.1: PHYSICAL CLIMATE BETA VS. WEATHER-RELATED LOSS

(A) ALLSTATE

(B) CIGNA

Note: Annual physical climate beta and weather-related loss reported in 10K reports for P&C
insurers AllState and Cigna.
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FIGURE IA.A.2: PHYSICAL CLIMATE BETA OF P&C INSURERS IN THE U.S.
CONTROLLING FOR SIZE (SMB), VALUE (HML), INVESTMENT (CMA), AND

PROFITABILITY (RMW)

Note: Climate beta of large P&C insurers in the U.S.. The sample period is from January 2011 to
December 2022. The large insurers are the top large P&C insurers in Table A.1.
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IA.B Tail Dependence Estimation

Consider two factors, x and y. Let u be the probability of either stress realizing:

P (x < −θx) = P (y < −θy) = u

where θx and θy are the stress levels associated with the two factors. The conditional
probability that y is extreme when x is extreme is defined by:

P (y < −θy|x < −θx) = λ(u)

A widely used measure of tail dependence, “coefficient of tail dependence" is defined as:

λ̄ = lim
u→0

λ(u)

Let α be the probability of either stress realizing α:

P (x < −θx) ∪ P (y < −θy) = 2u− u · λ(u) = α (20)

Then the probability of neither stress event occurring is 1− α.
Suppose that a regulator is interested in finding the maximum expected capital short-

fall of an insurer due to both stresses with probability 1 − α. This problem can be posed
as finding the stress levels (θx, θy) ∋ P (x > −θx ∩ y > −θy) = 1−α for a prespecified α so
that for all {x > −θx} and {y > −θy}, the expected capital shortfall is less than CCRISK.

The solution can be found from equation (20) (Engle, 2023). For the pre-specified level
α, we can find u∗ that satisfies:

u∗ =
α

2− λ(u∗)
≈ α

2− λ̄

Similarly, Engle (2023) further shows that the relationship between α and u∗ can be ex-
tended to three factors:

u∗ =
α

3 + λ̄xyz − λ̄xy − λ̄xz − λ̄yz

where
λ̄xyz = lim

u→0

P{(x < qx) ∩ (y < qy) ∩ (z < qz)}
u

Based on the empirical λ estimates visualized in Figure 9, λ̄xyz = 0, λ̄xy = 0.13, λ̄xz =

0, λ̄yz = 0, and therefore u∗ = 0.01/(3− 0.13) = 0.0035.
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FIGURE IA.B.1: PAIRWISE JOINT DISTRIBUTIONS

(A) MARKET VS. TRANSITION RISK

(B) MARKET VS. PHYSICAL RISK

(C) TRANSITION VS. PHYSICAL

Note: Panel (A) shows the scatter histogram of the market risk factor and the transition risk
factor based on 2001-2021 daily returns. Panel (B) and (C) show those of market and physical risk
factors and transition and physical risk factors, respectively based on 2011-2021 daily returns.
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IA.C Municipal Bond Return Estimation

Our estimation of the monthly return series is based on Auh et al. (2022) and follows
insights from repeat-sales models in the housing market. It is based on the following
model:

Ri,b:s =
s

∑
t=b+1

Rc
t + ei,b:s

where Ri,b:s = log(pi,s/pi,b), Rc
t = log(1 + rct ). pi,s and pi,b are prices of bond i in months

s and b (s > b) respectively. rct denotes the monthly return in county c and month t.
ei,b:s = ∑s

t=b+1 log(ϵi,t) where ϵi,t represents the bond-specific idiosyncratic return com-
ponent. The monthly return Rc

t is estimated in panel regressions as the coefficient on the
monthly indicator variables. Each of the b− s monthly indicator variables is equal to one
in the one month that falls between b+ 1 and s and is equal to zero in all other months.
We use weighted least squares regressions with the weight being the square root of issue
amounts divided by the square root of the time interval between b and s.
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IA.D Alternative Physical Risk Factors

To capture actual disaster loss, We utilize monthly data from National Oceanic and Atmo-
spheric Administration (NOAA) to construct physical risk factors. This data is sourced
from the Spatial Hazard Events and Losses Database for the United States (SHELDUS)
database, which provides information on natural hazard events and their economic losses
across the country from 1980 to 2019, covering hazards including hurricanes, tornadoes,
floods, and wildfires. Table IA.D.1 shows the summary statistics of property damage by
hazard type. With these property loss data, we assess the risk exposure of each insurer.

TABLE IA.D.1: NATURAL DISASTER DATA DESCRIPTIVE STATISTICS

Hazard Average(Billions $) Std Median(Billions $) Max(Billions $)

Hurricane 23,557 77,612 31 470,925
Flooding 9,456 51,986 714 565,212
Severe Storm 2,477 6,958 621 73,136
Winter 1,788 4,117 327 33,512
Wildfire 1,695 13,810 36 194,262
Drought 564 1,443 31 9,087
Coast 47 173 1 1,355
Heat 14 27 1 108

Note: Summary statistics of SHELDUS country-level property damage data. The sample period is 2000-
2019.

Insurer Premium Factor is a portfolio of P&C insurer stock returns based on information
on P&C insurers’ operational exposure across states. Specifically, we merge P&C insurers’
DPE with property damage from SHELDUS at the state-year level. Then, for each year,
we compute each insurer i’s physical risk exposure, denoted RISK, as:

RISKi,t = ∑
s∈S

[(
DPEi,s,t−1

∑s∈S DPEi,s,t−1

)
× Property Damages,t−1

]
× 1

MEi,t−1
(21)

where DPEi,s denotes the direct premium earned by insurer i in state s, Property Damagej,t−1
denotes the total property damage in state s in the previous year, and MEi,t−1 denotes the
market cap of insurer i in the previous year. The term DPEi,s,t−1

∑s∈S DPEi,s,t−1
proxies insurer i’s

premium exposure to state s and Property Damages,t−1 proxies the riskiness of state s.
Some insurers also have operations other than P&C insurance. If P&C operations are less
significant to the company, its stock returns will be less informative about insurers’ phys-
ical risk exposure. To reflect this idea, we scale our measure by insurers’ lagged market
cap.
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We form a portfolio of all US P&C insurers where the weight is RISK. Finally, we
subtract the market return from the portfolio return to obtain the insurer premium factor.
Intuitively, insurance companies with a substantial premium (policy) exposure to states
characterized by high physical risk would be associated with elevated RISK. Conse-
quently, the insurer premium factor gives greater weight to insurers with high RISK,
while assigning lower weights to those with low RISK. We anticipate a decline in this
factor after an unanticipated escalation in physical risk, such as a sharp increase in the
frequency or severity of natural disasters.

Insurer Loss-to-Equity Factor is constructed based on P&C insurers’ ratios of losses in-
curred relative to its market capitalization. Specifically, we compute the ratio by:

Loss-to-Equityi,t =
∑j ρ̄i,j,t−1DPEi,j,t−1

MEi,t−1
(22)

where ρi,j,t can be considered “risk weights" of insurer i in state j and year t:

ρi,j,t =
Lossi,j,t
DPEi,j,t

and ρ̄ is exponentially smoothed risk weights.24 In contrast to the first factor, the loss-
to-equity factor uses insurer-state-specific incurred losses relative to earned premiums,
instead of relying on SHELDUS property damage data.

The form of loss-to-equity measure resembles the inverse of the risk-based capital
(RBC) ratio. The RBC ratio is a measure of an insurer’s capital adequacy constructed
by dividing its total adjusted capital by its required capital:

RBCi,t =
Equityi,t

Required Equityi,t
(23)

A higher RBC ratio indicates that the insurer has a larger buffer of capital to absorb poten-
tial losses and meet its obligations to policyholders. Our proxy measure, loss-to-equity,
resembles the inverse of RBC ratio, and therefore a higher value indicates a higher risk.

Similar to the first physical factor, we form a portfolio of all P&C insurers in the U.S.
where the weight is Loss-to-Equity. The loss-to-equity factor is computed as the portfolio
return minus the market return. Presumably, insurance companies that experience larger
losses are associated with higher risk because being subject to large losses means that

24We use exponentially weighted average of past observations to assign more weights to the recent ob-
servations for better forecasting. We use the optimal bandwidth.
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insurers operate in areas where the unexpected losses are large. For example, in areas
prone to hurricanes, if insurers charge annual premiums equaling the expected losses in
a year, when costly hurricanes actually happen, losses will be large. In other areas that
are not subject to costly events, insurers are less likely to suffer large losses. Therefore,
by assigning greater weights to insurers with a higher Loss-to-Equity ratio, we anticipate
a decline in the loss-to-equity factor following an unanticipated escalation in physical
risks.25

Damage Variance Factor is similar to the insurer premium factor but focuses explicitly
on the unexpected aspect of property damage resulting from natural disasters. To im-
plement this, we calculate the standard deviation of property damage for each state-year,
considering a rolling window spanning the last 15 years. For each year, we compute each
insurer i’s physical risk exposure, denoted RISK, as:

RISKt,i = ∑
s∈S

[(
DPEi,t−1,s

∑s∈S DPEi,t−1,s

)
∗ std(Property Damaget−1,s)

]
∗ 1
MEi,t−1

(24)

where DPEi,s denotes the direct premium earned of insurer i in state s, S denotes all
the states where insurer i covers in the previous year. std(Property Damaget−1,s) denotes
the standard deviation of property damage of state s over the past 15 years. We form
a portfolio of all U.S. P&C insurers where the weight is RISK and subtract the market
return from the portfolio return to obtain the loss deviation factor.

Net Damage Factor measures the absolute risk rather than the relative ones. Following
natural disasters, insurers face higher insurance claims but the negative impact might be
offset by the adjusted premia or increased demand. To address this concern, we define
realized risk as below, which can be positive or negative:

Realized Riskt,i = ∑
s∈S

[(
DPEi,t−1,s

∑s∈S DPEi,t−1,s

)
∗ Property Damaget−1,s −DPEt−1,s,i

]
∗ 1
MEt−1,i

(25)
We then construct a long-only portfolio weighted by insurer ranking. Insurers are

assigned higher ranks26 and weights when their realized risk is positive and large relative
to market cap. This Net Damage Factor has a variance that rises with climate severity and

25We document supporting evidence in ?? showing that P&C insurers with high operational exposure to
physical risk experienced higher incurred losses.

26i.e. when there are 30 insurers, the one with the largest positive realized risk relative to market cap
ranks 30 and gets assigned a weight of 30/ ∑30

i=1 i
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will be larger when damages are larger, given that the most exposed firms have negative
returns.

Trucost-based Factor is constructed from Trucost Climate Change Physical Risk Data.
We used a composite physical risk measure, which reflects the expected sensitivity of each
company to a combination of seven key climate hazards, including wildfire, fluvial flood,
water stress, extreme cold, tropical cyclone, extreme heat, and coastal flood. All risks
are evaluated based on the High Climate Change Scenario (RCP 8.5 27) based on IPCC
Representative Concentration Pathways. We sorted firms into ten groups on their physical
risk to form a value-weighted long-only portfolio, with a long position in firms within
the top decile of physical risk. In the following section, we explore factors evaluated at
three future time periods, ranging from short-term (2020), medium-term (2030), to long-
term (2050). Appendix Figure IA.E.4 demonstrates the event study of factors’ response to
physical climate shocks.

27Continuation of business as usual with emissions at current rates. This scenario is expected to result in
warming in excess of 4 degrees Celsius by 2100.
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IA.E Physical Risk Factor Event Studies: Robustness Tests

We conduct a series of robustness tests to ensure the reliability of the event study re-
sults. First, we find that the factors constructed using the alternative approaches to com-
puting RISK, such as taking the standard deviation of property damage or subtracting
the earned premium, exhibit similar responses to natural disaster events (Appendix Fig-
ure IA.E.1). Second, consistent results are obtained when flood events are excluded from
the analysis to address the concern that the results are driven by floods that are predom-
inantly covered by the National Flood Insurance Program (NFIP) rather than private in-
surers (Appendix Figure IA.E.2). Third, we find that the results remain consistent when
we consider the size of the disaster by defining shock on the start day of the event as the
log of damages, rather than the binary variable indicating the occurrence of the disaster
(Appendix Figure IA.E.3).

Alternative Physical Risk Factors To assess the robustness of the findings related to
the physical risk factors, we constructed four factors using different approaches to com-
pute the RISK variable (See detailed descriptions in and Section 3.1 and Section IA.D).
Appendix Figure IA.E.1 shows that the factors derived through alternative methods for
calculating RISK demonstrate comparable responses to natural disaster events.

Exclude Flood Events The National Flood Insurance Program underwrites the vast ma-
jority of all US flood insurance policies, only under 5% of US flood insurance policies
are provided by private insurance underwriters (Ge et al., 2022). Therefore, we conduct
a robustness test of our physical risk factors by subtracting property damage caused by
flooding in the factor construction and removing flood events in the event study analyses.
Appendix Figure IA.E.2 suggests that all four factors decline after natural disaster events
and the results are robust after dropping the flood events from the sample.

Consider the Size of Losses The responses to natural disaster events can vary depend-
ing on their magnitude. For example, smaller events with lower losses may exhibit smaller
and slower responses compared to relatively larger events. We conducted a robustness
test that takes into account the size of the disaster. In this test, we redefine our variable
of interest as "shock," which is represented as the log of the loss incurred on the start date
of the disaster rather than using a binary value of 1. Notably, Appendix Figure IA.E.3
continues to demonstrate consistency even with this modified approach.
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FIGURE IA.E.1: ROBUSTNESS TEST: EVENT STUDY WITH ALTERNATIVE PHYSICAL
RISK FACTORS

(A) INSURER PREMIUM FACTOR (B) INSURER LOSS-TO-EQUITY FACTOR

(C) LOSS DEVIATION FACTOR (D) NET DAMAGE FACTOR

Note: Cumulative coefficient γ on shockt in PCFt = α+ ∑20
n=0 γnshockt−n + θMKTt + ϵt. shockt takes the

value of 1 if it was the start date of a natural disaster event, and a value of 0 if there was no disaster on
day t. Each physical risk factor series is standardized by its volatility. The standard errors are Newey-West
adjusted and the band shows 95% confidence interval.

Consider the Time Horizon of Physical Risks The time horizon of physical risk real-
ization remains undetermined. Stroebel and Wurgler (2021) highlight that investors view
physical risks as the top risk over the next 30 years. Climate stress tests by central banks, as
outlined by Acharya et al. (2023), encompass various scenarios, accounting for the sever-
ity and timing of physical risk realizations. The Trucost dataset evaluates physical risks
in three future time periods: short-term (2020), medium-term (2030), and long-term(2050).
In this robustness test, we constructed factors at different time horizons using the method-
ology outlined in Section IA.D. Given that the Trucost Climate Change Physical Risk Data
is available only after 2019, we conducted the event studies based on the sample period
of 2019-2022. The results are consistent across these temporal variations.
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FIGURE IA.E.2: ROBUSTNESS TEST: EVENT STUDY WITHOUT FLOODING

(A) INSURER PREMIUM FACTOR (B) INSURER LOSS-TO-EQUITY FACTOR

(C) LOSS DEVIATION FACTOR (D) NET DAMAGE FACTOR

Note: Cumulative coefficient γ on shockt in PCFt = α+ ∑20
n=0 γnshockt−n + θMKTt + ϵt. shockt takes the

value of 1 if it was the start date of a natural disaster event, and a value of 0 if there was no disaster on
day t. Each physical risk factor series is standardized by its volatility. The standard errors are Newey-West
adjusted and the band shows 95% confidence interval.
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FIGURE IA.E.3: ROBUSTNESS TEST: EVENT STUDY WITH DAMAGE SIZE

(A) INSURER PREMIUM FACTOR (B) INSURER LOSS-TO-EQUITY FACTOR

(C) LOSS DEVIATION FACTOR (D) NET DAMAGE FACTOR

Note: Cumulative coefficient γ on shockt in PCFt = α+ ∑20
n=0 γnshockt−n + θMKTt + ϵt. shockt takes the

log value of loss if it was the start date of a natural disaster event, and a value of 0 if there was no disaster on
day t. Each physical risk factor series is standardized by its volatility. The standard errors are Newey-West
adjusted and the band shows 95% confidence interval.
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FIGURE IA.E.4: ROBUSTNESS TEST: EVENT STUDY WITH DIFFERENT TIME
HORIZONS

(A) SHORT-TERM (2020) (B) MEDIUM-TERM (2030)

(C) LONG-TERM (2050)

Note: Cumulative coefficient γ on shockt in PCFt = α+ ∑20
n=0 γnshockt−n + θMKTt + ϵt. shockt takes the

log value of loss if it was the start date of a natural disaster event, and a value of 0 if there was no disaster on
day t. Each physical risk factor series is standardized by its volatility. The standard errors are Newey-West
adjusted and the band shows 95% confidence interval.
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