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1 Introduction

Natural capital, which includes ecosystems, natural resources, and the services they provide, under-
pins virtually all economic activity. It encompasses renewable and non-renewable assets such as forests,
cropland, water, minerals, fossil fuels, and biodiversity, as well as the ecosystem services they generate,
including climate regulation, soil fertility, pollination, and the provision of clean air and water. Despite
its central role, natural capital remains largely absent from standard macroeconomic models. This omis-
sion leads to an underestimation of climate change impacts and distorts the cost-benefit analysis of climate
policy.

In this paper, we develop a dynamic stochastic general equilibrium (DSGE) model that integrates natu-
ral capital and input-specific climate damages into the production structure. We introduce multiple forms
of renewable and non-renewable natural capital and allow their degradation to depend on rising temper-
atures. Production technologies are governed by Constant Elasticity of Substitution (CES) aggregators,
which enable us to estimate and explore substitution patterns between natural capital and conventional
inputs such as labor and produced capital. Crucially, we also introduce stochastic shocks to productivity
and climate dynamics, allowing us to compute expectation-based shadow prices for each form of natural
capital under uncertainty.

We make two main contributions. First, we provide new empirical estimates of (i) climate-induced
damage functions for different types of natural capital, and (ii) substitutability between these inputs. Sec-
ond, we use these estimates in our macroeconomic model to quantify how shadow prices and the social
cost of carbon (SCC) respond to uncertainty and structural assumptions. We compare our framework to a
benchmark DICE-type model without natural capital.

Our results indicate that including natural capital raises the SCC by approximately 12% in a determin-
istic setting. More strikingly, we show that SCC estimates are highly sensitive to substitution elasticities
in the production function, more so than to commonly discussed parameters such as damage functions or
discount rates. Under stochastic productivity and temperature shocks, the SCC increases by 39% under our
baseline calibration. We also find that while unexpected fossil-fuel discoveries can spur a short-term output
surge, they ultimately undermine long-run growth and erode social welfare.

This paper contributes to three main strands of the literature. First, we add to the growing body of cli-
mate econometrics that quantifies the economic damages associated with temperature shocks. While much
of this literature focuses on outcomes such as agriculture (Deschênes and Greenstone, 2007; Schlenker and
Roberts, 2009; Burke and Emerick, 2016), mortality (Deschênes and Greenstone, 2011; Barreca, 2012; Car-
leton, Jina, Delgado, Greenstone, Houser, Hsiang, Hultgren, Kopp, McCusker, Nath, et al., 2022), or aggre-
gate GDP (Dell, Jones, and Olken, 2012; Burke, Hsiang, and Miguel, 2015; Klenow, Nath, and Ramey, 2023;
Bilal and Känzig, 2024), we shift the focus to the effects of temperature on the stocks of natural capital. A
closely related contribution by Bastien-Olvera, Conte, Dong, Briceno, Batker, Emmerling, Tavoni, Granella,
and Moore (2024) estimates how climate change–induced changes in terrestrial vegetation cover affect eco-
nomic output and the value of non-market ecosystem services. In contrast, we employ methods from the
climate econometrics literature to estimate the impact of rising temperatures on a broader range of natural
capital stocks. Specifically, we provide novel estimates of the economic costs of climate change stemming
from damages to cropland, forest ecosystems, minerals, coal, gas, oil, fossil fuels, and renewable energy
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sources.
Second, we contribute to the empirical literature on CES production functions within environmental

economics. Previous studies, such as Acemoglu, Aghion, Bursztyn, and Hemous (2012); Papageorgiou,
Saam, and Schulte (2017), and more recently Jo and Miftakhova (2024) have emphasized the importance
of substitutability between clean and dirty energy inputs for green growth and provided estimates of CES
functions within this context. Our modeling framework adopts a more disaggregated approach, requiring
the estimation of elasticities both between different types of natural capital and between natural capital
and conventional production inputs. Following Papageorgiou et al. (2017), we utilize a range of estimation
techniques to assess the robustness of our results.

Third, we contribute to the literature on integrated assessment and macroeconomic climate models. The
inclusion of climate dynamics in macroeconomic frameworks dates back to Nordhaus (1991), which laid the
foundation for a wide range of Integrated Assessment Models (IAMs). However, this literature has primar-
ily focused on the carbon cycle and the effects of rising temperatures on optimal economic allocation, often
without explicitly modeling natural capital.1 Studies such as Sterner and Persson (2008), Drupp (2018), and
Drupp and Hänsel (2021) introduce natural capital or ecosystem services into the utility function focusing
on willingness to pay. By contrast, we incorporate natural capital directly into the production function.
In similar fashion, Dasgupta (2021), Bastien-Olvera and Moore (2021), and Bastien-Olvera et al. (2024) in-
corporate the evolution of natural capital stocks into their analyses within the production function and
estimate their related climate damages for the latter, while Giglio, Kuchler, Stroebel, and Wang (2025) pro-
pose a stylized model highlighting the feedback loops between climate change and nature loss. Relatedly,
Giglio, Kuchler, Stroebel, and Wang (2024) model a production function that captures the complementarity
between produced capital and ecosystem services, emphasizing the role of biodiversity in sustaining the
latter. Our modeling approach differs in three key respects. First, rather than imposing unitary elasticity
of substitution (i.e., a Cobb-Douglas structure), we estimate substitution parameters empirically. Second,
we incorporate multiple forms of natural capital in the production function and allow for distinct damage
functions and dynamics for each. Third, we extend the analysis beyond deterministic optimal allocation by
examining how stochastic fluctuations in temperature and productivity affect the shadow prices of natural
capital and the social cost of carbon.

The rest of the paper is organized as follows. Section 2 presents the macroeconomic model, including
the role of natural capital and climate damages. Section 3 describes the data and estimation of damage func-
tions and substitution elasticities. Section 4 presents simulation results, including long-run scenarios under
optimal policy, SCC and shadow prices estimates, and the impacts of uncertainty. Section 5 concludes.

2 The Model

We develop a DSGE model that integrates multiple forms of natural capital and climate dynamics into
a macroeconomic production structure. The model captures how rising temperatures affect different in-
put types—produced capital, labor, and a range of renewable and non-renewable natural capital stocks
including cropland, energy resources, minerals, and forest ecosystems.2

1Schubert (2018) offers a comprehensive review of the environmental macroeconomics literature.
2We detail and justify our choice of natural capital stocks in section 2.2 and section 3.1.
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A visual representation of the model is provided in figure 1. Final output is produced through a nested
CES production function that combines human capital, manufactured capital, and various forms of natural
capital. Each aggregation node (shown in green) allows for a flexible elasticity of substitution, ranging
from perfect complements to perfect substitutes. This setup enables us to empirically estimate substitution
elasticities and evaluate how they shape the economy’s response to climate damages and influence shadow
prices and the social cost of carbon.

Figure 1: Structure of the Model

Energy can be produced using fossil fuels (coal, oil, and gas) or renewable sources. Fossil fuel use
emits CO2, which accumulates in the atmosphere and drives up global temperatures. In turn, temperature
increases cause input-specific climate damages that lower the productivity of both natural and conventional
production factors. A central part of our analysis involves estimating these damage functions empirically
and exploring their implications for optimal climate policy.

We assume the economy operates in discrete time with annual periods and an infinite horizon. To derive
optimal policy results, we adopt a social planner framework in which a benevolent planner internalizes the
climate externality and allocates all available resources to maximize the lifetime utility of a representative
household.

We now present the core building blocks of the model. We begin with the climate module and the carbon
cycle, followed by the production structure and the household’s optimization problem. We then turn to the
social planner’s problem, which yields the equilibrium allocation and the social cost of carbon.

2.1 Climate Dynamics

Building on the foundations of standard IAMs such as those proposed by Nordhaus (1991) and Nord-
haus and Yang (1996), we integrate climate dynamics into our natural capital macroeconomic framework.
We model the processes governing the atmospheric concentration of carbon dioxide and global temperature
as follows. The global temperature Tt is assumed to be linearly proportional to the stock of CO2 emissions,
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representing the cumulative emissions over time, as established by Matthews, Gillett, Stott, and Zickfeld
(2009):

Tt+1 = ϵTt ϕ1(ϕ2Xt − Tt) + Tt, (1)

with ϕ1 and ϕ2 being the climate transient parameters, calibrated to match both the temperature at the start
of the simulation (i.e. 2018), and the temperature dynamics with respect to cumulative emissions and the
initial.

Following Matthews et al. (2009), cumulative CO2 emissions, denoted as Xt, reads as:

Xt+1 = Xt + Et, (2)

ϵTt is a temperature shock, which captures exogenous variations in temperature and is assumed to follow
an AR(1) process log(ϵTt ) = ρT log(ϵ

T
t−1) + ηTt where ρT is the persistence of the shock and ηTt ∼ N(0, σT 2

).
Xt+1 is the concentration of gases in the atmosphere, Et ≥ 0 anthropogenic emissions of CO2 stemming
from fossil fuel production Y FE

t where:
Et = ϕEY

FE
t . (3)

with ϕE the emission intensity to fossil energy output.
In the spirit of Nordhaus (1991), temperature damages production. However the novelty in our work,

is that: i) temperature damages are specific to each input in our production function and ii) feature temper-
ature lags. The damage function reads as:

dh (·) =
∑
m

βh
mTt−m. (4)

where βh
m are the estimated betas for each natural capital. m represents temperature lags, while h represents

all inputs impacted by climate raising temperatures, namely: oil, gas, coal, renewable energy, minerals,
cropland, forest ecosystem, as well as the capital/labor inputs.

2.2 Natural Capital and Production

The World Bank’s Changing Wealth of Nations (CWON) dataset classifies natural capital into nine cate-
gories: energy, minerals, cropland, forest ecosystem, timber provision, mangroves, fisheries, and protected
areas. We focus on energy, minerals, cropland, and forest ecosystem, as well as the decomposition of energy
resources.

We expand the traditional Cobb-Douglas production function with capital and labor to include the fol-
lowing natural capitals: energy Y E

t , minerals YM
t , cropland Y L

t , forest ecosystem services Y FO
t , fossil energy

Y FE
t , renewable energy Y RE

t , oil Y O
t , gas Y G

t , and coal Y C
t . The following subsections detail the nested CES

structure of our model and the laws of motion for the various stocks in our economy.

2.2.1 First Nest CES: Final Output

Final output Y T
t is a CES function of the following aggregates: (i) produced capital Y K

t , (ii) energy
Y E
t , (iii) minerals YM

t , (iv) cropland Y L
t , (v) forest ecosystem services Y FO

t , and (vi) human capital (labor
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augmenting technology) Y AL
t .

Y T
t = ϵAt gY

(∑
k

θk
(
Y k
t

) θ−1
θ

) θ
1−θ

, (5)

where k ∈
{
Y K
t , Y

E
t , Y

M
t , Y L

t , Y
FO
t , Y AL

t

}
. θk represents the production share of each input (with

∑
k θk =

1), while θ is the elasticity of substitution and gY > 0 a scaling parameter to final output. ϵAt is a TFP shock
and is assumed to follow an AR(1) process log(ϵAt ) = ρAlog(ϵ

A
t−1) + ηAt where ρA is the persistence of the

shock and ηAt ∼ N(0, σA2

).
The choice of production function in this nest is guided by the natural capital data available from the

CWON dataset. While a more comprehensive nesting such as composites of produced and human capital
or cropland and minerals would be desirable, the absence of output data for such composites limits our
specification. Furthermore, without such data, we cannot estimate the substitution elasticities needed to
calibrate a more granular structure, justifying the more parsimonious specification employed here.

Human capital production function reads as:

Y AL
t = edAL(·)AtLt, (6)

where At is labor-augmenting productivity and Lt labor input, which is subject to an exogenous growth
trend Γt = γΓΓt−1.3

Natural capital production is assumed to rely on an exhaustible, finite stock Sj
t for each natural capital

type j, following the framework of van der Ploeg and Rezai (2021). In the same spirit of van den Bijgaart
and Rodriguez (2023), both passive and active regeneration is captured byDt, encompassing processes such
as mineral discovery, land transformation, natural regeneration or investment in forest ecosystem services.
In addition, it captures the accumulation of non-depreciated produced capital through capital investment
in line with standard macroeconomic models. This flexible specification allows us to represent the laws of
motion for both renewable and non-renewable natural capital in the same form:

Sj
t+1 = Sj

t − F (Y j
t ) + ϵDi

t αjD
j
t , (7)

with: where j ∈
{
Y K
t , Y FO

t , Y L
t , Y

M
t

}
, F (Y j

t ) = δjS
j
t , δj the depreciation rate, and αj the share of discov-

ery4, that is subject to an AR(1) shock ϵDi
t .5 Natural capital Y j

t production is assumed to use the stock Sj
t

and subject to non-linear climate damages dj(·):

Y j
t = edj(·)Sj

t . (8)

2.2.2 Second Nest CES: Energy

Energy is a CES function of fossil energy and renewable energy:

3With γΓ = 1 + γ̃Γ, where γ̃Γ the actual growth rate of the economy. In the online appendix C and appendix D we present both
the non-detrended economy equilibrium and the balanced growth path equilibrium, respectively.

4In our framework, only a fraction of “discoveries” of new natural-resource stocks is usable to expand the productive stock of
natural capital, as the rest (1-αj ) is often lost in beneficiation, processing, or applied at unrealizable rates and never contributes to
long-run soil capital (Cordell, Drangert, and White (2009)).

5The AR(1) shock to discovery reads as: log(ϵ
Dj
t ) = ρDlog(ϵ

Dj

t−1) + η
Di
t , with η

Di
t ∼ N (0, σ2

Dj
).
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Y E
t = gE

(
σFE
(
Y FE
t

)σ−1
σ + σRE

(
Y RE
t

)σ−1
σ

) σ
1−σ

, (9)

with Y FE
t and Y RE

t being the production of fossil and renewable energy, respectively. σFE and σRE represents
the production share of each input (with σFE + σRE = 1), while σ is the elasticity of substitution and gE > 0

a scaling parameter to aggregate energy output.
As with the other types of natural capital, renewable energy production relies on a finite stock SRE

t . This
stock can be increased through investment DRE

t and part of it is used in the production process:

SRE
t+1 = SRE

t − F (Y RE
t ) + ϵDRE

t αRED
RE
t , (10)

with αRE the share of renewable investment, ϵDRE
t an AR(1) investment shock, and F (Y RE

t ) = δRES
RE
t .

Renewable energy production Y RE
t is again assumed to use the stock SRE

t and is subject to climate damages
dRE:

Y RE
t = edRE(·)SRE

t . (11)

2.2.3 Third Nest CES: Fossil Energy

Fossil energy is, in turn, a CES function of oil, gas, and coal:

Y FE
t = gF

(∑
i

ϵi
(
Y i
t

) ϵ−1
ϵ

) ϵ
1−ϵ

, (12)

where i ∈
{
Y O
t , Y G

t , Y
C
t

}
. ϵFE and ϵi is the production share of each input (with ϵO + ϵG+ ϵC = 1), while

ϵ is the elasticity of substitution between oil, gas, and coal, and gF > 0 a scaling parameter to aggregate
fossil energy output.

Similar to the previous natural capitals, oil, gas, and coal each have a finite stock Si
t , and discoveries Di

t

can be made over time, allowing these natural capital stocks to increase:

Si
t+1 = Si

t − F (Y i
t ) + ϵDi

t αiD
i
t, (13)

with ϵDi
t αi the stochastic share of discovery as for the first nest, and F (Y i

t ) = δiS
i
t and natural capital Y j

t

production is assumed to use total stock Si
t and subject to the same type of climate damages discussed

above:
Y i
t = edi(·)Si

t . (14)

2.3 Households

The representative household problem features a constant relative risk aversion (CRRA) utility function
with habits formation:

Welfaret = E0

∞∑
t=0

βt

{
(Ct − γHHt)

1−σH

1− σH

}
, (15)
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where β represents household time preference and σH is the risk aversion parameter, while γH ∈ (0, 1) is
the degree of habits.6

The household derive utility from consumption expenditures Ct subject to habit formation Ht and in-
elastic labor hours Lt

Γt
= L̄.

Ht+1 = m̄Ht + (1− m̄)Ct. (16)

Where m̄ is the degree of habit formation persistence. As argued in Benmir, Jaccard, and Vermandel (2020),
we introduce internal habit formation to maximize our macro-finance model’s ability to generate realistic
asset-pricing dynamics and macroeconomic implications. Internal habit formation has been shown to play
a central role in accurately matching asset-price dynamics and variations in macroeconomic aggregates, as
well as in driving carbon-pricing responses to different shocks. Habits lead to greater volatility in carbon
prices compared with standard CRRA utility or recursive preferences. This elevated volatility over the
business cycle has important implications for policy design and for optimal carbon pricing.

2.4 The Aggregate Resource Constraint

We close the model with the aggregate resource constraint of the economy, which reads as follows:

Y T
t = Ct +

∑
h

Dh
t . (17)

2.5 The Social Cost of Carbon Under The Presence of Natural Capital

We now characterize the first-best allocation, considering the optimal plan a benevolent social planner
would choose to maximize welfare.7

Definition 1 The optimal policy problem for the social planner is to maximize total welfare in equation (15) by
choosing a sequence of allocations for the quantities {Ht+1, Xt+1, Tt+1, Ct, Et, Y

AL
t , Y FE

t , Y E
t , Y

T
t , Y

h
t , D

h
t , S

h
t+1},

for given initial conditions for the eleven endogenous state variables H0, Sh
0 ,8 T0 and X0 as well as all the stochastic

shocks that satisfy equation (1), equation (2), equation (3), equation (5), equation (6), equation (7), equation (8),
equation (9), equation (10), equation (11), equation (12), equation (13), equation (14), and equation (16).

Definition 2 In a centralized equilibrium, the planner fully internalizes the SCC (i.e. the shadow price of CO2

emission V E
t , ensuring that the marginal cost of emissions matches the shadow price of CO2 emissions.

Solving the optimal policy problem, the SCC under the presence of natural capital reads as:

V E
t = βEt

{
λCt+1

λCt

[
V E
t+1 + ϵTt+1ϕ1ϕ2V

T
t+1

]}
, (18)

6We set γH very close to 1, as habits persistence will be captured by m. γH main role is to ensure non-zero utility at the steady
state.

7Refer to the online appendix C for the full derivations.
8Where h ∈ {i} ∪ {j} ∪ {RE}.
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where V T
t represents the discounted sum of future temperature climate damages:

V T
t = Et

{
β
λCt+1

λCt

[
(1− ϵTt+1ϕ1)

]
V T
t+1

}
−
∑
h

∑
m

Et+m

{[(
m−1∏
o=0

β
λCt+1+o

λCt+o

)
Ψh

t+mβ
h
mY

h
t+m

]}
. (19)

3 Parameterization and Empirical Estimation

This section starts by presenting the data used in this paper, followed by the calibration of the repre-
sentative economy and lastly, we present the estimation of the CES production function and the climate
damages.

3.1 Data

The data employed in this paper is drawn from four sources: the World Bank Changing Wealth of
Nations (CWON), the World Bank Database, Our World in Data (OWID) Energy Dataset, and the Climate
Change Knowledge Portal (CCKP).9

The CWON dataset provides a comprehensive measure of national wealth by reporting stock esti-
mates of produced, natural, and human capital for approximately 150 countries from 1995 to 2018. We
adopt CWON’s classification of natural capital throughout our analysis. Of the natural capitals available
in CWON, we do not include mangroves and fisheries as they are not directly relevant to the aggregate
production of a representative global economy. In addition, forest timber is not included because it has
an estimated zero production share. Importantly, CWON reports these stocks in monetary terms, reflect-
ing market valuations rather than physical quantities. For the purposes of estimating climate damages, it is
crucial not to conflate the effects of temperature on the quantity of natural capital with changes in its market
value. To address this, we use quantity-based measures of natural capital wherever feasible. For example,
for cropland we rely on the World Bank’s Arable Land data (measured in hectares per capita), which we
convert to total hectares using population data from CWON. Similarly, in estimating CES production func-
tions, we resort to market valuations only when quantity measures are unavailable, as is the case for the
first layer of the CES production function. GDP data is sourced from the World Bank.

The OWID Energy Dataset offers a panel of country-level energy production and consumption figures
disaggregated by energy source and reported in physical units, which is essential for the calibration, ac-
curate CES production function estimation and the analysis of climate damages. Finally, temperature and
precipitation data are obtained from the CCKP, which provides country-level aggregates of the ERA5 grid-
level data.

A summary of the variables used in the analysis is presented in table 1. Descriptive statistics for the data
underlying the CES production function estimation and the natural capital climate damage assessment are
provided in table 5 and table 6, respectively.

9We also draw on a few additional sources—cited where used—to calibrate the investment and discovery rates of our natural
capital.
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Variable Description Unit Source

GDP GDP at purchaser’s prices 2018 USD World Bank
Capital Value of buildings and equipment 2018 USD CWON
Human Capital PV of future earnings for the population 2018 USD CWON
Ecosystem Forest ecosystem services 2018 USD CWON
Cropland Agricultural Land 2018 USD CWON
Minerals Composite of different minerals 2018 USD CWON
Fossil Energy Oil, gas, hard and soft coal 2018 USD CWON
Electricity Demand Demand for electricity Terawatt hours OWID
Fossil Fuel Electricity Electricity generation from fossil fuels Terawatt hours OWID
Renewable Electricity Electricity generation from renewables Terawatt hours OWID
Oil Production Oil production Terawatt hours OWID
Gas Production Gas production Terawatt hours OWID
Coal Production Coal production Terawatt hours OWID
Coal Electricity Electricity generation from coal Terawatt hours OWID
Gas Electricity Electricity generation from gas Terawatt hours OWID
Oil Electricity Electricity generation from oil Terawatt hours OWID
Energy Primary energy consumption Kilowatt hours OWID
Temperature Average mean surface-air temperature Celsius CCKP
Precipitation Average precipitation mm CCKP

Table 1: Variable Description and Sources

3.2 Calibration

Following conventional practice, we calibrate the parameters with annual time intervals. We customize
the calibration process to match key observed aggregates such as temperature, global CO2 emissions, and
the value of each natural capital stock, all within the world context. This meticulous calibration ensures
that our model accurately captures the real-world dynamics and trends of these critical environmental and
economic indicators. Table 7 lists the values of all parameter calibrations, while table 8 summarizes the
moments we match.

The parameters pertaining to the business cycle structure of our model are conventional. For the stan-
dard parameters in these models, such as the discount factor β and the risk aversion σH , we align with
typical values used in macroeconomic modeling. Specifically, the discount factor β is set at 0.968 to match a
3.3 percent world GDP-weighted interest rate, while the risk aversion σH is set at 2, following Stern (2008).
Labor L̄ hours worked are set at 1/3 (which corresponds to daily mean of 8 hours). The productivity of
labor A is calibrated to match the level of human capital in 2018 as reported in the matching moments table
(see table 8). The habits level parameter m̄ is set at 0.9, following Benmir et al. (2020). The parameter γH
takes two values: i) γH = 1 in the case of stationary equilibrium (i.e., the discovery/investment exercise),
and ii) γH = 0.975 in the case of the non-detrended economy, to avoid utility going to zero with consump-
tion equal to habits at the steady state. Finally, the AR(1) shock process persistence parameter is set at 0.9, as
is standard in the literature, and the growth rate of the world economy γ̃Γ is set at 3 percent, corresponding
to the average world growth rate over the past 10 years.

All specific capital production values are set according to data taken from the World Bank database. In
particular, parameters such as the weights for aggregating fossil energy, aggregate energy, and final outputs
(denoted as gF , gE , and gY , respectively) are calibrated to match the values of Y FE , Y E , and Y T presented
in table 8.

We set the output of renewable energy to $542.7 billion, based on the global average cost of electricity
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from renewable sources ($81 per megawatt-hour, MWh) in 2018, relative to total production of 6,700,000,000
MWh.10

For the remaining specific outputs, which are set according to the World Bank, we use the production
share of capital stocks, δs, to match the values in the corresponding data in table 8. Regarding discov-
ery and investment, we use the discovery/investment share, αs, to precisely match the level of discov-
ery/investment relative to specific capital production in table 8.11 The ratio of discovery/investment to
each specific capital production is calibrated using estimates from the International Energy Agency (IEA).
In particular, the investment/discovery-to-output ratios for renewable energy, oil, gas, and coal are set to
156%, 0.46%, 0.14%, and 1%, respectively. For produced capital, mining, cropland, and forest ecosystem ser-
vices, the investment/discovery-to-output ratios are set to 3%.12 In addition, we calibrate the damages to
human capital following the standard DICE calibration of damages to output since these are not estimated.

In calibrating the climate block of the model, we follow Dietz and Venmans (2019) and set the parameters
for the global temperature function as ζo1 = 0.50 and ζo2 to retrieve the initial temperature level of 1oC at the
start of the transition. Finally, the emission intensity parameter ϕE is set to 0.0014 to match the initial state
of emissions with respect to fossil fuel production. Finally, we estimate the CES production parameters and
natural capital damages, which are presented below.

3.2.1 Natural Capital CES Estimation

The model introduces a nested CES production function with three nests, corresponding to the pro-
duction of final goods, energy, and fossil energy, respectively. To calibrate the production functions, we
estimate both the elasticities of substitution and the share parameters. Our estimation method closely fol-
lows the approach of Papageorgiou et al. (2017), using both non-linear least squares (NLS) and the linear
approximation proposed by Kmenta (1967). For the NLS estimation, we use Adam, a stochastic gradient
descent (SGD) method and Sequential Quadratic Programming (SQP) method to verify the robustness of
our result to the method employed.13 NLS is applied across all three nests, while the Kmenta approxima-
tion is restricted to the second and third nests, each of which involves only two inputs. This follows Hoff
(2004), who highlights that the parameter constraints required by the Kmenta method grow prohibitively
complex as the number of inputs increases.

Following Papageorgiou et al. (2017), we note that our results should be seen as associations rather
than causal due to endogeneity concerns arising from unobserved productivity shocks that may influence
input choices. Additionally, there is simultaneity between input and output decisions. Studies such as Jo
(2025), Jo and Miftakhova (2024) and Atalay (2017) among others have addressed this issue using price
instruments or exogenous price shifters.14 However, we are unable to implement this method here given
the lack of price data for natural capital inputs. For brevity, we present only the baseline results in the main

10The global total production of renewable energy in 2018 was between 6.7 and 7.4 petawatt-hours (PWh). The average price is
based on the International Renewable Energy Agency (IRENA): i) onshore ($50 to $70 per MWh) and offshore ($120 to $150 per MWh)
wind, ii) solar photovoltaic ($85 per megawatt-hour), iii) hydropower ($40 to $80 per MWh), and iv) Bioenergy and Geothermal
($70 to $150 per MWh). See https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_
Report_GET_2018.pdf.

11We also consider cases where these intensity shares change unexpectedly in the context of our stochastic shock analysis.
12Due to data limitations, we set them all to 3%, representing the lower bound of produced capital investment as a share of output.
13For the second and third nest, we implement Adam within Wei and Jiang (2025)’s neural network method as it generates smaller

mean squared errors. Implementing this in the first nest proved more challenging due to the multiplicity of inputs.
14Lagomarsino (2020) provides a comprehensive review of the literature employing different methods including this approach.
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text. In these specifications, the returns to scale parameter υ is fixed at 1 in the first nest and thereafter, set
to the value estimated using the Kmenta approximation, following the recommendation of Corbo (1976),
who find that the Kmenta method yields a consistent estimate of returns to scale. Further details, including
a review of the relevant CES estimation literature, a description of the estimation procedures, validation of
our results using multiple estimation approaches and a comparison of our results with existing findings are
provided in appendix section B.2.

Table 2 presents the estimates for all three nests in Panels A, B and C respectively. In the first nest, in ad-
dition to estimating the full CES production function as in equation (5), we also estimate a CES production
function including only human capital, produced capital and energy inputs to compare it to a DICE-type
production function. Panel A of table 2 shows that, consistent with macroeconomic literature, human capi-
tal contributes the largest share to output followed by produced capital and energy across both production
functions. In addition, the results indicate that natural capitals are substitutable. Table 11 demonstrates
that elasticity is robust across specifications and alternative estimation methods, ranging from 1.65 to 1.79.

Panel A: First nest

θK θAL θFO θL θM θE gY υY θ =
1

1+ρY

MSE

Full Model 0.2278 0.4261 0.0366 0.1178 0.0155 0.1764 0.3565 1.0000 1.7368 0.1028
(0.0195) (0.0293) (0.0204) (0.0135) (0.0072) (0.0101) (0.0147)

Energy-Only Model 0.2531 0.5426 – – – 0.2043 0.2739 1.0000 1.7274 0.1114
(0.0215) (0.0227) (0.0138) (0.0049)

Panel B: Second nest

σFE σRE gE υE σ = 1
1+ρE

MSE

ADAM Fixed υ 0.5226 0.4774 1.0473 0.8126 5.1256 0.0153
(0.0602) (0.0602) (0.0332)

Kmenta-OLS 0.5076 0.4924 4.0316 0.8126 1.7156 0.0186
(0.0540) (0.0540) (0.0575) (0.0117)

Panel C: Third nest

ϵG ϵC gF υF ϵ = 1
1+ρF

MSE

ADAM Fixed υ 0.3990 0.6010 1.2630 0.4149 1.6670 0.0075
(0.0127) (0.0127) (0.0399)

Kmenta-OLS 0.5013 0.4924 52.1997 0.4149 1.2643 0.1326
(0.0512) (0.0512) (0.2446) (0.0425)

Note: Numbers in parentheses are bootstrapped standard errors. Blank cells denote parameters not estimated in that specification.

Table 2: CES Estimates All nests

For the second nest, we disaggregate the energy input in the first nest into renewable and fossil energy
inputs. Panel B of table 2 reports the estimation results from both methods, indicating a greater share
assigned to fossil energy relative to renewable energy. Moreover, both approaches yield elasticity estimates
greater than one, suggesting that fossil and renewable energy are substitutable. These findings are broadly
consistent with the estimates provided by Papageorgiou et al. (2017), Jo (2025) and Jo and Miftakhova
(2024). As shown in table 13, elasticity estimates range from 1.72 to 5.69 across methods and specifications,
with both consistently assigning a higher share to fossil energy inputs.

Lastly, fossil energy is a CES aggregate of oil, gas and coal inputs. However, noting that fossil electricity
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generation (the dependent variable) is primarily driven by gas and coal, we sum oil and gas production
into a single input. Panel C of table 2 presents the resulting estimates, which suggest that coal and gas are
substitutable although only moderately so. As shown in table 14, elasticity estimates across methods and
specifications range from 1.13 to 1.67. In addition, coal tends to receive a higher estimated share relative to
oil-gas composite.

3.2.2 Natural Capital Climate Damages Estimation

Rising temperatures affect natural capital through multiple mechanisms. For cropland, higher temper-
atures accelerate soil degradation, reduce water availability, and increase evaporation, leading to a decline
in total arable land. Besides impacting food production and economic stability in agrarian regions, these
changes feedback on regional climate systems, influencing warming patterns and exacerbating the intensity,
frequency, and duration of extreme events (IPCC, 2019). Forest ecosystems, vital for carbon sequestration
and biodiversity conservation, are particularly vulnerable to warming (Graham, Turner, and Dale, 1990),
as intensified evapotranspiration increases forests susceptibility to wildfires, pest outbreaks, and disease
(Seidl, Thom, Kautz, Martin-Benito, Peltoniemi, Vacchiano, Wild, Ascoli, Petr, Honkaniemi, et al., 2017).
The resulting decline in forest cover compromises ecosystem services and amplifies climate change im-
pacts. Mineral resources are also affected, as rising temperatures raise cooling costs in mining. Roy, Mishra,
Bhattacharjee, and Agrawal (2022) highlights the reduction of extraction efficiency due to heat related stress
on underground miners.15

This study further explores the vulnerabilities of fossil fuels—-coal, gas, and oil. Higher tempera-
tures can reduce the efficiency of extraction and processing, while increasing the risk of disruptions due
to extreme weather events. This increases production costs and threatens the stability of energy supplies.
Climate change can also influence the supply of renewable energy, particularly for the hydro and wind
power generation.16 Furthermore, higher temperatures can influence the demand for energy consumption.
Warmer years result in greater cooling requirements during warm months, while simultaneously reduc-
ing energy demand for heating in colder months. The net effect of these opposing forces depends on the
intra-annual distribution of daily temperatures and the degree of seasonal variability.

The economic implications of these impacts are extensive. Reduced agricultural capacity affects food
security and increases volatility in food prices, with cascading effects on economies dependent on agricul-
ture. The decline in forest health and cover affects industries reliant on forest products and services, from
timber to tourism. Increased operational costs in mining and energy sectors lead to higher prices for these
essential resources, impacting a wide range of industrial activities and economic outputs. In this section,
we present novel estimates of the impact of temperature on the considered natural capitals.

Identification Strategy. The estimation of climate damages draws on the latest advancements in the cli-
mate econometrics literature.17 The current methodological frontier relies on panel data analysis, that ex-
ploits spatial and time fixed effects to isolate plausibly random variations in weather with (Hsiang, 2016).

15These dynamics remain mostly unexplored in the economics literature.
16For a review of the various dynamics through which climate change can affect energy supply see Schaeffer, Szklo, de Lucena,

Borba, Nogueira, Fleming, Troccoli, Harrison, and Boulahya (2012).
17The literature has evolved from cross-country studies (Nordhaus, 2006) to panel data approaches (Dell et al., 2012; Burke et al.,

2015; Kotz, Levermann, and Wenz, 2024), enabling the identification of idiosyncratic weather shocks (Hsiang, 2016).
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Two primary approaches have emerged to ascertain the causal impact of temperature on socioeconomic
factors: yearly average temperature and temperature bins.18 In this study, we adopt the former approach
as it aligns more coherently with the climate damages incorporated into our macroeconomic model. For a
discussion of these methodologies in the context of economic damages, see Tarsia (2023).

Our empirical strategy adopts an agnostic approach towards model selection, aiming to identify the
most appropriate model guided by empirical evidence. Hence, we initially define each variable of interest
as a flexible function of temperature and precipitation:

yi,t = g(Ti,t) + f(Pi,t) +
∑
ℓ≥1

h(Ti,t−ℓ) + δi + λt + εi,t (20)

where yi,t represents the natural logarithm of country i’s variable of interest in year t, g(Ti,t) denotes a
flexible function capturing the impact of yearly average temperature on yi,t for country i in year t, f(Pi,t)

represents a flexible function capturing the impact of yearly total precipitation on yi,t,
∑

ℓ≥1 h(Ti,t−ℓ) is
defined as the sum over ℓ lags of a flexible function of yearly average temperature, δi stands for a country
fixed effect that accounts for country-specific unobserved constant components, λt denotes a year fixed
effect that accounts for time-specific unobserved constant components such as economic and climate trends
or shocks, and εi,t represents the autocorrelated and spatially correlated error component. In appendix
section B.3, we report the details of the model selection procedure used to identify the model outlined in
equation (20).

As a result, we estimate the marginal effect of an additional 1◦C in yearly average temperature on our
variables of interest using the following model:

yi,t = α+ β0Ti,t +

2∑
ℓ=1

βℓTi,t−ℓ + ψ0Pi,t + δi + λt + εi,t (21)

where the variables are defined as in equation (20). In this framework yi,t is the log of the various
natural capital variables of interest, defined in levels if stationary or in first difference otherwise, according
to the results of online appendix B.2. The marginal effects identified by the estimates βℓ are the average
percentage change in yi,t−ℓ due to an additional 1◦C in yearly average temperature Ti,t−ℓ for ℓ = {0, 1, 2}.
Table 3 reports the estimates from the analysis based on equation (21) for each variable of interest. All
variables, except oil, are negatively affected by higher temperatures, though with different timing.

The estimates are negative and statistically significant across all lags ℓ = {0, 1, 2} for produced capital,
gas, and fossil fuel, in lags ℓ = {0, 1} for forest ecosystem, in lags ℓ = {1, 2} for cropland and minerals,
and only in lag ℓ = 0 for aggregate energy and renewable energy. The estimates for coal are statistically
significant only in period t−2 and positive, though small in magnitude. Given the negative contemporane-
ous estimate, this suggests a sign reversal and points to the absence of persistent growth effects. Since the
estimates for coal are inconsistent with those for the other variables, and mostly not statistically significant,
we rely on the fossil fuel estimates to calibrate the coal-specific damage function in the model.

18The former method estimates the impact of changes in yearly average temperature (Dell et al., 2012; Burke et al., 2015), whereas
the latter evaluates the impact of an additional day with average temperature within a specific range (Deschênes, Greenstone, and
Guryan, 2009).
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Produced

Capital Cropland Forest
Ecosystem Minerals ∆ Agg.

Energy ∆ Coal Gas Oil Fossil
Fuel

Renewable
Energy

T -0.0297∗∗ -0.015 -0.011∗∗ -0.027 -0.084∗∗ -0.041 -0.063∗∗ -0.062∗∗

(0.0084) (0.012) (0.0036) (0.017) (0.029) (0.048) (0.020) (0.020)

(ℓ1)T -0.0396∗∗∗ -0.051∗∗∗ -0.011∗∗ -0.082∗∗ -0.088∗∗∗ -0.011 -0.057∗∗ -0.029
(0.0088) (0.0081) (0.0038) (0.026) (0.023) (0.051) (0.019) (0.018)

(ℓ2)T -0.0357∗∗∗ -0.047∗∗∗ -0.0078 -0.160∗∗∗ -0.098∗∗∗ 0.031 -0.039∗∗ -0.045
(0.0086) (0.010) (0.0070) (0.027) (0.017) (0.032) (0.015) (0.024)

∆T -0.016∗∗∗ -0.0037
(0.0035) (0.020)

(ℓ1)∆T -0.0056 0.021
(0.0034) (0.018)

(ℓ2)∆T -0.0013 0.014∗∗

(0.0024) (0.0041)

P 0.00001 0.0001 -0.00001 0.0001 -0.0003∗∗ -0.0004∗ -0.0001 0.0002∗∗

(0.00002) (0.00006) (0.00002) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001)

∆P 0.00001 -0.00011∗∗

(0.00001) (0.00004)

Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 1.00 1.00 1.00 0.93 0.26 0.14 0.92 0.89 0.97 0.96
N 1584 1584 1562 1254 1512 1067 1452 1423 1504 1483

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Point estimates and standard errors from the regressions of weather variables on the natural capital variables belonging
to the first nest. Results from the linear model of temperature with all variables expressed in differences, country and year FE, and
standard errors clustered at the regional level as identified by the World Bank.

The estimates indicate that these sources of natural capital are consistently negatively affected by higher
temperatures, although with different magnitudes. Among the variables in the first nest the marginal effect
of an additional 1◦C in yearly average temperature ranges between approximately −1% for forest ecosys-
tem and aggregate energy to approximately −16% for minerals (in year t− 1), whereas the effect is approx-
imately −3% across all years for produced capital and approximately −5% for cropland (in years t− 1 and
t − 2). The variables in nests two and three are characterized by larger effects: between −4% and −6% for
fossil fuel, between −8% and −10% for gas, and approximately −6% for renewable energy (in year t). The
energy sector exhibits larger estimates as it is subject not only to supply-side shocks but also to demand-
side fluctuations, insofar as higher temperatures influence both heating and cooling needs. In addition,
while large estimates of climate damages are not uncommon in the literature (Ricke, Drouet, Caldeira, and
Tavoni, 2018; Bilal and Känzig, 2024; Kotz et al., 2024), it is important to emphasize that these marginal ef-
fects correspond to a 1◦C increase in temperature, whereas yearly average temperatures typically fluctuate
by only a fraction of a degree.

The estimates for lagged temperature suggest that these effects are generally non-transitory. With the
exception of coal, the estimates are negative or not statistically significant, emphasizing the presence of
persistent growth effects. This implies that the negative shocks on natural capital induced by higher tem-
perature are not recovered, but instead affect countries’ ability to grow. This result is not surprising given
the variables we are analyzing. Unlike GDP studied in previous work, natural capital is not as dynamic and
regenerates at slow rates. Therefore, any negative shock is unlikely to be recovered in the medium term.
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4 Quantitative Analysis

In this section, we use the parameter estimates from section 3 to explore the quantitative implications of
the model detailed in section 2. The primary objective is to highlight two main findings: first, the sensitiv-
ity of the social cost of carbon and natural capital shadow prices to key structural parameters, particularly
the elasticity of substitution between production inputs; and second, the importance of accounting for un-
certainty—especially in the presence of habit formation—for optimal valuation and social welfare. Before
turning to these core results, we examine the long-run transition trajectories implied by the model under op-
timal allocation. While not a central contribution of the paper, this exercise serves to illustrate the internal
mechanics of the model and to verify that the inclusion of natural capital, along with the estimated pa-
rameter values, yields plausible macroeconomic dynamics consistent with the broader climate-economics
literature.

4.1 Model Solution

Our modeling framework extends the familiar solution techniques used in DICE-type integrated assess-
ment models to handle both long-run growth dynamics and medium/shorter-term cyclical fluctuations
(e.g. stochastic shocks) in a unified way. In particular, we employ a perfect-foresight solver to compute
deterministic transition paths for the economy and climate system under specified policy trajectories or
exogenous trend shocks. This approach preserves the ability of non-linear solution methods to accurately
capture transition dynamics even far from the steady state, while retaining the computational tractability
needed for high-dimensional, non-linear systems, whereas usual local approximation techniques do not
perform as well in the presence of such non-linearities, especially in the context of highly non-linear cli-
mate dynamics. By directly solving the full non-linear model over the entire transition horizon, we ensure
that regime shifts, such as those induced by climate damages, are faithfully represented in our long-run
transitions.

To analyze the medium- and short-term business cycle effects of discovery and investment shocks, we
rely on perturbation methods around the initial deterministic steady state to compute impulse response
functions (IRFs). This stochastic component allows us to capture the effects of transitory shocks, such as
temporary changes in total factor productivity or resource discoveries, on the cyclical dynamics of the econ-
omy. To ensure the validity of the approximation, we apply a stationary transformation by detrending all
variables around their respective trends, thereby recovering a balanced growth path (BGP). This guarantees
that shocks are mean-zero and variance-bounded, and allows us to decompose the IRFs into contributions
from each individual driver.

4.2 Model Long-Run Properties

We begin by illustrating the model’s long-run dynamics under the assumption of optimal allocation.
From 2018 to 2125, the economy is projected to grow at an annual rate of 3 percent in human capital,19 and
all trajectories are computed using a perfect foresight solution method. The purpose of this exercise is not to

19This growth rate can be interpreted as reflecting improvements in labor-augmenting technology and/or population growth. En-
dogenous growth is not modeled in our framework and is left for future research.
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provide policy projections, but to verify that the inclusion of natural capital and the estimated parameters
yields internally consistent and plausible macroeconomic dynamics.

Figure 2: Long-Run Transition: Social Cost of Carbon

Notes: This figure illustrates the long-run transition over 82 years (up to 2100) with a 3 percent growth rate in human capital.

Figure 2 displays the evolution of aggregate output, temperature, and the social cost of carbon. As
human capital grows exogenously, aggregate output increases, which raises emissions and exerts upward
pressure on temperature. In response, the SCC rises steadily, reflecting the planner’s internalization of
the climate externality. The increase in the SCC drives a gradual shift away from fossil energy toward
renewable sources, as shown in figure 3.
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Figure 3: Long-Run Transition: Energy Components

Notes: This figure illustrates the gradual shift from fossil fuels to renewable energy in response to the rising social cost of carbon.

The planner’s response ensures that the climate constraint is met: by the end of the horizon, temperature
remains close to 1.5◦C. This outcome is achieved through a steady decline in fossil energy use, with each
of its components (oil, gas, and coal) decreasing over time and a complete phaseout occurring around 2090
(see figure 14).

In the short run, we observe a temporary decline in all types of natural capital and produced capital
(see figure 12 and figure 13), driven by substitution toward human capital, whose productivity grows ex-
ogenously. As human capital becomes more efficient, the demand for other inputs is temporarily reduced.
However, this effect is short-lived. In the long run, the model ensures a gradual reaccumulation of natural
capital and a smooth transition to a cleaner and more balanced resource allocation.

Overall, these trajectories confirm that the model behaves in a stable and economically plausible man-
ner, with the dynamics of natural capital, energy use, and carbon pricing evolving in line with established
mechanisms in the literature. Notably, the temperature trajectory generated by our model is broadly consis-
tent with that of Bastien-Olvera and Moore (2021), despite several key differences in model structure. While
their framework assumes a CES specification for consumption and Cobb-Douglas functions on the produc-
tion side, we adopt a nested CES structure that allows for more flexible substitution patterns in production.
In addition, whereas they aggregate all ecosystem services into a single variable, we explicitly model mul-
tiple forms of natural capital. This opens the door to a richer analysis of sector-specific dependencies on
different types of natural capital in future work.
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4.3 Shadow Prices Estimates

In this section, we present estimates of the social cost of carbon and shadow prices of natural capital,
comparing our natural capital macro framework with a standard DICE-type benchmark. In the benchmark
model, final output Y T

t is produced using a CES aggregator of produced capital, human capital, and energy,
with climate damages applied only to these three inputs.20

Y T
t =

(
γK(Y

K
t )

θ−1
θ + γFE(Y

FE
t )

θ−1
θ + γAL(Y

AL
t )

θ−1
θ

) θ
θ−1

. (22)

A large body of climate macroeconomic research uses DICE-type models to estimate the SCC in dollars
per ton of CO2. These studies typically identify three key drivers of the carbon price: i) the discount rate,
ii) the damage function, and iii) climate sensitivity to emissions and cumulative CO2. As a result, SCC
estimates in the literature span a wide range, from $10 to over $1000 per ton (e.g., Traeger (2023)).

While these parameters are unquestionably important, we show that the elasticity of substitution be-
tween production inputs can also be a major determinant of both the SCC and the shadow prices of natural
capital—an area that has received comparatively little attention. To illustrate this point, we compare our
full framework with the benchmark DICE-type model augmented with energy, as defined above.

4.3.1 Sensitivity of the Social Cost of Carbon

We evaluate the SCC’s sensitivity to four key parameters: i) climate damages βh
m, ii) the climate transi-

tion parameter ζ1, iii) the discount rate β, and iv) the elasticity of substitution in the first CES nest, θ.21 We
first examine the role of the first three parameters, which are well covered in the literature, before turning
to the elasticity of substitution, which is less explored.

Climate Damages, Discounting, and Climate Dynamics. Our baseline calibration is shown by the
dashed vertical line in figure 4, yielding an SCC of $63 per tCO2 in the full model with natural capital,
and $56 per tCO2 in the energy-only specification. The 12 percent difference highlights the role of natu-
ral capital damages in amplifying the optimal carbon price and suggests that DICE-type models without
natural capital may systematically undervalue the SCC by omitting these effects.

We also find that uncertainty in the damage function can have large effects. Doubling or quadrupling
the climate damage parameters leads to a proportional increase in the SCC in both models. This outcome
reflects the form of our damage specification and is consistent with prior results in the literature.22 The
discount rate also has a strong impact, with SCC estimates ranging from $25 to over $200 per tCO2 across
the tested range of β. This is a well-documented and contentious aspect of climate valuation (Stern, 2008;
Nordhaus, 2008).

In contrast, the influence of climate sensitivity (ζ1) is relatively muted. This is due to two factors: i)
emissions and temperatures are calibrated to match observed 2018 values, which limits the effect of ζ1

20The social planner problem and all equilibrium conditions are detailed in the appendix.
21While our empirical estimates for the elasticity of substitution in the lower CES nests fall within the range reported in the literature,

there is limited empirical guidance for the elasticity across production inputs when including natural capitals. We therefore conduct
a sensitivity analysis of θ in the first CES layer, which aggregates produced capital, human capital, minerals, energy, forest ecosystem
services, and cropland.

22Note that we do not model tipping points explicitly. However, their inclusion would likely amplify our results.
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on near-term SCC estimates; and ii) the analysis presented in this subsection focuses on static allocations,
which attenuate the dynamic amplification channels associated with ζ1 (as emphasized in Folini, Friedl,
Kübler, and Scheidegger (2024)).

Figure 4: Social Cost of Carbon Sensitivity

Notes: This figure shows the SCC under two model specifications for different parameter values. Monte Carlo draws are performed
over uniformly distributed values for each parameter. The ranges are: βh

m ∈ (Baseline, 4× Baseline), θ ∈ (0.2, 3.5), β ∈ (0.94, 0.99),
and ζ1 ∈ (0.1, 2).

Elasticity of Substitution Between Production Factors. The role of natural capital becomes even more
pronounced when examining the SCC’s sensitivity to the elasticity of substitution, θ. In the full model, the
SCC rises sharply as θ decreases—that is, as natural capital becomes more complementary to other inputs.
For example, with θ = 0.85, the SCC is approximately 4.5 times higher than in the baseline case with
θ = 1.7. The response is highly non-linear across the range of values considered, with disproportionately
large increases in the SCC at lower elasticity levels. In contrast, the energy-only model exhibits a much
more muted response: the SCC increases by only about 50 percent between the same extremes.

These findings highlight two important points. First, accounting for multiple forms of natural capital
is essential for accurate policy valuation in macro-climate models. Second, more work is needed to better
estimate substitution elasticities across regions and income groups, especially where complementarity may
be strong.

4.3.2 Sensitivity of Shadow Prices

We now examine how the shadow prices of production inputs respond to the same four parameters. As
in the SCC analysis, we first consider the effects of climate damages, discounting, and climate dynamics
before turning to the elasticity of substitution.
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Climate Damages, Discounting, and Climate Dynamics. In our static setting, climate-related parameters
only affect the shadow prices of fossil energy and its components (oil, gas, and coal) as shown in figure 9,
figure 10, and figure 11. This is expected as all other shadow prices in our static exercise can only be im-
pacted by the various components of the production function of the nest to which they belong. In the case
of fossil energy and its components, however, the optimal price of carbon enters the formula for shadow
prices. As the social cost of carbon grows, fossil inputs become undesirable for the social planner, and their
respective shadow prices fall. The effect is thus only indirect, through the impact on the SCC discussed in
the previous subsection. The reason is that we target specific levels of production for each type of produc-
tion input to match the observed levels in 2018. Hence, even though the social planner would theoretically
like to reduce the economy’s reliance on fossil fuels, the static analysis does not allow it. This limitation is
lifted when we study transition dynamics (section 4.2), where shadow prices, stocks, and flows are allowed
to move freely.

Elasticity of Substitution Between Production Factors. Figure 5 displays the sensitivity of shadow prices
to changes in θ. In the full model, all natural capital shadow prices rise substantially as substitution becomes
more difficult. Each more-than-doubles relative to the baseline case with θ = 1.7. This reflects the increasing
marginal value of less abundant resources in an economy where substitution across inputs is constrained.

In the energy-only model, this effect is even more pronounced in relative terms. With only three produc-
tion inputs, reduced substitutability leaves the planner with fewer adjustment margins. As a result, fossil
inputs retain high shadow values, and the SCC becomes less responsive to elasticity changes than in the
full model. This also helps explain the muted SCC response observed earlier.

Figure 5: Sensitivity of Shadow Prices to Elasticity of Substitution

Notes: This figure shows the shadow prices of production factors under two model specifications for three elasticity scenarios: baseline,
Cobb-Douglas (θ ≈ 1), and low substitution (θ = 0.85). Shadow prices are normalized to one at baseline. The center of each circle
corresponds to the lowest value observed.
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4.4 The Role of Uncertainty

This section examines how aggregate uncertainty affects key outcomes in a macro-climate model with
natural capital. We focus on two sources of uncertainty: TFP and temperature. We show that their impact
on the SCC and shadow prices is significantly amplified in the presence of habit formation, highlighting
the importance of modeling preferences and stochastic discounting. We also explore the consequences of
unexpected fossil energy discoveries and trace the transmission channels through which they influence a
set of policy-relevant variables.

4.4.1 Uncertainty and Shadow Prices

Recent literature (Golosov, Hassler, Krusell, and Tsyvinski, 2014; Cai and Lontzek, 2019; Benmir et al.,
2020; Barnett, Brock, and Hansen, 2021; Folini et al., 2024) emphasizes that uncertainty is a critical factor
when assessing the optimal value of carbon pricing. In particular, economic uncertainty can significantly
affect the stochastic discount factor, a key element in climate valuation (Stern, 2008; Nordhaus, 2008). The
discount factor is highly sensitive to both the structure of preferences and the rate of time discounting.
Benmir et al. (2020) argue that habit formation plays a dual role: while it improves the consistency of
macroeconomic models with observed financial and macroeconomic data, it also amplifies the sensitivity
of the social cost of carbon to uncertainty. Following this insight, we contrast the results of our model with
and without habit formation, as in Jaccard (2014).

We focus on the effect of uncertainty in TFP and temperature, computing the (theoretical) conditional
mean of the SCC and natural capital shadow prices using second-order perturbation methods. Both shocks
are standardized to have a one percent standard deviation,23 and all results are reported as percentage
deviations from the deterministic benchmark.

The results in table 4 show how shadow prices respond to stochastic TFP shocks across three values
of the elasticity of substitution, θ. Focusing first on the SCC, we find that accounting for TFP uncertainty
increases the planner’s valuation of potential climate damages. The SCC rises by 22 to 68 percent relative to
the deterministic case, depending on the degree of substitutability. When substitution is higher, the optimal
allocation shifts toward inputs that do not generate environmental externalities.24 As these cleaner inputs
become more abundant, their marginal value—and thus their shadow price—declines. In contrast, the
overall stock of energy remains largely unchanged, and given its significant role in production, its shadow
price rises.

Relative to a DICE-type model, the effect of uncertainty on the SCC can be up to 4.7 times larger when
natural capital is explicitly included, especially in cases with low substitution elasticity. This highlights the
importance of incorporating natural capital into macro-climate models, as omitting it can lead to significant
underestimation of uncertainty-related effects.

Standard deviations of shadow prices also increase under uncertainty, and the spread widens as θ de-
creases. This suggests that TFP shocks generate stronger co-movement among production inputs when
those inputs are more complementary.

23This corresponds to annual output fluctuations of approximately one percent and temperature variations of about 0.01°C.
24While not reported in the table, the conditional mean of non-fossil natural capital stocks increases sharply.

22



Name Variable All Natural Capital Only Energy
θ = 0.85 θ = 0.99 θ = 1.70 θ = 0.85 θ = 0.99 θ = 1.70

Shadow Price of Emission E(V E) 68.04 22.12 39.67 14.39 15.62 31.22
(68.66) (45.14) (26.73) (41.39) (41.05) (33.35)

Shadow Price of Energy E(ΨE) 11.61 2.17 7.45 0.36 -0.51 -11.31
(20.67) (11.70) (6.14) (29.37) (31.37) (25.72)

Shadow Price of Fossil E(ΨFE) -0.09 -3.11 -16.04 - - -
(53.79) (30.54) (25.15) - - -

Shadow Price of Oil E(ΨO) 0.13 -2.93 -15.78 - - -
(53.07) (30.10) (24.03) - - -

Shadow Price of Gas E(ΨG) 0.16 -2.80 -13.93 - - -
(51.64) (28.90) (19.45) - - -

Shadow Price of Coal E(ΨC) -0.25 -3.27 -16.72 - - -
(54.71) (31.21) (27.34) - - -

Shadow Price of Renewable Energy E(ΨRE) 2.92 -0.32 -8.35 - - -
(38.34) (19.91) (3.70) - - -

Shadow Price of Minerals E(ΨM) 35.87 13.23 -35.91 - - -
(47.55) (29.92) (31.96) - - -

Shadow Price of Forest ES E(ΨFO) -4.24 -5.63 -9.63 - - -
(58.54) (31.27) (18.37) - - -

Shadow Price of Cropland E(ΨL) 5.59 0.13 -19.65 - - -
(48.35) (28.28) (24.95) - - -

Table 4: Impact of TFP uncertainty on shadow prices across different elasticity values — percentage devia-
tions from deterministic case.

Notes: This table displays the effect of TFP uncertainty on shadow prices under two model specifications with habit formation and
three values of substitution elasticity in the top CES nest. The third column corresponds to the estimated elasticity. The first column
assumes complementarity, and the second an intermediate case. Results are shown as percentage deviations from the deterministic
benchmark. Standard deviations are in parentheses. E(X) denotes the conditional mean of variable X .

Additional results are provided in the appendix: temperature shocks are analyzed in table 28, and both
TFP and temperature shocks without habit formation are shown in table 27 and table 29. While temperature
uncertainty has a modest impact on the SCC and shadow prices, its effects are small compared to those of
TFP shocks. This is because temperature shocks only marginally affect the marginal utility of consumption,
and hence the stochastic discount factor. As a result, outcomes remain similar even with habit formation.
Turning to the case where TFP uncertainty is introduced without habit formation, the effects remain muted
and would not meaningfully influence optimal policy. This provides a rationale for why earlier climate-
economy models often downplayed the role of uncertainty in determining the SCC (Nordhaus and Moffat,
2017; Stern, 2008).

4.4.2 Uncertainty and Discoveries

In this last subsection, we analyze the effect of an unexpected discovery in fossil fuels. We study the
case of gas, but the analysis would carry over with any other fossil energy. For this exercise, we rely on
perturbation methods around the initial steady state, as it will allow us to cleanly decompose the channels
through which a variable is impacted. We calibrate the shock to get a 10% increase in the stock of gas
in impact and it goes back to zero with an auto-regressive parameter of 0.5. One could think of it as the
discovery of shale gas reserves in the US, where some new reserves are progressively discovered, up to
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some point.
Unanticipated “discovery shocks” in fossil-fuel availability—such as the sudden realization of vast shale

or deep-sea reserves—play a pivotal role in shaping both aggregate GDP dynamics and social welfare
outcomes. From a GDP perspective, abrupt supply expansions can depress global energy prices, strain the
profitability of incumbent producers, and induce boom-bust investment cycles (Pindyck (2013)), while also
delaying capital flows into clean-energy sectors. From a welfare standpoint, such uncertainty exacerbates
the distortions identified by Weitzman (1974): consumers and producers face greater volatility in energy
costs and firms leading to higher welfare costs.
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Figure 6: Impulse Response Function to a Gas Discovery

Notes: This figure shows the impulse responses of produced and natural capital production to a gas discovery shock equivalent to a
10% increase in the gas stock. Results are expressed as percentage deviations from the steady state; the zero on the x-axis represents
the steady state level.

Figure 6 shows the impulse responses of all inputs in the first production nest under our baseline cal-
ibration. The first panel depicts the direct effect of the shock on the target variable: a 10% increase in the
gas stock. This discovery generates a sharp rise in fossil fuel and thus the energy output, while production
from all other first-nest natural capital stocks production falls. Because substitution is highly elastic, the
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planner shifts production easily toward fossil inputs, drawing down other natural and man-made capital
stocks and thereby amplifying climate damages via rise in emissions. As we will see below, the net effect
on GDP while positive, it comes at a welfare cost due to increased climate impacts.

20 40 60 80 100
Time (years)

0

2

4

6

8

10
10-3

20 40 60 80 100
Time (years)

-5

0

5

10
10-3

20 40 60 80 100
Time (years)

-15

-10

-5

0

5
10-4

20 40 60 80 100
Time (years)

-4

-2

0

2

4
10-3

20 40 60 80 100
Time (years)

0

0.5

1

1.5

20 40 60 80 100
Time (years)

0

0.5

1

1.5

Baseline IRF
Shocks Stocks
Preferences Climate Dynamics

Figure 7: Impulse Response Function Decomposition

Notes: This figure shows the impulse responses of selected variables to a gas discovery shock equivalent to a 10% increase in the gas
stock. The solid blue line represents the total response, while the dashed colored lines decompose the impulse response function (IRF)
into contributions from individual state variables. All responses are expressed as percentage deviations from the steady state; the zero
on the x-axis corresponds to the steady state level. Shocks include: TFP, Discovery, and Temperature shock (notice that only discovery
shock is activated for this exercise); Stocks include all natural capital stocks but human capital; Preferences include: time preference,
habits, as well as its leads and/or lags; and finally Climate Dynamics include: cumulative emissions, temperature, as well as their
leads and/or lags.

We then decompose the effects of a gas discovery shock on total output, social welfare, and emissions.25

While total output rises initially due to the sudden availability of fossil energy, the welfare impact quickly
turns negative. The surge in fossil fuel use raises emissions and intensifies climate damages, as shown in

25We decompose the overall impact of the shock by attributing it to individual state variables in the model. For ease of interpretation,
these contributions are aggregated into the categories indicated in the figure notes.
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figure 7. After a few periods, the adverse welfare effects from climate damages outweigh the short-run
gains from increased resource availability. Output, by contrast, continues to benefit in the near term from
expanded energy stocks, although these gains are eventually reversed. Over the longer run, rising climate
damages dominate the initial productivity boost from fossil energy, leading to a sustained decline in output
before it gradually returns to steady state.

This decomposition highlights two key insights. First, while unexpected fossil fuel discoveries may
generate short-term gains in GDP and welfare, these benefits quickly reverse as emissions accumulate and
climate damages mount. Second, such discoveries can undermine the competitiveness of renewables and
delay the transition to cleaner energy, particularly when production inputs are highly substitutable.

5 Conclusion

The rapid degradation of Earth’s ecosystems has significant implications for economic production. In
this paper, we demonstrated that incorporating natural capital dynamics and their interaction with climate
dynamics in macroeconomic models is crucial for optimal allocation analysis. To calibrate our model, we
used state-of-the-art climate econometric methods to estimate damage functions for each type of natural
capital and provided new estimates of elasticity of substitution between various production inputs. With
these estimates, we quantified the impact of including natural capital in a macroeconomic model featuring
uncertainty.

Our findings indicate that the SCC is about 12 percent higher in the fully-fledged model compared to
the baseline. Additionally, all shadow prices are highly sensitive to the elasticity of substitution in the
final output production function and the calibration of damage functions. We also computed the mean of
the shadow prices, conditional on the expectation of shocks to productivity and temperature. Accounting
for the stochastic nature of productivity increases the SCC by 39 percent in our baseline parametrization.
However, accounting for a moderate risk of temperature variation does not significantly impact shadow
prices. Finally, we demonstrate that although fossil-fuel discoveries boost output in the short run, they lead
to lower output over the long run and impose adverse welfare consequences.

In conclusion, our study highlights the importance of considering natural capital and the role of uncer-
tainty in macroeconomic models. Ignoring natural capital can lead to substantial underestimation of the
SCC and other shadow prices, ultimately affecting policy decisions and long-term sustainability.
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Appendix A Data

A.1 Descriptive Statistics

Statistics

Average Std. Dev. Min. Max. Obs.

First nest Variables

GDP 63.21 197.79 0.1062 2045.61 2,184
Capital 280.36 878.59 0.2077 8622.27 2,184
Human Capital 557.65 2066.65 0.3627 20302.21 2,184
Ecosystem 6.56 20.03 0.0001 199.02 2,184
Cropland 12.91 44.99 0.0194 516.22 2,184
Minerals 3.32 14.02 1.86E-06 249.08 2,184
Fossil Energy 22.66 75.64 8.82E-08 716.05 2,184

Second nest Variables

Electricity Demand 109.97 429.31 0.03 6871.14 3,478
Fossil Fuel Electricity 84.03 349.02 0.00 5035.82 3,478
Renewable Electricity 25.93 94.04 0.00 1835.32 3,478

Third nest Variables

Oil-Gas Production 10.32 22.58 0.000025 161.98 1,152
Coal Production 7.38 24.64 0.00005 220.34 1,152

Note: The first nest variables are expressed in 10 Billion Current 2018 USD, the second and third nest variables are expressed in terawatt hours.

Table 5: Summary Statistics: CES Estimates Data
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Statistics

Average Std. Dev. Min. Max. Obs.

Total Cropland 40.71 3.69 29.90 50.32 1,728
Forest Ecosystem 23.34 2.37 14.01 28.32 1,704
Minerals 21.35 3.19 11.94 28.54 1,368
Coal Electricity 2.86 2.32 -4.61 8.46 1,212
Gas Electricity 2.64 1.92 -4.61 7.29 1,548
Oil Electricity 1.39 1.98 -6.21 5.52 1,523
Fossil Fuel Electricity 3.75 1.72 -4.61 8.52 1,606
Renewable Electricity 2.29 2.21 -5.52 7.51 1,616
Energy 27.02 1.43 23.89 31.28 1,728
Temperature 14.85 8.26 -4.89 28.98 1,728
Precipitation 1072.72 793.83 6.11 4226.89 1,728

Note: All values except temperature and precipitation are expressed in logarithmic values.

Table 6: Summary Statistics: Climate Damages Estimates Data
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A.2 Calibration and Moments Matching

Name Variable Value Sensitivity
Climate Parameters

Climate Transient Parameters 1 ϕ1 0.50 ∈ (0.1, 2)
Climate Transient Parameters 2 ϕ2 0.61 -
Produced and Natural Capital Damages βh

m refer to estimation ∈ (2 ∗ βh
m, 4 ∗ βh

m)
Human Capital Damages βAL

1 - 0.02 ∈ (2 ∗ βAL
1 , 4 ∗ βAL

1 )
Emission Intensity ϕE 0.0014 -
Persistence of Temperature Shock ρT 0.90 -
Temperature Shock Standard Deviation σT 0.01 -

Macro Parameters

Time preference β 0.96 ∈ (0.94, 0.99)
Risk aversion σH 2.00 -
Economy Growth Rate γΓ 1.03 -
Habits adjustment level γH 0.975 -
Habits level m̄ 0.90 -
Labor hours L̄ 0.33 -
Productivity of labor A 2.22 * 103 -
GDP scale γY 0.32 -
Energy scale γE 3.39 -
Fossil Energy scale γF 5.13 -
Inputs weights θk refer to estimation -
Elasticity of Substitution First nest θ refer to estimation ∈ (0.2, 3.5)
Fossil Fuel Weight σFE refer to estimation -
Renewable Energy Weight σRE refer to estimation -
Elasticity of Substitution Second nest σ refer to estimation -
Elasticity of Substitution Third nest ϵ refer to estimation -
Oil, Gas, Coal Weights ϵi refer to estimation -
Persistence of TFP Shock ρA 0.90 -
TFP Shock Standard Deviation σA 0.01 -
Persistence of Discovery/Investment Shock ρDi 0.50 -

Table 7: Calibration
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Variable Label Target Source
Cumulative Emission (World, Trillion tCO2) X 1.63 Ourworldindata
Yearly Emission Flow (World, GtCO2) E 36.77 Ourworldindata
Temperature in Celcius T 1.00 NOAA
World GDP in Trillion $ Y T 86.50 WB Database
Produced Capital in Trillion $ Y K 358.50 WB Database
Human Capital in Trillion $ Y AL 727.21 WB Database
Renewable Energy in Trillion $ Y RE 0.54 Authors Calculation
Coal in Trillion $ Y C 3.48 WB Database
Gas in Trillion $ Y G 3.27 WB Database
Oil in Trillion $ Y O 18.63 WB Database
Cropland in Trillion $ Y L 20.86 WB Database
Minerals in Trillion $ YM 3.08 WB Database
Forest Ecosystem Services in Trillion $ Y FO 7.36 WB Database
Oil Investment to Output Ratio in % DFO/Y FO 0.46 Authors Calculations
Coal Investment to Output Ratio in % DC/Y C 1.01 Authors Calculations
Gas Investment to Output Ration in % DG/Y G 3.82 Authors Calculations
Renewable Investment to Output Ratio in % DRE/Y RE 156.25 Authors Calculations
Minerals Investment to Output Ratio in % DM/YM 3.00 Authors Calibration
Cropland Investment to Output Ratio in % DL/Y L 3.00 Authors Calibration
Forest Ecosystem Services Investment to Output Ratio in % DFO/Y FO 3.00 Authors Calibration
Capital Investment to Output Ratio in % DK/Y K 3.00 Authors Calibration

Table 8: Moments Matching

Notes: All the values reported in this table are perfectly matched by the model for the initial period 2018. The energy output is calculated using
the electricity prices from https://www.cable.co.uk/energy/worldwide-pricing/ and quantities from OWID.
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Appendix B Empirical Estimation

This section is an addendum to the empirical estimation briefly discussed above. We elaborate on the
estimation methods, model specifications, and data-handling procedures employed to obtain accurate and
robust parameter estimates.

B.1 Data

In this subsection, we describe the variables used for estimating the CES production functions as well as
the climate damages. Moreover, we shed light on data-related challenges and the considerations necessary
to address them effectively during the estimation process.

B.1.1 CES Estimation Data

Before delving into the CES production function estimation, we must deal with three key data related
challenges that arise in this procedure. These affect the data utilized for the estimation. First, units must be
consistent to ensure interpretability. Second, the output variable must not be a linear sum of inputs, as this
implies perfect substitutability (σ → ∞). To address unit consistency, we restrict the first-nest estimation
to CWON’s produced, natural, and human capital, with GDP as output. All variables are measured in
constant 2018 USD. To address the second issue, for the second nest, we use OWID data with electricity de-
mand as the output and generation from fossil and renewable sources as inputs. This is because electricity
generation is a linear sum of fossil and renewable sources. Discrepancies between demand and supply are
understood to be resolved through cross-country electricity trade. In the third nest, we use fossil electricity
generation as the output to ensure consistency with the second nest, and use coal, oil, and gas production
as inputs, since fossil-based electricity is a linear sum of these sources. This is also why CWON data is not
used to estimate the third nest.

The third issue is regarding the fact that the inputs discussed above, such as human capital, are stock
variables and the output, GDP, is a flow. To address this, we note that the scaling parameter g̃Y in the CES
function below, which features produced and human capital, captures both productivity and the contribu-
tion of stock input to flow output. To see how, note that a stock variable can be converted to a flow by
multiplying the inputs by some discount rate r.26 This discount rate can be factored out and we can restate
the new multiplicative term as gY = g̃Y r, which helps reconcile the stock-flow mismatch.

Yi,t = g̃Y

(
θ(rY K

i,t )
σ−1
σ + (1− θ)(rY AL

i,t )
σ−1
σ

) σ
σ−1

(23)

Lastly, we exclude certain CWON natural capitals from the estimation procedure, such as mangroves,
fisheries, and protected areas, since these are rare across countries, making their inclusion inappropriate for
a representative economy. Additionally, we do not include forest timber, as its inclusion in the CES results
in an estimated production share of zero. Table 9 provides summarizes the variables used while table 5
provides the summary statistics.

26The CWON dataset expresses all variables as discounted stock values, using a consistent discount rate for all variables.
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Category Symbol Description Unit Source

First nest Variables

GDP Y T GDP at purchaser’s prices 2018 USD World Bank
Capital Y K Value of buildings and equipment 2018 USD CWON
Human Capital Y AL PV of future earnings for the population 2018 USD CWON
Ecosystem Y FO Forest ecosystem services 2018 USD CWON
Cropland Y L Agricultural Land 2018 USD CWON
Minerals YM Composite of different minerals 2018 USD CWON
Fossil Energy Y E Oil, gas, hard and soft coal 2018 USD CWON

Second nest Variables

Electricity Demand Y E Demand for electricity Terawatt Hours OWID
Fossil Fuel Electricity Y FE Electricity generation from fossil fuels Terawatt hours OWID
Renewable Electricity Y RE Electricity generation from renewables Terawatt hours OWID

Third nest Variables

Oil-Gas Production Y G Sum of gas and oil production Terawatt hours OWID
Coal Production Y C Coal production Terawatt hours OWID

Table 9: Variable Summaries: CES Estimates Data

B.1.2 Natural Capital Climate Damages Estimation Data

In this paper, the types of natural capital considered include cropland, forest ecosystem services, min-
erals, and energy. Energy is further broken down as described earlier. While we use the CWON dataset for
natural capital classification, their data reflect the market values of these resources, which might conflate
the impact of temperature on the quantity of natural capital with its market value. To avoid this confusion,
whenever possible, we used available data on the actual quantities of natural capital instead of their market
valuations. For cropland, we used the Arable Land data from the World Bank, measured in hectares per
capita, which we converted into hectares using population data. To obtain data on aggregate energy and
its decomposition, we referred to the OWID Energy dataset as previously discussed. However, since quan-
tity data were not available for forest ecosystem services and minerals,27 we relied on the CWON dataset
for these components. Lastly, we used ERA5 temperature and precipitation data from the Climate Change
Knowledge Portal. Table 10 summarizes the variables used and their sources, while table 6 provides sum-
mary statistics.

Variable Description Unit Source

Total Cropland Arable land Hectares World Bank
Coal Electricity Electricity generation from coal Terawatt hours OWID
Gas Electricity Electricity generation from gas Terawatt hours OWID
Oil Electricity Electricity generation from oil Terawatt hours OWID
Fossil Fuel Electricity Electricity generated from oil, gas and coal Terawatt hours OWID
Energy Primary energy consumption Kilowatt Hours OWID
Temperature Average mean surface-air temperature Celsius CCKP
Precipitation Average precipitation mm CCKP

Table 10: Variable Summaries: Climate Damages Estimates Data

27Minerals in the CWON dataset include bauxite, copper, gold, iron ore, lead, nickel, phosphate, silver, tin, and zinc.
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Figure 15, figure 16, and figure 17 show the distribution of each of the aforementioned variables, which
are generally symmetric with slight skews. Notably, the temperature data exhibit a left skew, while the
precipitation data display a heavy right skew.28

B.2 Natural Capital CES Estimation

There are three main approaches to estimating CES production functions. First, Kmenta (1967) intro-
duced a linear approximation using a second-order Taylor expansion around a unitary elasticity of substi-
tution, which can be estimated via Ordinary Least Squares (OLS). However, as Thursby and Lovell (1978)
note, the approximation error increases when the true elasticity deviates from one. In addition, Hoff (2004)
points out that parameter restrictions within Kmenta’s method become increasingly complex with rising
number of inputs.

Second, the CES function can be estimated directly using non-linear methods. While this avoids ap-
proximation error, Henningsen and Henningsen (2012) caution that parameter estimates may fall outside
bounds prescribed by economic theory. Moreover, both the linear and non-linear approaches are vulnerable
to endogeneity concerns, as input choices may not be exogenous to output choices.

Third, the cost minimization approach estimates elasticity from the logarithm of input price ratios. This
approach is widely used in the literature29 and benefits from being able to use exogenous price variation
to avoid endogeneity issues. However, it requires price data, which we lack for natural capital inputs.
Additionally, Feldstein (1967) and Papageorgiou et al. (2017) note that this approach assumes undistorted
markets, a condition we cannot verify. As such, we do not employ this method here.

Following Papageorgiou et al. (2017), we implement both Non-Linear Least Squares (NLS) and the
Kmenta approximation to mitigate the limitations of each method. NLS is used to estimate all nests of the
CES production function, while the Kmenta approximation is applied to the second and third nests, which
each have only two inputs,30 in line with Hoff (2004)’s recommendation. Furthermore, as inPapageorgiou
et al. (2017), we note that these findings reflect associations rather than causal relationships, owing to en-
dogeneity concerns.

We employ two non-linear least squares (NLS) methods. First, Sequential Quadratic Programming
(SQP), which allows for constrained optimization and ensures parameter estimates remain consistent with
economic theory. Second, we implement Adaptive Moment Estimation (Adam), a stochastic gradient de-
scent algorithm introduced by Kingma and Ba (2014) and implemented using TensorFlow.31 Since Adam
does not support explicit parameter constraints, we reparameterize the elasticity using ρ = σ−1

σ , and fol-
lowing McDonald (1980), we express:

ρ = eλ − 1, (24)

θk =
1

1 + e−µk
, (25)

28The skewness is largely driven by the warm climates in East Asia and the Pacific, Latin America and the Caribbean in the case of
temperature, and by the dry conditions in the Middle East and North Africa in the case of precipitation.

29See Lagomarsino (2020) for a comprehensive list of literature employing the indirect approach and other methods.
30For estimation, oil and gas are aggregated into a single input.
31For details on Adam and its implementation, see Appendix A
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which ensures ρ ∈ (−1,∞) and θk ∈ [0, 1] without directly imposing bounds. Under this formulation, we
estimate the unconstrained parameters λ and µk with Adam. As a robustness check for the second and
third CES nests, we also estimate a third specification in which the returns-to-scale parameter is fixed using
values obtained from OLS. This follows Corbo (1976) and Maddala and Kadane (1967), who show that
Kmenta’s approximation yields reliable estimates of this parameter.

B.2.1 Results: First nest

To estimate, we restate the final output production function in equation (5) in logarithmic terms with a
returns to scale parameter υY and the elasticity re-parameterized as the substitution parameter ρY .

ln(Y T
i,t) = ln(gY )−

(
υY
ρY

)
ln

(
θK(Y

K
i,t )

−ρY + θAL(Y
AL
i,t )−ρY +

∑
k

θk(Y
k
i,t)

−ρY

)
(26)

Table 11 below shows that the results are similar across the two estimation methods and their specifica-
tions. Aligned with standard macroeconomic literature we observe, under all estimation specifications, that
the share of human capital is the largest, followed by produced capital and natural capital related to en-
ergy. These estimates are novel as they introduce the elasticities of substitution between produced capital,
human capital, and the various natural capitals, which has not been estimated previously in the literature.
The estimated elasticity of substitution between these inputs, given by θ = 1

1+ρY
, ranges between 1.65 and

1.79.
We also estimate a CES production function with produced capital, human capital, and energy nat-

ural capital as its inputs to derive parameters for a reduced form DICE-type framework (we use in the
quantitative modeling section), allowing us to compare our model’s results (with all natural capital) and
a framework with energy only. As shown in table 12, we find that the elasticity of substitution between
these three inputs ranges from 1.63 to 1.73. Additionally, we observe that human capital retains the highest
share, followed by produced capital. Of particular note is that both SQP and Adam, which are two different
methods, yield the same results despite starting at different initial points, indicating the robustness of our
results.

The results in table 12 are closest in comparison to the elasticities estimated in Qian, Wu, and Fan (2018)
between energy and non-energy composite inputs. Our results fall outside the range reported by Qian
et al. (2018) who find that elasticities are complementary or substitutable with elasticity greater than 2. This
difference may be attributed to the fact that Qian et al. (2018) estimate the elasticities for different KLEM
structures that do not feature all inputs in a single nest.

Our estimates suggest that one can substitute between produced capital, human capital and the differ-
ent natural capitals. This may be the case since our estimates reflect a representative economy over the
long run where the advent and proliferation of new adaptive technology can help promote substitutability
between different inputs. In fact, when doing a expanding-window estimation, we find that the elasticity
of substitution increases with time as can be seen in Figure 8, lending some empirical support to the fact
that improvement in adaptive technology results in higher elasticity of substitution.
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Estimation Method

SQP Fixed υ ADAM Fixed υ SQP ADAM

θK 0.2187 0.2278 0.2455 0.2437
(0.0198) (0.0195) (0.0206) (0.0022)

θAL 0.4084 0.4261 0.5155 0.5182
(0.0326) (0.0293) (0.0372) (0.0394)

θFO 0.0404 0.0366 0.0000 0.0002
(0.0207) (0.0204) (0.0000) (0.0000)

θL 0.1257 0.1178 0.0524 0.0399
(0.0172) (0.0135) (0.0218) (0.0142)

θM 0.0318 0.0155 0.0018 0.0105
(0.0163) (0.0072) (0.0048) (0.0031)

θE 0.1750 0.1764 0.1848 0.1874
(0.0107) (0.0101) (0.0156) (0.0132)

ρY -0.4448 – -0.3994 –
(0.0393) – (0.0413) –

λY – 0.3536 – 0.3387
– (0.0219) – (0.0226)

gY 0.3853 0.3565 0.3448 0.3413
(0.0181) (0.0147) (0.0128) (0.0086)

υY 1.0000 1.0000 0.9553 0.9555
– – (0.0046) (0.0037)

θ = 1
1+ρY

1.8012 1.7368 1.6650 1.6753

Observations 2,184 2,184 2,184 2,184
MSE 0.1031 0.1028 0.0977 0.0981

Note: Values in parentheses are standard errors from bootstrapping.

Table 11: First Nest CES Estimates

Estimation Method

SQP Fixed υ ADAM Fixed υ SQP ADAM

θK 0.2530 0.2531 0.2524 0.2524
(0.0208) (0.0215) (0.0228) (0.0233)

θAL 0.5414 0.5426 0.5562 0.5576
(0.0263) (0.0227) (0.0275) (0.0229)

θE 0.2056 0.2043 0.1917 0.1900
(0.0179) (0.0138) (0.0174) (0.0137)

ρY -0.4266 – -0.3938 –
(0.0457) – (0.0428) –

λY – 0.3514 – 0.3277
– (0.0255) – (0.0235)

gY 0.2737 0.2739 0.3261 0.3263
(0.0057) (0.0049) (0.0076) (0.0068)

υY 1.0000 1.0000 0.9469 0.9468
– – (0.0025) (0.0025)

θ = 1
1+ρY

1.7439 1.7274 1.6495 1.6335

Observations 2,184 2,184 2,184 2,184
MSE 0.1114 0.1114 0.0983 0.0983

Note: Values in parentheses are standard errors from bootstrapping.

Table 12: First Nest CES Estimates (Energy Only Model)

B.2.2 Results: Second nest

For the second nest, we decompose Y E
i,t from the first nest into renewable and fossil fuel energy inputs.

Here, we use electricity demand as a proxy for output, relying on market clearing, and include fossil elec-
tricity generation and renewable electricity generation as inputs.32 With two inputs for this nest, we employ
both the NLS methods as well as the Kmenta-approximation methods for estimation. The NLS estimation
is applied to the following equation:

32We do not use total electricity generation as our output because it is a simple linear sum of fossil electricity and renewable
electricity generation, which would make the CES estimation redundant as it would imply perfect substitutability.

40



Figure 8: Evolution of Elasticity of Substitution by Sample Size
Notes: The sample size increases as we move along the year dimension. Specifically, a sample size of 1 corresponds to the year 1995, a

sample size of 2 represents the years 1995–1996, and a sample size of 20 encompasses the years 1995–2014.

ln(Y E
i,t) = ln(gE)−

(
υE
ρE

)
ln
(
σFE(Y

FE
i,t )−ρE + σRE(Y

RE
i,t )−ρE

)
(27)

Whereas, we use OLS with country fixed effects denoted by µi and robust standard errors to estimate
the Kmenta-approximation, which follows this standard Taylor expanded expression:33

ln(Y E
i,t) = β0 + β1 ln(Y

FE
i,t ) + β2 ln(Y

RE
i,t ) + β3

(
ln(Y FE

i,t )− ln(Y RE
i,t )

)2
+ µi (28)

Whereby

β0 = ln(gE), β1 = υEσFE , β2 = υEσRE , β3 =
−υEρEσFEσRE

2

The number of observations is lower with OLS due to missing values arising from taking logarithms
of zero. Across all specifications detailed in table 13, we find that the share of fossil energy inputs in de-
termining total energy output is consistently higher than that of renewable energy inputs, although these
shares vary. These findings align with those reported by Papageorgiou et al. (2017), who observed that
“clean” energy inputs account for approximately 45 percent of the total share, with variations across speci-
fications. Furthermore, the elasticities of substitution presented below for our specifications fall within the
range estimated by Qian et al. (2018), who examined various nesting structures and found that 31 percent
of their estimated elasticities of substitution between clean and dirty energy inputs fell within the range of
2 to 6. Notably, 35.9 percent of their estimates were between 0 and 1, while 22.7 percent were between 1 and
2, highlighting the robustness of our results. Papageorgiou et al. (2017) reported elasticities of substitution

33Results of the second nest OLS estimation are available in table 15
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between clean and dirty energy ranging from 1.73 to 2.81, depending on the inputs used in their production
function. Our estimates using the Kmenta-approximation and NLS with fixed returns to scale parameters
are consistent with their findings. Additionally, Jo (2025) found using the “indirect approach” that the elas-
ticity of substitution between clean and dirty energy ranges from 1.9 to 3, while Jo and Miftakhova (2024)
estimated it could be as high as 5, providing further support for our estimates.

Estimation Method

SQP ADAM Kmenta-OLS SQP Fixed υ ADAM Fixed υ

σFE 0.5543 0.5358 0.5076 0.5738 0.5226
(0.0063) (0.0639) (0.0540) (0.0060) (0.0602)

σRE 0.4457 0.4642 0.4924 0.4262 0.4774
(0.0063) (0.0639) (0.0540) (0.0060) (0.0602)

ρE -0.8239 – -0.4171 -0.5811 –
(0.0298) – (0.0136) (0.0246) –

λE – 0.5907 – – 0.5905
– (0.0047) – – (0.0042)

gE 2.6615 1.0322 4.0316 3.7001 1.0473
(0.0439) (0.0358) (0.0575) (0.0606) (0.0332)

υE 0.9516 0.9445 0.8126 0.8126 0.8126
(0.0048) (0.0314) (0.0117) – –

σ = 1
1+ρE

5.6850 5.1329 1.7156 2.3874 5.1256

Observations 3,478 3,478 2,911 3,478 3,478
MSE 0.2025 0.0115 0.0186 0.3023 0.0153
Country Fixed Effects No No 136 No No

Note: After further cleaning (e.g., removing countries with more than 15 zero entries in inputs/outputs), the NLS shares become more equitable with
ρE = −0.7840 and MSE = 0.068, suggesting sensitivity to data treatment. Standard errors (in parentheses) are obtained via bootstrapping.

Table 13: Second Nest CES Estimates

B.2.3 Results: Third nest

For the third nest, we decompose fossil energy into three constituent components: oil, gas, and coal
production. We use fossil electricity generation as our output variable, noting that it is a linear sum of coal,
oil, and gas electricity generation and therefore these cannot be used as inputs. Recognizing that fossil
electricity generation is primarily influenced by gas and coal inputs, we aggregate oil and gas production
into a single input. All variables used in this analysis are measured in terawatt hours. By reducing the
number of inputs from three to two, we apply both NLS and the Kmenta-approximation methods. The
following expression is employed for the NLS estimation:

ln(Y FE
i,t ) = ln(gF )−

(
υF
ρF

)
ln
(
ϵG(Y

G
i,t)

−ρF + ϵC(Y
C
i,t)

−ρF
)

(29)

While we employ the following expression for the Kmenta-approximation, utilizing the same parameter
interpretation as discussed for the second nest’s estimates:34

ln(Y FE
i,t ) = β0 + β1 ln(Y

G
i,t) + β2 ln(Y

C
i,t) + β3(ln(Y

G
i,t)− ln(Y C

i,t))
2 + µi (30)

Table 14 presents the varying shares of the oil-gas composite and coal production in determining fossil
electricity generation across NLS and OLS methods, with both NLS methods assigning greater weight to
coal production and OLS assigning equal weights. However, data on electricity production by different

34Third nest OLS results are available in table 16.
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fossil fuels35 suggests that oil and gas collectively contribute between 30 percent to 40 percent to global fossil
electricity generation, with the remainder being coal, aligning closely with the NLS results below. These
findings are innovative and indicate moderate substitutability between different energy sources, reflecting
constraints imposed by existing infrastructure capabilities. Moreover, given the large differences in mean
squared error (MSE), we treat the Adam results for this nest as our baseline.

Estimation Method

SQP ADAM Kmenta-OLS SQP Fixed υ ADAM Fixed υ

ϵG 0.3716 0.3216 0.5013 0.3458 0.3990
(0.0215) (0.0770) (0.0512) (0.0397) (0.0127)

ϵC 0.6284 0.6042 0.4924 0.6542 0.6010
(0.0215) (0.0770) (0.0512) (0.0397) (0.0127)

ρF -0.2145 – -0.2162 -0.1193 –
(0.0421) – (0.1014) (0.0635) –

λF – 0.1898 – – 0.3365
– (0.0760) – – (0.0187)

gF 63.1423 1.0881 52.1997 61.4013 1.2630
(3.0628) (0.0673) (0.2446) (3.1714) (0.0399)

υF 0.6169 0.8021 0.4149 0.4149 0.4149
(0.0212) (0.1713) (0.0425) – –

ϵ = 1
1+ρF

1.2732 1.4250 1.2643 1.1354 1.6670

Observations 1,152 1,152 1,152 1,152 1,152
MSE 1.9954 0.0150 0.1326 2.2420 0.0075
Country Fixed Effects No No 48 No No

Note: Values in parentheses are standard errors from bootstrapping.

Table 14: Third Nest CES Estimates

B.3 Natural Capital Climate Damages Estimation

B.3.1 Model Selection

This section reports the model selection process we followed to identify the functional form we rely on
to estimate the climate damages in section 3.2.2. As mentioned, we evaluate and discuss how the dependent
and independent variables should enter the model (i.e., in levels or first differences), and which functional
forms f(·) and g(·) should take (i.e., linearly or as higher-order polynomials). Regarding the first point,
Burke et al. (2015) argue in their seminal paper that the GDP series is nonstationary, hence it should enter
the estimation in first differences. Newell, Prest, and Sexton (2021) argue that the temperature series is also
non-stationary, hence it should enter the model in first differences as well. Given the several variables in
our model, we cannot assert a priori whether they are stationary or not. Therefore, we empirically test this
argument using data.

Appendix B.2 reports the results of the Augmented Dickey-Fuller unit-root test36 for all variables used
in the empirical analysis. Initially, we test the variables of interest and subsequently apply the tests on the
remaining detrended variables for which we did not reject the null hypothesis of nonstationarity in the first
stage. We reject the null hypothesis in the test without trends for temperature, precipitation, minerals, and
cropland, as well as in the test accounting for trends for forest ecosystems, gas, oil, fossil fuels, and renew-
able energy, indicating that these variables are either stationary or trend stationary. Conversely, we fail to
reject the null hypothesis for coal and aggregate energy, which are found to be nonstationary. Therefore,

35See Our World in Data: Energy Mix
36We use the Inverse chi-squared and Modified inverse chi-squared statistics, which are more suitable for large panels (Choi, 2001).
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we estimate the model from equation (20) in levels for the stationary variables and in first differences for
the nonstationary variables.37

Regarding the specification of the damage functions f(·) and g(·), we depart from the quadratic model
from Burke et al. (2015) and opt for a linear model as in Dell et al. (2012). Linear in this context refers
to the order of the temperature term polynomial included in the reduced form estimation. The damage
function included in the model remains non-linear as all the dependent variables are taken in logs. We
do this for two reasons. First, the aim of this section is to estimate climate damages which can be used
in our macroeconomic model simulation. Since the model requires global-level estimates, we consider the
linear model to be better suited, as we are interested in the global average marginal effect rather than how
different countries are impacted by higher temperatures. Second, the results from the models including the
quadratic terms reported in section D show that the quadratic term in the second order polynomial function
is often not statistically significant.

An additional aspect often discussed in the literature concerns the persistence of temperature shocks
identified through lagged effects (i.e., levels versus growth effects). Kotz et al. (2024) elaborate on disen-
tangling these effects to identify the persistence of climate impacts on economic growth using multiple lags
of temperature. Given the scope of this paper and the limited time dimension of our data, we include two
lags of temperature in our model.

37The marginal effect of an additional 1◦C in year t that we identify, ∂Yi,t

∂Ti,t
, is consistent between the two estimation methods.
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Appendix C Kmenta Approximation OLS Results

Second nest Kmenta-Approximation OLS Results
Coefficient [95% Conf. Interval]

ln(Y FE) 0.4125∗∗∗ [0.3954, 0.4296]
(0.0087)

ln(Y RE) 0.4001∗∗∗ [0.3850, 0.4153]
(0.0077)

(ln(Y FE) - ln(Y RE))2 0.0424∗∗∗ [0.0399, 0.0449]
(0.0424)

Cons. 1.3942∗∗∗ [1.3380, 1.4503]
(0.0286)

R2 0.9961
N 2,911

Table 15: Second nest Regression Results

Third nest Kmenta-Approximation OLS Results
Coefficient [95% Conf. Interval]

ln(Y C) 0.2080∗∗∗ [0.1469, 0.2691]
(0.0312)

ln(Y G) 0.2069∗∗∗ [0.1501, 0.2637]
(0.0289)

(ln(Y C)− ln(Y G))2 0.0112∗∗∗ [0.0047, 0.0177]
(0.0033)

Cons. 3.9551∗∗∗ [3.8886, 4.0215]
(0.0339)

R2 0.9714
N 1,152

Table 16: Third nest Regression Results
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Appendix D Climate Damages Regression Tables

(1) (2) (3) (4) (5) (6)
Produced Capital Produced Capital Produced Capital Produced Capital Produced Capital Produced Capital

T -0.040∗∗∗ -0.044∗∗∗ -0.030∗∗ -0.13∗∗ -0.11∗∗∗ -0.095∗∗∗
(0.0098) (0.0096) (0.0084) (0.038) (0.029) (0.026)

P -0.000025 -0.000010 0.000014 -0.0000063 -0.0000091 0.000034
(0.000024) (0.000022) (0.000022) (0.000090) (0.000099) (0.000086)

(ℓ1)T -0.035∗∗∗ -0.040∗∗∗ -0.096∗∗∗ -0.088∗∗∗
(0.0067) (0.0088) (0.025) (0.023)

(ℓ2)T -0.036∗∗∗ -0.051∗∗
(0.0086) (0.014)

T2 0.0045∗∗ 0.0034∗ 0.0029∗
(0.0017) (0.0015) (0.0012)

P2 3.5e-09 3.8e-09 -1.3e-09
(0.000000016) (0.000000020) (0.000000019)

(ℓ1)T2 0.0031∗∗ 0.0028∗∗
(0.0011) (0.0011)

(ℓ2)T2 0.00069∗∗∗
(0.00019)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 0.99 0.99 0.99 0.99 0.99 0.99
N 1728 1656 1584 1728 1656 1512

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 17: Point estimates and standard errors from the regressions of weather variables on produced capital. Results from different
specifications with country and year FE, standard errors clustered at the regional level as identified by the World Bank.

(1) (2) (3) (4) (5) (6)
Cropland Cropland Cropland Cropland Cropland Cropland

T -0.034∗∗∗ -0.047∗∗∗ -0.015 -0.19∗∗ -0.16∗∗∗ -0.10∗∗
(0.0092) (0.0087) (0.012) (0.064) (0.042) (0.029)

P 0.000035 0.000037 0.000085 -0.000060 -0.000079 -0.0000080
(0.000070) (0.000068) (0.000060) (0.000080) (0.000069) (0.000085)

(ℓ1)T -0.039∗∗∗ -0.051∗∗∗ -0.12∗∗ -0.100∗∗
(0.0082) (0.0081) (0.042) (0.040)

(ℓ2)T -0.047∗∗∗ -0.075∗∗∗
(0.010) (0.015)

T2 0.0075∗∗ 0.0057∗∗∗ 0.0041∗∗∗
(0.0022) (0.0014) (0.00066)

P2 0.000000037 0.000000036 0.000000029
(0.000000024) (0.000000021) (0.000000024)

(ℓ1)T2 0.0043∗∗ 0.0035∗
(0.0017) (0.0016)

(ℓ2)T2 0.0012∗∗
(0.00037)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 1.00 1.00 1.00 1.00 1.00 1.00
N 1728 1656 1584 1728 1656 1512

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 18: Point estimates and standard errors from the regressions of weather variables on cropland. Results from different specifi-
cations with country and year FE, standard errors clustered at the regional level as identified by the World Bank.
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(1) (2) (3) (4) (5) (6)
∆Coal ∆Coal ∆Coal ∆Coal ∆Coal ∆ Coal

∆T -0.013 -0.0099 -0.0037 -0.039∗ -0.054 -0.053
(0.013) (0.020) (0.020) (0.020) (0.035) (0.036)

(ℓ1)∆T 0.0096 0.021 -0.029 -0.035
(0.017) (0.018) (0.027) (0.039)

(ℓ2)∆T 0.014∗∗ -0.010
(0.0041) (0.017)

∆P -0.00010∗ -0.00010∗ -0.00011∗∗ -0.00025∗∗ -0.00024∗∗∗ -0.00023∗∗∗
(0.000046) (0.000045) (0.000035) (0.000069) (0.000062) (0.000060)

∆T2 0.0013 0.0022 0.0025
(0.00085) (0.0013) (0.0015)

(ℓ1)∆T2 0.0020 0.0029
(0.0011) (0.0017)

(ℓ2)∆T2 0.0013
(0.00086)

∆P2 0.000000046∗ 0.000000042∗ 0.000000035
(0.000000020) (0.000000018) (0.000000018)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 0.13 0.14 0.14 0.13 0.15 0.15
N 1155 1111 1067 1155 1111 1067

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 19: Point estimates and standard errors from the regressions of weather variables on coal. Results from different specifications
in first difference with country and year FE, standard errors clustered at the regional level as identified by the World Bank.

(1) (2) (3) (4) (5) (6)
Gas Gas Gas Gas Gas Gas

T -0.098∗∗∗ -0.100∗∗ -0.084∗∗ -0.36∗∗ -0.33∗∗∗ -0.31∗∗∗
(0.025) (0.028) (0.029) (0.098) (0.084) (0.074)

P -0.00035∗∗∗ -0.00034∗∗∗ -0.00026∗∗ -0.00037∗ -0.00032 -0.00015
(0.000057) (0.000076) (0.000089) (0.00018) (0.00019) (0.00015)

(ℓ1)T -0.083∗∗∗ -0.088∗∗∗ -0.23∗∗∗ -0.22∗∗∗
(0.020) (0.023) (0.054) (0.048)

(ℓ2)T -0.098∗∗∗ -0.11∗∗∗
(0.017) (0.026)

T2 0.013∗∗ 0.011∗∗ 0.012∗∗∗
(0.0041) (0.0034) (0.0029)

P2 0.000000028 6.6e-09 -3.6e-09
(0.000000044) (0.000000043) (0.000000037)

(ℓ1)T2 0.0074∗∗ 0.0071∗∗∗
(0.0024) (0.0019)

(ℓ2)T2 0.0016∗∗
(0.00044)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 0.91 0.91 0.92 0.91 0.92 0.93
N 1548 1500 1452 1548 1500 1403

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 20: Point estimates and standard errors from the regressions of weather variables on gas. Results from different specifications
with country and year FE, standard errors clustered at the regional level as identified by the World Bank.
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(1) (2) (3) (4) (5) (6)
Oil Oil Oil Oil Oil Oil

T -0.048 -0.060 -0.041 -0.15 -0.13 -0.11
(0.039) (0.038) (0.048) (0.12) (0.094) (0.088)

P -0.00032 -0.00033 -0.00035∗ -0.00051 -0.00060 -0.00056
(0.00017) (0.00018) (0.00017) (0.00034) (0.00039) (0.00034)

(ℓ1)T -0.0063 -0.011 -0.11 -0.12
(0.052) (0.051) (0.082) (0.073)

(ℓ2)T 0.031 0.057
(0.032) (0.057)

T2 0.0050 0.0037 0.0039
(0.0058) (0.0046) (0.0046)

P2 0.000000061 0.000000074 0.000000053
(0.000000057) (0.000000064) (0.000000054)

(ℓ1)T2 0.0051 0.0063
(0.0049) (0.0047)

(ℓ2)T2 -0.00098
(0.0014)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 0.89 0.89 0.89 0.89 0.89 0.90
N 1523 1473 1423 1523 1473 1373

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 21: Point estimates and standard errors from the regressions of weather variables on oil. Results from different specifications
with country and year FE, standard errors clustered at the regional level as identified by the World Bank.

(1) (2) (3) (4) (5) (6)
Fossil Fuel Fossil Fuel Fossil Fuel Fossil Fuel Fossil Fuel Fossil Fuel

T -0.080∗∗∗ -0.084∗∗∗ -0.063∗∗ -0.33∗∗∗ -0.28∗∗∗ -0.25∗∗∗
(0.019) (0.018) (0.020) (0.086) (0.067) (0.062)

P -0.00016∗ -0.00013∗ -0.000091 -0.00033∗∗ -0.00035∗∗ -0.00029∗
(0.000070) (0.000068) (0.000080) (0.00013) (0.00012) (0.00014)

(ℓ1)T -0.054∗∗ -0.057∗∗ -0.21∗∗∗ -0.19∗∗∗
(0.016) (0.019) (0.045) (0.041)

(ℓ2)T -0.039∗∗ -0.041
(0.015) (0.024)

T2 0.012∗∗∗ 0.0095∗∗∗ 0.0090∗∗∗
(0.0025) (0.0019) (0.0018)

P2 0.000000070 0.000000068 0.000000058
(0.000000037) (0.000000035) (0.000000037)

(ℓ1)T2 0.0075∗∗∗ 0.0072∗∗∗
(0.0010) (0.0011)

(ℓ2)T2 0.00057
(0.00040)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 0.97 0.97 0.97 0.97 0.97 0.97
N 1606 1555 1504 1606 1555 1453

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 22: Point estimates and standard errors from the regressions of weather variables on fossil fuel. Results from different
specifications with country and year FE, standard errors clustered at the regional level as identified by the World Bank.
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(1) (2) (3) (4) (5) (6)
∆ Agg. Energy ∆ Agg. Energy ∆ Agg. Energy ∆ Agg. Energy ∆ Agg. Energy ∆ Agg. Energy

∆T -0.014∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.013∗∗∗ -0.016∗∗∗ -0.017∗∗∗
(0.0016) (0.0027) (0.0035) (0.0025) (0.0027) (0.0030)

(ℓ1)∆T -0.0032 -0.0056 0.0024 -0.0012
(0.0017) (0.0034) (0.0029) (0.0032)

(ℓ2)∆T -0.0013 -0.0028
(0.0024) (0.0023)

∆P 0.0000023 0.0000017 0.0000046 0.000011 0.0000093 0.000018
(0.000012) (0.000012) (0.000013) (0.000028) (0.000031) (0.000029)

∆T2 -0.0000063 0.000041 0.00010
(0.00018) (0.00019) (0.00019)

(ℓ1)∆T2 -0.00025∗∗ -0.00020
(0.00010) (0.00014)

(ℓ2)∆T2 0.000063
(0.000097)

∆P2 -2.4e-09 -1.5e-09 -3.1e-09
(6.6e-09) (7.0e-09) (5.9e-09)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 0.24 0.25 0.26 0.24 0.25 0.26
N 1656 1584 1512 1656 1584 1512

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 23: Point estimates and standard errors from the regressions of weather variables on energy. Results from different specifica-
tions in first difference with country and year FE, standard errors clustered at the regional level as identified by the World Bank.

(1) (2) (3) (4) (5) (6)
Ren. Energy Ren. Energy Ren. Energy Ren. Energy Ren. Energy Ren. Energy

T -0.036 -0.028 -0.062∗∗ -0.0071 -0.027 -0.077
(0.022) (0.021) (0.020) (0.064) (0.052) (0.058)

P 0.00024 0.00027∗ 0.00022∗∗ 0.00062∗∗ 0.00065∗∗ 0.00044∗∗∗
(0.00013) (0.00012) (0.000082) (0.00022) (0.00019) (0.00011)

(ℓ1)T -0.033 -0.029 0.033 -0.0090
(0.018) (0.018) (0.061) (0.057)

(ℓ2)T -0.045 -0.044
(0.024) (0.029)

T2 -0.0012 0.000093 0.00087
(0.0022) (0.0017) (0.0022)

P2 -0.000000097∗ -0.000000093∗ -0.000000057∗
(0.000000047) (0.000000040) (0.000000026)

(ℓ1)T2 -0.0035 -0.0029
(0.0023) (0.0022)

(ℓ2)T2 -0.0000042
(0.00078)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 0.96 0.96 0.96 0.96 0.96 0.96
N 1616 1549 1483 1616 1549 1416

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 24: Point estimates and standard errors from the regressions of weather variables on renewable energy. Results from different
specifications with country and year FE, standard errors clustered at the regional level as identified by the World Bank.
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(1) (2) (3) (4) (5) (6)
Forest Eco. Forest Eco. Forest Eco. Forest Eco. Forest Eco. Forest Eco.

T -0.0059 -0.0087∗∗∗ -0.011∗∗ -0.0098 -0.0087 -0.011
(0.0047) (0.0023) (0.0036) (0.033) (0.025) (0.024)

P -0.0000022 -0.0000084 -0.000012 0.000018 0.000020 -0.0000092
(0.000020) (0.000021) (0.000015) (0.000067) (0.000075) (0.000071)

(ℓ1)T -0.0087 -0.011∗∗ -0.014 -0.018
(0.0047) (0.0038) (0.024) (0.023)

(ℓ2)T -0.0078 -0.012
(0.0070) (0.010)

T2 0.00020 0.000022 -0.000083
(0.0018) (0.0013) (0.0011)

P2 -4.8e-09 -7.2e-09 2.3e-09
(0.000000014) (0.000000019) (0.000000017)

(ℓ1)T2 0.00023 0.00021
(0.0012) (0.0011)

(ℓ2)T2 -0.000013
(0.00031)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 1.00 1.00 1.00 1.00 1.00 1.00
N 1704 1633 1562 1704 1633 1491

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 25: Point estimates and standard errors from the regressions of weather variables on forest ecosystem. Results from different
specifications with country and year FE, standard errors clustered at the regional level as identified by the World Bank.

(1) (2) (3) (4) (5) (6)
Minerals Minerals Minerals Minerals Minerals Minerals

T -0.075∗∗∗ -0.064∗∗∗ -0.027 -0.33∗∗ -0.25∗∗ -0.19∗
(0.016) (0.012) (0.017) (0.11) (0.080) (0.083)

P 0.00013 0.00012 0.00014 0.00073 0.00055 0.00045
(0.00012) (0.00011) (0.00013) (0.00052) (0.00055) (0.00081)

(ℓ1)T -0.095∗∗ -0.082∗∗ -0.32∗∗∗ -0.28∗∗
(0.028) (0.026) (0.072) (0.080)

(ℓ2)T -0.16∗∗∗ -0.20∗∗
(0.027) (0.062)

T2 0.013∗∗ 0.0097∗∗ 0.0088∗∗
(0.0038) (0.0032) (0.0034)

P2 -0.00000012 -0.000000096 -0.000000076
(0.00000010) (0.00000011) (0.00000015)

(ℓ1)T2 0.011∗∗ 0.011∗∗
(0.0032) (0.0040)

(ℓ2)T2 0.0027
(0.0015)

Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
R2 0.92 0.93 0.93 0.92 0.93 0.93
N 1368 1311 1254 1368 1311 1197

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 26: Point estimates and standard errors from the regressions of weather variables on minerals. Results from different specifi-
cations with country and year FE, standard errors clustered at the regional level as identified by the World Bank.
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Appendix E Model Results

E.1 Shadow Prices Sensitivity Analysis

Figure 9: Shadow Prices Sensitivity To Climate Damages

Notes: This figure shows production factors’ shadow prices under two different model specifications across three parameter values
representing distinct scenarios. The baseline case shadow prices are normalized to one and the center of the circle correspond the
lowest shadow price value.

Figure 10: Natural Shadow Prices Sensitivity To Discount Rate

Notes: This figure shows production factors’ shadow prices under two different model specifications across three parameter values
representing distinct scenarios. The baseline case shadow prices are normalized to one and the center of the circle correspond the
lowest shadow price value.
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Figure 11: Natural Shadow Prices Sensitivity To Climate Sensitivity

Notes: This figure shows production factors’ shadow prices under two different model specifications across three parameter values
representing distinct scenarios. The baseline case shadow prices are normalized to one and the center of the circle correspond the
lowest shadow price value.
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E.2 Long-run Dynamics

Figure 12: Long-Run Transition: Produced Capital, Human Capital, and Energy

Notes: This figure illustrates the long-run transition over 107 years (up to 2125) with a 3 percent growth rate.
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Figure 13: Long-Run Transition: Natural Capital Components

Notes: This figure illustrates the long-run transition over 107 years (up to 2125) with a 3 percent growth rate.
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Figure 14: Long-Run Transition: Fossil Fuels Components

Notes: This figure illustrates the long-run transition over 107 years (up to 2125) with a 3 percent growth rate.
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E.3 Uncertainty and Shadow Prices

Name Variable All Natural Capital Only Energy
θ = 0.85 θ = 0.99 θ = 1.70 θ = 0.85 θ = 0.99 θ = 1.70

Shadow Price of Emission E(V E) 0.04 0.03 0.13 0.02 0.01 0.06
(3.27) (3.26) (3.91) (3.03) (3.19) (3.93)

Shadow Price of Energy E(ΨE) 0.02 0.02 0.04 0.03 0.03 0.01
(2.30) (2.29) (2.06) (3.06) (3.26) (3.26)

Shadow Price of Fossil E(ΨFE) 0.01 0.02 -0.02 - - -
(2.96) (3.11) (3.67) - - -

Shadow Price of Oil E(ΨO) 0.01 0.02 -0.02 - - -
(2.94) (3.08) (3.54) - - -

Shadow Price of Gas E(ΨG) 0.01 0.02 -0.01 - - -
(2.87) (2.97) (3.03) - - -

Shadow Price of Coal E(ΨC) 0.01 0.01 -0.02 - - -
(3.00) (3.16) (3.92) - - -

Shadow Price of Renewable Energy E(ΨRE) 0.02 0.03 0.02 - - -
(2.25) (2.17) (1.19) - - -

Shadow Price of Minerals E(ΨM) 0.15 0.18 0.06 - - -
(3.17) (3.29) (3.52) - - -

Shadow Price of Forest ES E(ΨFO) -0.01 -0.01 -0.03 - - -
(2.92) (3.00) (2.87) - - -

Shadow Price of Cropland E(ΨL) 0.04 0.05 -0.01 - - -
(2.79) (2.92) (3.29) - - -

Table 27: Uncertainty cost of TFP shock for different θ values – percentage change with respect to deter-
ministic case (case without habits)

Notes: This table displays the impact of TFP uncertainty on shadow prices under our two different model specifications and three
cases for elasticity of substitution in the first nest. The third column corresponds to the estimated elasticity. The first column assumes
an elasticity lower than unity, and the second one is an intermediate case. Results are reported as percentage deviations from the
deterministic case. Standard deviations are reported in parentheses. E(X) refers to the expectation of the shadow price X.
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Name Variable All Natural Capital Only Energy
θ = 0.85 θ = 0.99 θ = 1.70 θ = 0.85 θ = 0.99 θ = 1.70

Shadow Price of Emission E(V E) -0.10 -0.11 -0.33 -0.09 -0.09 -0.17
(1.19) (1.18) (1.18) (1.19) (1.19) (1.16)

Shadow Price of Energy E(ΨE) -0.01 -0.01 -0.07 0.01 0.01 0.05
(0.13) (0.15) (0.37) (0.10) (0.13) (0.35)

Shadow Price of Fossil E(ΨFE) 0.01 0.01 0.11 - - -
(0.18) (0.19) (0.51) - - -

Shadow Price of Oil E(ΨO) 0.01 0.01 0.11 - - -
(0.18) (0.19) (0.51) - - -

Shadow Price of Gas E(ΨG) 0.01 0.01 0.10 - - -
(0.18) (0.19) (0.50) - - -

Shadow Price of Coal E(ΨC) 0.01 0.01 0.11 - - -
(0.18) (0.19) (0.52) - - -

Shadow Price of Renewable Energy E(ΨRE) 0.01 0.01 0.11 - - -
(0.09) (0.07) (0.12) - - -

Shadow Price of Minerals E(ΨM) 0.03 0.05 0.43 - - -
(0.15) (0.13) (0.47) - - -

Shadow Price of Forest ES E(ΨFO) 0.00 0.00 0.04 - - -
(0.12) (0.10) (0.15) - - -

Shadow Price of Cropland E(ΨL) 0.01 0.02 0.17 - - -
(0.12) (0.10) (0.24) - - -

Table 28: Uncertainty cost of Temperature shock for different θ values – percentage change with respect to
deterministic case

Notes: This table displays the impact of temperature uncertainty on shadow prices under our two different model specifications with
habit formation and three cases for elasticity of substitution in the first nest. The third column corresponds to the estimated elasticity.
The first column assumes an elasticity lower than unity, and the second one is an intermediate case. Results are reported as percentage
deviations from the deterministic case. Standard deviations are reported in parentheses. E(X) refers to the expectation of the shadow
price X.
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Name Variable All Natural Capital Only Energy
θ = 0.85 θ = 0.99 θ = 1.70 θ = 0.85 θ = 0.99 θ = 1.70

Shadow Price of Emission E(V E) -0.10 -0.11 -0.34 -0.09 -0.09 -0.17
(1.18) (1.18) (1.20) (1.18) (1.18) (1.18)

Shadow Price of Energy E(ΨE) -0.01 -0.01 -0.07 0.01 0.01 0.05
(0.12) (0.15) (0.38) (0.10) (0.13) (0.33)

Shadow Price of Fossil E(ΨFE) 0.01 0.01 0.11 - - -
(0.15) (0.18) (0.50) - - -

Shadow Price of Oil E(ΨO) 0.01 0.01 0.11 - - -
(0.15) (0.18) (0.50) - - -

Shadow Price of Gas E(ΨG) 0.01 0.01 0.11 - - -
(0.15) (0.18) (0.49) - - -

Shadow Price of Coal E(ΨC) 0.01 0.01 0.11 - - -
(0.15) (0.18) (0.50) - - -

Shadow Price of Renewable Energy E(ΨRE) 0.01 0.01 0.11 - - -
(0.06) (0.06) (0.11) - - -

Shadow Price of Minerals E(ΨM) 0.03 0.05 0.44 - - -
(0.09) (0.11) (0.45) - - -

Shadow Price of Forest ES E(ΨFO) 0.00 0.00 0.04 - - -
(0.07) (0.08) (0.09) - - -

Shadow Price of Cropland E(ΨL) 0.01 0.02 0.18 - - -
(0.08) (0.08) (0.20) - - -

Table 29: Uncertainty cost of temperature shocks for different θ values – percentage change with respect to
deterministic case (case without habits)

Notes: This table displays the impact of temperature uncertainty on shadow prices under our two different model specifications and
three cases for elasticity of substitution in the first nest. The third column corresponds to the estimated elasticity. The first column
assumes an elasticity lower than unity, and the second one is an intermediate case. Results are reported as percentage deviations from
the deterministic case. Standard deviations are reported in parentheses. E(X) refers to the expectation of the shadow price X.
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ONLINE APPENDIX
(not for publication)

A Adam: A Stochastic Gradient Descent Method

Adam is a stochastic gradient descent (SGD) algorithm variant introduced by Kingma and Ba (2014). It is
implemented using TensorFlow, a popular machine learning library.38 While most of the literature relies on
linear, non-linear, or indirect econometric approaches to estimate CES elasticities, Qian et al. (2018) employ
machine learning methods for CES parameter estimation, specifically using Adadelta, another widely used
SGD method. This work is the closest to our proposed estimation using Adam.

To respect the bounds of the parameters, constrained gradient descent requires a projection step to en-
sure that the parameters fall within the feasible set. However, this can be computationally expensive and
face convergence issues, proving to be particularly challenging for the share and the elasticity of substitu-
tion parameters. Unlike SQP, we cannot introduce explicit constraints and as such, following McDonald
(1980), we reparameterize the elasticity and each of the k share parameters as follows:

ρ = eλ − 1 (31)

θk =
1

1 + e−µk
(32)

This removes the need to explicitly constrain λ and µj while ensuring that ρ ∈ (−1,∞) and θk ∈ [0, 1].
Ultimately, the objective of the problem is to minimize the sum of squared residuals (SSR) shown below
where Y k

i,t denotes the inputs, γ is an efficiency parameter and f represents a production function, which
in our case is a CES production function.

min
γ,λ,µ

SSRi,t = min
γ,λ,µ

T∑
t=1

(Yi,t − f(γ, Y k
i,t, λ, µk))

2 (33)

We use Adam to find the parameters that minimize SSR by updating them as shown below where t de-
notes the timestep in the optimization procedure and θ denotes the parameters. Adam differs from regular
SGD since it computes adaptive learning rates for the parameters and updates these rates by computing
two exponentially decaying averages of the first and second moments of past gradients. In doing so, it
combines the features of Adadelta and AdaGrad methods.39 Here, following Kingma and Ba (2014), we
provide a brief exposition of the algorithm (refer to Kingma and Ba (2014) for more details):

1. Initialize m0 and v0, the first and second moment respectively as a vector of zeros. Set the step-
size/learning rate δ.

38Adam belongs to a broader class of adaptive learning rate algorithms, which includes AdaGrad, RMSProp, and Adadelta.
39See Ruder (2016) for an overview of different SGD methods.
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2. Derive gradients for a given parameter given by gt = ∇θrt(θt−1) where rt is the objective function as
defined above.

3. Update the first (biased) moment as mt = β1 ·mt−1 +(1−β1)gt where β1 is an exponential decay rate
set at default 0.9.

4. Update the second (biased) moment as vt = β2 · vt−1 + (1 − β2)g
2
t where β2 is another exponential

decay rate set at default 0.99.

5. Compute the bias-corrected versions of the first and second raw moment estimates as m̂t =
mt

(1−βt
1)

and
v̂t =

vt
(1−βt

2)
respectively. This is to correct the moments’ bias toward zero given their initialization.

6. Update the parameters as θt = θt−1 − δ m̂t√
v̂t+ϵ

where ϵ = 10−8 to prevent division by zero.

As discussed in Qian et al. (2018), the benefits of using machine learning tools such as TensorFlow is
that it uses automatic differentiation to calculate the gradients of complex objective functions.
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B Climate Damages Estimation

B.1 Density Figures for Natural Capitals
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Figure 15: Density distributions for the variables in nest one.
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Figure 16: Density distributions for the variables in nests two and three.
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Figure 17: Density distributions for the climate variables
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B.2 Stationarity Tests

Statistic p-value
Inverse chi-squared 471.278 0.000
Inverse normal -14.789 0.000
Inverse logit -13.906 0.000
Modified inv. chi-squared 19.285 0.000

Table 30: Panel unit-root Augmented Dickey Fueller tests results for yearly average temperature. Test statistics and p-values
reported.

Statistic p-value
Inverse chi-squared 758.425 0.000
Inverse normal -24.403 0.000
Inverse logit -20.220 0.000
Modified inv. chi-squared 36.205 0.000

Table 31: Panel unit-root Augmented Dickey Fueller tests results for yearly total precipitation. Test statistics and p-values reported.

Statistic p-value
Inverse chi-squared 117.617 0.933
Inverse normal 0.741 0.770
Inverse logit 0.659 0.745
Modified inv. chi-squared -1.447 0.926

Table 32: Panel unit-root Augmented Dickey Fueller tests results for coal. Test statistics and p-values reported. Model with trends.

Statistic p-value
Inverse chi-squared 198.550 0.001
Inverse normal -1.353 0.088
Inverse logit -0.908 0.182
Modified inv. chi-squared 3.356 0.000

Table 33: Panel unit-root Augmented Dickey Fueller tests results for gas. Test statistics and p-values reported. Model with trends.

64



Statistic p-value
Inverse chi-squared 277.578 0.000
Inverse normal -5.132 0.000
Inverse logit -4.556 0.000
Modified inv. chi-squared 7.871 0.000

Table 34: Panel unit-root Augmented Dickey Fueller tests results for oil. Test statistics and p-values reported. Model with trends.

Statistic p-value
Inverse chi-squared 185.915 0.011
Inverse normal -1.235 0.109
Inverse logit -1.129 0.130
Modified inv. chi-squared 2.470 0.007

Table 35: Panel unit-root Augmented Dickey Fueller tests results for fossil fuel. Test statistics and p-values reported. Model with
trends.

Statistic p-value
Inverse chi-squared 163.741 0.124
Inverse normal -0.798 0.213
Inverse logit -0.604 0.273
Modified inv. chi-squared 1.163 0.122

Table 36: Panel unit-root Augmented Dickey Fueller tests results for gas aggregate energy. Test statistics and p-values reported.
Model with trends.

Statistic p-value
Inverse chi-squared 186.098 0.010
Inverse normal -0.264 0.396
Inverse logit -0.018 0.493
Modified inv. chi-squared 2.481 0.007

Table 37: Panel unit-root Augmented Dickey Fueller tests results for renewable electricity. Test statistics and p-values reported.
Model with trends.
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Statistic p-value
Inverse chi-squared 182.514 0.016
Inverse normal -0.861 0.195
Inverse logit -0.615 0.269
Modified inv. chi-squared 2.269 0.012

Table 38: Panel unit-root Augmented Dickey Fueller tests results for forest ecosystem. Test statistics and p-values reported. Model
with trends.

Statistic p-value
Inverse chi-squared 169.586 0.071
Inverse normal -3.196 0.001
Inverse logit -2.225 0.013
Modified inv. chi-squared 1.508 0.066

Table 39: Panel unit-root Augmented Dickey Fueller tests results for minerals. Test statistics and p-values reported.

Statistic p-value
Inverse chi-squared 262.336 0.000
Inverse normal -1.380 0.084
Inverse logit 0.793 0.786
Modified inv. chi-squared 6.973 0.000

Table 40: Panel unit-root Augmented Dickey Fueller tests results for cropland. Test statistics and p-values reported.
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C Non-Detrended Economy

C.1 Social Planner Equilibrium: Complete Model

Consistent with the model section, the following notations are used:
i ∈
{
Y O
t , Y G

t , Y
C
t

}
j ∈

{
Y K
t , YM

t , Y L
t , Y

FO
t

}
k ∈

{
Y K
t , Y AL

t , Y E
t , Y

L
t , Y

M
t , Y FO

t

}
h ∈ {i} ∪ {j} ∪ {RE}

The social planner face the following maximization problem:

L = E0

∞∑
t=0

βt

{
(Ct − γHHt)

1−σH

1− σ

+ λCt

[
Y T
t − Ct −

∑
h

Dh
t

]
+ λCt λ

H
t [Ht+1 − m̄Ht − (1− m̄)Ct]

+ λCt V
T
t

[
Tt+1 − Tt − ϵTt ϕ1 (ϕ2Xt − Tt)

]
+ λCt V

X
t [Xt+1 −Xt − Et]

+ λCt V
E
t

[
Et − ϕEY

FE
t

]
+ λCt Ψ

AL
t

[
edAL(·)AtLt − Y AL

t

]
+
∑
h

λCt Ψ
h
t

[
edh(·)Sh

t − Y h
t

]
+
∑
h

λCt Rh
t

[
Sh
t + ϵDh

t αhD
h
t − δhS

h
t − Sh

t+1

]

+ λCt Ψ
FE
t

gFE

(∑
i

ϵi
(
Y i
t

) ϵ−1
ϵ

) ϵ
1−ϵ

− Y FE
t


+ λCt Ψ

E
t

[
gE

(
σFE
(
Y FE
t

)σ−1
σ + σRE

(
Y RE
t

)σ−1
σ

) σ
1−σ

− Y E
t

]

+λCt Ψ
T
t

ϵAt gY
(∑

k

γk
(
Y k
t

) θ−1
θ

) θ
1−θ

− Y T
t


This yields the first order conditions (FOCs) with respect to:

Kt+1, Ht+1, Xt+1, Tt+1, Ct, Et, Y
AL
t , Y h

t , Y
FE
t , Y RE

t , Y E
t , Y

T
t , S

h
t+1, D

h
t

The FOCs read as:
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[Ct] : (Ct − γHHt)
−σH

= λCt + λCt λ
H
t (1− m̄)

[Ht+1] : λ
C
t λ

H
t = βEt

{
γH(Ct+1 −Ht+1)

−σ + m̄λCt+1λ
H
t+1

}
[Xt+1] : λ

C
t V

X
t = βEt

{
λCt+1

[
V X
t+1 + ϵTt+1ϕ1ϕ2V

T
t+1

]}
[Tt+1] : V

T
t = βEt

{
λCt+1

λCt

[
(1− ϵTt+1ϕ1)

]
V T
t+1

}
−
∑
h

∑
m

Et+m

{[(
m−1∏
o=0

β
λCt+1+o

λCt+o

)
Ψh

t+mβ
h
mY

h
t+m

]}
[Et] : V

X
t = V E

t[
Sh
t+1

]
: Rh

t = Et

{
β
λC+1

λCt

[
(1− δh)Rh

t+1 + edh(Tt+1)Ψh
t+1

]}
[
Dh

t

]
: Rh

t =
1

ϵDh
t αh[

Y AL
t

]
: ΨAL

t = ΨT
t γAL

(
Y AL
t

)− 1
θ
(
Y T
t

) 1
θ (ϵAt gY )

θ−1
θ[

Y i
t

]
: Ψi

t = ΨFE
t ϵi

(
Y i
t

)− 1
ϵ
(
Y FE
t

) 1
ϵ g

ϵ−1
ϵ

FE[
Y j
t

]
: Ψj

t = Y T
t γj

(
Y j
t

)− 1
θ (
Y T
t

) 1
θ (ϵAt gY )

θ−1
θ[

Y FE
t

]
: ΨFE

t = ΨE
t σFE

(
Y FE
t

)− 1
σ
(
Y E
t

) 1
σ g

σ−1
σ

E − ϕEV
E
t[

Y RE
t

]
: ΨRE

t = ΨE
t σRE

(
Y RE
t

)− 1
σ
(
Y E
t

) 1
σ g

σ−1
σ

E[
Y E
t

]
: ΨE

t = ΨT
t σE

(
Y E
t

)− 1
θ
(
Y T
t

) 1
θ (ϵAt gY )

θ−1
θ[

Y T
t

]
: ΨT

t = 1
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C.2 Social Planner Equilibrium: Model with Fossil Energy Only

The social planner problem for the reduced form model with fossil fuel energy only reads as:

L = E0

∞∑
t=0

βt

{
(Ct − γHHt)

1−σ

1− σH

+ λCt
[
Y T
t − Ct −DK

t −DFE
t

]
+ λCt λ

H
t [Ht+1 − m̄Ht − (1− m̄)Ct]

+ λCt V
T
t

[
Tt+1 − Tt − ϵTt ϕ1 (ϕ2Xt − Tt)

]
+ λCt V

X
t [Xt+1 −Xt − Et]

+ λCt V
E
t

[
Et − ϕEY

FE
t

]
+ λCt Ψ

AL
t

[
edAL(·)AtLt − Y AL

t

]
+ λCt Ψ

K
t

[
edK(·)SK

t − Y K
t

]
+ λCt Ψ

FE
t

[
edFE(·)SFE

t − Y FE
t

]
+ λCt RK

t

[
SK
t + ϵDK

t αKD
K
t − δKS

K
t − SK

t+1

]
+ λCt RFE

t

[
SFE
t + ϵDFE

t αFED
FE
t − δFES

FE
t − SFE

t+1

]
+λCt Ψ

T
t

[
ϵAt gY

(
γK
(
Y K
t

) θ−1
θ + γFE

(
Y FE
t

) θ−1
θ + γAL

(
Y AL
t

) θ−1
θ

) θ
1−θ

− Y T
t

]}

In the following, we present all first-order conditions (FOCs). Notice that the FOCs with respect to:
Tt+1, Y

T
t , Y

FE
t , SFE

t+1, D
FE
t differ from those in the full model case, while the remaining FOCs (with respect to

Ht+1, Xt+1, Ct, Et, Y
AL
t , Y K

t , S
K
t+1, D

K
t ) remain similar to those in the full-scale model with all natural capital.

The FOCs read as:
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[Ct] : (Ct − γHHt)
−σ

= λCt + λCt λ
H
t (1− m̄)

[Ht+1] : λ
C
t λ

H
t = βEt

{
γH(Ct+1 −Ht+1)

−σ + m̄λCt+1λ
H
t+1

}
[Xt+1] : λ

C
t V

X
t = βEt

{
λCt+1

[
V X
t+1 + ϵTt+1ϕ1ϕ2V

T
t+1

]}
[Tt+1] : V

T
t = βEt

{
λCt+1

λCt

[
(1− ϵTt+1ϕ1)

]
V T
t+1

}
−
∑
h

∑
m

Et+m

{[(
m−1∏
o=0

β
λCt+1+o

λCt+o

)
Ψh

t+mβ
h
mY

h
t+m

]}
[Et] : V

X
t = V E

t[
SK
t+1

]
: RK

t = Et

{
β
λC+1

λCt

[
(1− δK)RK

t+1 + edK(Tt+1)ΨK
t+1

]}
[
SFE
t+1

]
: RFE

t = Et

{
β
λC+1

λCt

[
(1− δFE)RFE

t+1 + edFE(Tt+1)ΨFE
t+1

]}
[
DK

t

]
: RK

t =
1

ϵDK
t αK[

DFE
t

]
: RFE

t =
1

ϵDFE
t αFE[

Y AL
t

]
: ΨAL

t = ΨT
t γAL

(
Y AL
t

)− 1
θ
(
Y T
t

) 1
θ (ϵAt gY )

θ−1
θ[

Y FE
t

]
: ΨFE

t = ΨT
t γFE

(
Y FE
t

)− 1
θ
(
Y T
t

) 1
θ (ϵAt gY )

θ−1
θ − ϕEV

E
t[

Y T
t

]
: ΨT

t = 1

where h here is produced capital, fossil energy, and labor production.
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D Stationary Equilibrium

D.1 The Balanced Growth Path: (For Both Models)

In this section, we present the detrended model around its balanced growth path (BGP). We denote all
stationary variables with lower case letters (e.g. xt), while variables following the trend will be referred
with capital letters (e.g. Xt).

Consistent with the model section, the following notations are used:
i ∈
{
Y O
t , Y G

t , Y
C
t

}
j ∈

{
YM
t , Y L

t , Y
FO
t

}
k ∈

{
Y K
t , Y E

t , Y
L
t , Y

M
t , Y FO

t

}
h ∈ {i} ∪ {j} ∪ {RE}
Labor-augmenting technological change is subject to an exogenous growth process Γt such that Γt =

γΓΓt−1
40 and where:

Y AL
t = ed(·)A(ΓtL̄) (34)

where both Ā and L̄ are stationary variables. Thus,

yAL
t = ed(·)AL̄ (35)

and where yAL
t =

Y AL
t

Γt
where for simplicity we set At = Ā.

Similarly, aggregate output reads as:

Y T
t = ϵAt gY

(∑
k

γk
(
Y k
t

) θ−1
θ + γAL

(
Y AL
t

) θ−1
θ

) θ
1−θ

(36)

The detrended output reads as:

yTt = ϵAt gY

(∑
k

γk
(
ykt
) θ−1

θ + γAL

(
yAL
t

) θ−1
θ

) θ
1−θ

(37)

where yTt =
Y T
t

Γt
and ykt =

Y k
t

Γt

As such all capitals in the economy grow at rate γΓ with:

γΓsht+1 = ϵDh
t αhd

h
t + (1− δh)s

h
t (38)

where dht =
Dh

t

Γt
and sht =

Sh
t

Γt
.

40Where γΓ = 1 + γ̃Γ, with γ̃Γ = 3% in our simulations.

71



Since fossil energy grows at rate γΓ, so do CO2 emissions:

et = ϕEy
F
t (39)

with et = Et

Γt
.

Cumulative emissions and temperature will also follow the same economy growth rate:

γΓxt+1 = xt + et (40)

γΓtt+1 = ϵTt ϕ1(ϕ2xt − tt) + tt (41)

The damage functions are stationary with β̃h
m = βh

mΓt−m:41

d(·) =
∑
m

β̃h
mtt−m (42)

The de-trending of the remaining output variables is straightforward:

yht = edh(·)sht . (43)

Finally the detrended utility function reads as:

E0

∞∑
t=0

β̃t

{
(ct − γHht)

1−σH

1− σ

}
(44)

where β̃t = βtΓ1−σ
t .

The habits formation reads as:
γΓht+1 = m̄ht + (1− m̄)ct. (45)

In the case of the model with fossil fuel only, please notice that all variables are detrended similarly to
the full model. Essentially, the model with fossil fuel only is a special case of the large model with different
natural capitals.

D.2 The Social Planner

The social planner face the same maximization problem presented above:

41An assumption we will make when focusing on the long-run transitions is: β̃h
m ≈ βh

m in order to make sure damages are not
decreasing overtime.
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L = E0

∞∑
t=0

β̃t
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γΓht+1 − m̄ht − (1− m̄)ct
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
This yields the first order conditions (FOCs) with respect to:

kt+1, ht+1, xt+1, tt+1, ct, et, y
AL
t , yht , y

FE
t , yRE

t , yE
t , y

T
t , s

h
t+1, d

h
t

The FOCs read as:
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[ct] : (ct − γHht)
−σH

= λCt + λCt λ
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]
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yAL
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]
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(
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]
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t = ψFE
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ϵ
(
yFE
t

) 1
ϵ g
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ϵ
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]
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θ (
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) 1
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yRE
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: ψRE

t = ψE
t σRE

(
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(
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) 1
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: ψE

t = ψT
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(
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t
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θ
(
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) 1
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θ[

yT
t

]
: ψT

t = 1

Notice that the fossil energy only model’s detrended equilibrium FOC(s) remain similar to the non-
detrended case and will be adjusted similar to what we presented in the case of the full detrended model
presented just above.
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