Grow in the Sun: Valuation and Development of Green Innovation under Mandatory Carbon Disclosure

By Jianqiang Chen, Pei-Fang Hsieh and Po-Hsuan Hsu*

This study examines how mandatory carbon disclosure shifts corporate investment in and stock investors' reactions to green innovation. Using a regression discontinuity design, we show that the proposal of the Greenhouse Gas Reporting Program (GHGRP) increases the value of low-carbon patents, identified either through patent office classifications or the large language model BERT. A difference-in-differences analysis suggests that firms with higher estimated CO2 emissions in the past produce more low-carbon patents after the proposal. Also, the values of these firms' low-carbon patents increase, and their CO2 emissions decrease. These firms hire new inventors with low-carbon expertise rather than convert incumbent inventors' efforts. The effect of mandatory disclosure is stronger among firms under higher competitive pressure and for stocks with greater price efficiency.

JEL: D22; O32; Q54; Q58

Keywords: greenhouse gas; innovation; environmental regulations; climate change

I. Introduction

Firms' investment decisions hinge on different production technologies' costs and productivity (Jaffe, Newell and Stavins, 2003; Syverson, 2011; Grullon and Ikenberry, 2025). Among all related costs, the externalities of carbon emissions present an especially pressing issue, given heightened concerns about climate change and its potential economic costs to society. The private sector lacks an incentive to disclose carbon emissions as such information asymmetry enables emitters to externalize carbon costs, shifting climate-related risks onto society (Hall and Helmers, 2010; Frankel, Kothari and Raghunandan, 2025). Greenhouse gas (GHG) disclosure, a policy initiative since the Kyoto Protocol in 1997, requires firms to report carbon emissions transparently, which internalizes environmental costs of "brown" firms and likely motivates their transition to green technologies.

The related literature primarily examines how policies like R&D grants, tax credits, subsidies, and cap-and-trade systems drive green technology development (Acemoglu et al., 2012, 2016; Calel, 2020), but less is known about the impact of mandatory disclosure on green innovation before financial incentives or stricter regulations take effect. In this paper, we use the *proposal* of the U.S. Greenhouse Gas Reporting Program (GHGRP) as a natural experiment to examine whether the resultant transparency reshapes firms' green technology development and valuations.

On December 26, 2007, the U.S. Congress passed the Consolidated Appropriations Act of 2008 which, for the *first* time, allocated funds to the Environmental Protection Agency (EPA) for an accelerated draft of reporting rules for GHG emissions. The Act required the EPA to

^{*} Chen: School of Economics, Ocean University of China (chenjianqiang@ouc.edu.cn); Hsieh: College of Technology Management, National Tsing Hua University (pfhsieh@mx.nthu.edu.tw); Hsu: College of Technology Management, National Tsing Hua University (pohsuanhsu@mx.nthu.edu.tw). We thank Reinhilde Veugelers, Thomas Astebro, Tak Yuen Wong, Yanzhi Wang, YiHou Huang, Woan-lih Liang, Hui-Ching Chuang, Ebenezer Effah, Dien Giau Bui, seminar participants at National Tsing Hua University, and conferences participants at the Australasian Finance and Banking Conference (AFBC), the NTHU Symposium on Sustainable Finance and Economics, the Taiwan Symposium on Innovation Economics and Entrepreneurship, Taiwan Finance Association Annual Meeting (TFA), and International Conference for Financial Engineering Association of Taiwan (FeAT) for their valuable comments.

¹In 2002, the Carbon Disclosure Project (CDP), which promotes corporate transparency on climate risks, had only 35 investors requesting climate disclosures, and CDP itself received responses from just 245 companies. In 2022, half of the world's publicly traded firms in terms of market capitalization still do not disclose emissions. See the CDP Media Factsheet. https://cdn.cdp.net/cdp-production/comfy/cms/files/files/000/003/419/original/CDP-Media-Factsheet.pdf

publish a draft rule within nine months and a final rule within 18 months, which marks a significant shift in federal climate policy. Beginning in January 2008, EPA staff held more than 100 meetings with over 250 stakeholders, including trade associations, industry representatives, and state and regional groups, to develop the proposed rule. These meetings shaped market expectations, reinforced the need for mandatory public GHG disclosures, and assessed their potential economic impacts.² We thus define the effective period of the GHGRP proposal as starting in 2008. This event is arguably exogenous to firms for two reasons. First, although the EPA has requested funds since 2003 to implement a regulatory impact analysis (RIA) in order to draft rules, such funds were never approved until December 26, 2007. Second, firms and other interest groups expressed serious concerns over uncertainties with respect to reporting thresholds, formats, scope, and industry coverage in the meetings held by the EPA.³

Policymakers often favor mandatory disclosure as a lower-cost, less intrusive alternative to direct regulation, making it a significant policy tool across many economic sectors, including health care, education, and finance (Hastings and Weinstein, 2008; Bollinger, Leslie and Sorensen, 2011; Seira, Elizondo and Laguna-Müggenburg, 2017). In theory, mandated disclosure reduces information asymmetry between economic agents, enabling more informed decisions (Myers, Puller and West, 2022). Empirical evidence shows that it narrows the gap between insiders and outsiders, strengthens external monitoring, and improves capital allocation (Healy and Palepu, 2001; Hermalin and Weisbach, 2012; Christensen, Hail and Leuz, 2013; Christensen et al., 2017). Mandatory disclosure of greenhouse gas emissions increases transparency about firms' environmental impact, enabling stakeholders to better assess environmental risks and performance. This transparency requirement incentivizes managers to attend to pollution abatement and green innovation in order to preempt reputational damage, litigation, and regulatory penalties.

We propose that the GHGRP proposal encourages high-emission firms to pursue green innovation internally, which results in more low-carbon patents, due to the following incentives. First, customers' green preferences and intensified competition incentivize these firms to demonstrate their green transition efforts for corporate reputation and new product opportunities, as firms in competitive industries have stronger incentives to innovate and differentiate (Aghion et al., 2001, 2005). Second, green patenting sends strong signals to financial markets because such intellectual property enhances firms' appropriability of environmental technologies by deterring imitation and strengthening litigation positions (Teece, 1986; Budish, Roin and Williams, 2016; Farre-Mensa, Hegde and Ljungqvist, 2020).

To capture firms' green innovation activities, we adopt two approaches to identify low-carbon patents. In our first approach, we classify a patent as low-carbon if it belongs to the Cooperative Patent Classification (CPC) Y02 class (Sautner et al., 2023a; Cohen, Gurun and Nguyen, 2024).⁴ Second, to capture patents that may contribute to addressing climate change but are not labeled under Y02, we use the Bidirectional Encoder Representations from Transformers (BERT) for Patents model to label low-carbon patents based on the brief descriptions of remaining non-Y02 patents. Patents with a predicted probability of being low-carbon are included, thereby extending the universe of low-carbon patents beyond the Y02 class. We then follow the method of Kogan et al. (2017) based on the efficient market hypothesis and use stock price appreciation upon the announcement of a green patent grant to measure its value.

We first use a regression discontinuity design (RDD) to examine whether the GHGRP proposal increases the value of green innovation, which validates managers' incentives under stakeholders'

 $^{^2}$ For more, see 1-3 and 2-3 of the Regulatory Impact Analysis for the Mandatory Reporting of Greenhouse Gas Emissions Proposed Rule (GHG Reporting). Available at https://19january2017snapshot.epa.gov/sites/production/files/2015-07/documents/ghg_ria.pdf

³For example, after the EPA's initial proposal, thousands of public comments raised concerns, including ambiguous emissions definitions and the potential for arbitrary thresholds. Financial services firms like the RiskMetrics Group suggested including Scope 2 emissions, while others proposed limiting reporting to upstream emissions. Many commenters argued that the rule would increase regulatory burdens, particularly in certain industries. Further details are discussed in Section 2.1.

⁴For robustness checks, we further refine this definition by requiring Y02 patents to contain at least one green innovation keyword (e.g., carbon reduction, energy efficiency, or cleaner energy) in its brief description. We find consistent results.

pressure. We exploit the lag between patent filing and grant dates and compare the values of low-carbon patents filed before but granted shortly after the proposal to those being granted just before the proposal. Our results reveal a sharp 70% increase in the value of low-carbon patents after the proposal, even though the two groups' patent characteristics are similar and vary smoothly around the threshold. We also implement a placebo test on other green patents unrelated to climate change (e.g., water adaptation, biodiversity protection technologies), and find no significant increase for these patents' values. Our finding indicates that the stock market assigns higher values to low-carbon patents after the proposal, likely due to perceived regulatory risks and the potential of these patents to mitigate such risks. These findings highlight shareholders' motivation for supporting firms' green transition, which in turn influences firms' investment in low-carbon technologies.

We then design a difference-in-differences (DID) regression to examine how the GHGRP proposal changes firms' incentives to develop green innovation. Our treatment variable is based on firms' estimated CO₂ emissions before the proposal. At that time, firms were required to report process-level carbon monoxide (CO) emissions because of its toxicity. We use CO emissions from the National Emissions Inventory (NEI) to estimate firms' pre-proposal greenhouse gas emissions, converting CO to CO₂ using standard conversion factors, as CO emissions are highly correlated with CO₂ emissions (Gurney et al., 2009, 2010; Tomar, 2023). We categorize firms into within-industry quartiles based on their estimated 2005 CO₂ emissions, so we may examine variations in their low-carbon patent filings following the proposal. As we discussed earlier, the format, coverage, scope, and threshold of the GHGRP are largely unclear to firms before the proposal; thus, their pre-proposal estimated emissions in 2005 and corresponding treatment assignments (i.e., within-industry quartiles) are unlikely related to their expectations of mandatory disclosure or their manipulation of reported emissions, both of which mitigate reverse causality and selection concerns.

We find that if a firm's estimated emission quartile rank increases by one, then it produces approximately 3.5% more low-carbon patents after the proposal. Additionally, the quality of these patents, as measured by forward citations, increases by about 4.3%, and their total value rises by about 6%. We then conduct a placebo test by examining other green patents unrelated to climate change, and find no significant differences across firms in different estimated emission quartiles. These results suggest that firms' changes in low-carbon innovations are driven by the GHGRP proposal, rather than overall environmental regulation and policy. We also account for potential confounding effects from the 2008 financial crisis, including oil price shocks and macroeconomic volatility, and do not find significant innovation responses to those issues.

Several additional tests confirm a causal interpretation of our difference-in-differences results. First, we consider a synthetic DID approach (Arkhangelsky et al., 2021) that combines DID and synthetic control methods, reweighting and matching pre-exposure trends in order to force parallel trend assumptions to hold. Second, we apply the approach of Rambachan and Roth (2023) to assess sensitivity under possible deviations from the parallel trends assumption, and find that our results are robust to 20-30% deviations from that assumption.

We also observe a significant decline in estimated CO_2 emissions among firms in higher emission quartiles. Additionally, non- CO_2 air pollutants also show a notable reduction following the GHGRP proposal. This finding suggests the spillover effects of firms' investments in low-carbon patents. As firms become more environmentally efficient, they also reduce their fuel use, further decreasing emissions like sulfur dioxide (SO_2) and nitrogen oxides (NO_X) . The results mitigate concerns about strategic signaling or greenwashing by showing that increases in low-carbon patenting coincide with actual declines in both CO_2 and other pollutants. Moreover, we also find that high-emission firms further improve their environmental scores rated by the KLD.

We next examine heterogeneous treatment effects to further justify high-emission firms' incentives related to competition and market valuation. First, these firms facing higher competitive pressure or greater green preferences, proxied by product market similarity with peers and the coverage of climate risk-oriented analysts, respectively, file more low-carbon patents after the proposal. This finding confirms the competition incentive as low-carbon technologies help

high-emission firms differentiate from rivals. Second, high-emission firms with greater market information efficiency, proxied by higher option trading volume and lower probability of informed trading (PIN), also increase low-carbon patenting following the proposal. This confirms these firms' market valuation incentive because their efforts are more likely to be rewarded by stock markets with greater price efficiency.

Our final step is to investigate the underlying mechanisms. Firms may enhance low-carbon technologies by hiring external inventors with expertise in low-carbon technologies or by encouraging existing inventors to develop green innovations (Darendeli, Law and Shen, 2022; Sautner et al., 2023a). Our analysis shows that firms enhance their green technologies primarily through external hires rather than from ordering their existing inventors to switch research focus. Such a difference may be attributed to the time pressures that these firms faced and further supports a causal interpretation of our main results.

This study adds to the literature in several ways. First, we contribute to the emerging literature on the valuation of green innovation and investment. Prior research has highlighted the importance of green innovation in mitigating climate risk and reducing regulatory uncertainty for firms (Brown, Martinsson and Thomann, 2022; Sautner et al., 2023a,b). Some parallel studies examine how stock investors react to firms' green investment choices (Duchin, Gao and Xu, 2024) and their announcements of green patents and innovations (Hege, Pouget and Zhang, 2023; Reza and Wu, 2024; Yu, 2024). Our approach differs from those studies with respect to methodology: we use an RDD approach based on the GHGRP proposal to identify (and quantify) how the mandatory disclosure of GHG emissions increases the valuation of green patents. In addition, we incorporate textual information and apply a large language model, BERT for Patents, to extend our classification of low-carbon innovation beyond the Y02 class.

Second, our study aligns with recent research exploring the real effects of mandatory disclosure with respect to GHG emissions (Yang, Muller and Liang, 2021; Ilhan et al., 2023; Tomar, 2023). Although previous research has documented significant reductions in GHG emissions due to the GHGRP in the U.S. and the GHG emissions disclosure law in the U.K. (Jouvenot and Krueger, 2020; Downar et al., 2021; Tomar, 2023), there is little discussion on how such reductions are achieved other than from scaling down production. Our evidence of increased low-carbon patents highlights the critical role that technology plays in addressing climate change and risk. More broadly, our study adds to the expanding literature on the real effects of ESG disclosure mandates. Specifically, we offer a new perspective to this literature by focusing on the valuation and development of firms' innovation activities.

Third, this paper extends the literature on the determinants of firms' investment in green innovation (Bolton, Kacperczyk and Wiedemann, 2023; Cohen, Gurun and Nguyen, 2024), especially with respect to the internalization of negative externalities.⁸ Our research complements prior work in this direction that focuses on environmental regulations⁹ or touches upon addi-

 $^{^5}$ Darendeli, Law and Shen (2022) and Sautner et al. (2023a) find that green transitions drive firms to increase green human capital and produce more green patents.

⁶Among those studies, Reza and Wu (2024) and Hege, Pouget and Zhang (2023) focus on identification tests to explain why patent valuation changes: the former uses a difference-in-differences approach based on the 1970 and 1990 Clean Air Act (CAA) Amendments, and the latter uses a quasi-random assignment of patent examiners.

⁷Prior research has examined the real effects of ESG disclosure mandates from different perspectives, such as that of shareholders (Gibbons, 2023), institutional investors (Ilhan et al., 2023), banks (Giannetti et al., 2023), stakeholders (Christensen, Hail and Leuz, 2021), and international markets (Krueger et al., 2024). In addition, the inclusion of safety records in financial reports was found to be associated with a decrease in mining-related citations and injuries (Christensen et al., 2017). Also, China's 2008 mandate, which required firms to disclose their ESG activities, led to a reduction in wastewater and SO2 emission levels (Chen, Hung and Wang, 2018). Air quality disclosure reduces pollution-related harm by prompting public protective behaviors (Barwick et al., 2024). More accurate pollution data amplify these effects (Greenstone et al., 2022).

⁸Public disclosures facilitate the internalization of pollution externalities, creating financial incentives for resource reallocation: consumers prefer sustainable alternatives (Luo and Bhattacharya, 2006), investors price carbon risk into stock returns (Bolton and Kacperczyk, 2021), shifting customer and investor preferences increase green asset values (Pástor, Stambaugh and Taylor, 2021), and firms that disclose emissions enjoy higher valuations (Matsumura, Prakash and Vera-Muñoz, 2014).

⁹Stricter environmental regulations may result in significant economic costs for firms and plants (Greenstone, 2002; Keller and Levinson, 2002; Greenstone, List and Syverson, 2012; Huang and Kopytov, 2023), which reduce firms' incentives to adopt green technologies. However, such regulations may also spur green innovation (Lanjouw and Mody, 1996; Newell, Jaffe and Stavins, 1999; Berman and Bui, 2001; Brunnermeier and Cohen, 2003; Popp, 2003; Johnstone, Haščič and Popp,

tional factors (e.g., energy prices, corporate governance, financial frictions, policy uncertainty, climate risk exposure). Our results, however, suggest that mandatory disclosure can be less costly to implement and may even benefit compliant firms (Boyer and Laffont, 1999). 11

The remainder of this paper is structured as follows. Section 2 presents a detailed overview of the GHGRP proposal and describes our data and sample construction. In Section 3, we discuss the results of our patent-level RDD analysis. Section 4 shows the difference-in-differences results when we compare changes in low-carbon patents and GHG emissions of firms with different preevent estimated emission levels following the proposal. Section 5 examines corporate incentives driven by the GHGRP, and Section 6 investigates the mechanisms through which firms develop their low-carbon innovation. Section 7 concludes.

II. Background, Data, and Sample Construction

A. The Greenhouse Gas Reporting Program (GHGRP)

On December 26, 2007, the U.S. government enacted the Consolidated Appropriations Act, which for the first time allocated funds to the Environmental Protection Agency (EPA) to implement a regulatory impact analysis (RIA) and draft regulations for curbing GHG emissions. The Act stipulated that at least \$3.5 million from the Environmental Programs and Management budget be used to publish a draft rule within nine months and publish a final rule within 18 months; the Act required the final rule to establish mandatory reporting standards for greenhouse gas emissions above specified thresholds across all U.S. economic sectors. This funding marked a pivotal shift in federal climate policy: it emphasized the need to collect and manage GHG emissions data, and enabled the EPA to begin early planning for the GHGRP. It is also noteworthy that this budget allocation and accelerated timeline are somewhat unexpected because the EPA's budgetary request, first made in 2003, to implement an RIA and draft such rules was not approved until December 26, 2007.

It is reasonable to argue that the GHGRP proposal (i.e., the budget allocation and the initiation of the draft) is exogenous to firms. During the proposal preparation, firms faced significant uncertainties regarding various program details, including reporting thresholds (i.e., minimum levels of GHG emissions to be reported), the reporting format (facility-level vs. firm-level aggregation), and the extent to which the reporting requirement (if required at all) varied across sectors. Furthermore, questions arose about coverage, such as whether direct or indirect emissions should be reported. For instance, after the EPA's initial GHGRP proposal, the agency received thousands of public comments. These collective responses all suggest that the majority of firms were unclear about specific emission requirements that would trigger reporting obligations in advance. Representative examples of such comments are summarized in Internet Appendix Section A.

While it is true that the GHGRP proposal occurred amid a broader global shift toward climate regulation following the Kyoto Protocol, the timing and specifics of the EPA's proposal were largely unexpected. Notably, the U.S. chose not to ratify the Kyoto Protocol and formally withdrew from it in 2001. For years afterward, the federal government remained reluctant to implement binding climate policies. Multiple federal climate bills, including the Lieberman-McCain Climate Stewardship Acts of 2003 and 2005, failed to pass. This reinforced the perception among firms that nationwide GHG disclosure mandates were politically unlikely in the

^{2010;} Lanoie et al., 2011; Berrone et al., 2013; Calel, 2020; Brown, Martinsson and Thomann, 2022). Some studies focus on the trade-offs of policies (Acemoglu et al., 2012, 2016; Aghion et al., 2016; Shapiro and Metcalf, 2023).

¹⁰Popp (2002) reports the positive impact of higher energy prices on green patent incentives. Better-governed firms are also more likely to generate green patents (Amore and Bennedsen, 2016). Lanteri and Rampini (2023) argue that financial constraints and policy uncertainty can reduce incentives for firms to pursue pollution abatement activities. Also, Sautner et al. (2023a) show how firms' exposure to climate risk explains their green patenting decisions.

¹¹As noted by Porter (1991), well-designed environmental regulations can have positive side effects that boost competitiveness by reducing costs associated with waste disposal and costly chemical use. The literature debates whether environmental regulations can enhance competitiveness through firm innovation (Palmer, Oates and Portney, 1995; Porter and Linde, 1995).

 $^{^{12}121}$ STAT. 2128 of H.R.2764 - Consolidated Appropriations Act, 2008. See https://www.congress.gov/bill/110th-congress/house-bill/2764/text

near term. Thus, the GHGRP proposal represented a discrete policy shock from the perspective of U.S. firms. In this paper, we use 2008 as the event year to capture the regulatory initiative that laid the foundation for the GHGRP's formal proposal and its lasting impact on federal climate policy.

On April 10, 2009, building on the groundwork established in 2008, the EPA formally presented the GHGRP as a mandatory reporting rule for GHG emissions.¹³ This rule required large GHG emitters, suppliers of fuel and industrial gas, and CO₂ injection sites to annually report their emissions to the EPA. Facilities that emitted more than 25,000 metric tons of GHGs per year were now required to report their emissions under the GHGRP. After receiving thousands of comment letters from the public in response to the proposed GHGRP, the EPA released a final version of the rule on October 30, 2009.¹⁴ The GHGRP went into effect on January 1, 2010, and monitoring began. Initial disclosure reports for 2010 were submitted to the EPA on September 30, 2011 and they were made available to the public on January 11, 2012. Figure 1 illustrates the timeline for these events.

[Figure 1 about here]

In accordance with regulatory requirements, annual reports submitted to the EPA must incorporate a GHG Monitoring Plan.¹⁵ The EPA employs an advanced electronic reporting platform that provides real-time feedback to identify potential errors prior to submission, which ensures the accuracy, completeness, and truthfulness of reported data and information.¹⁶ If irregularities are detected, the EPA may then request further information from a facility in question. The EPA also has the authority to conduct inspections, require emissions monitoring or testing, and request documents to identify any violations. Any instances of noncompliance (e.g., failure to report emissions, failure to retain records needed to verify emissions, falsification of reports) with the GHGRP constitute violations of the Clean Air Act, making the offender liable to administrative penalties up to \$37,500 per day of violation.¹⁷

The disclosed amount of GHG emissions is sizable: in 2023, more than 8,000 facilities and suppliers report to the EPA's Greenhouse Gas Reporting Program. Facilities in nine industrial sectors disclose 2.58 billion metric tons of CO₂e in direct emissions, which account for about half of total U.S. emissions. Nearly 1,000 fuel and gas suppliers also report, and their data capture the emissions that occur when fuels are eventually used. When facility and supplier data are combined, program coverage rises to about 90% of national emissions. The GHGRP therefore provides granular facility-level information on major emitters while also capturing most economy-wide emissions.¹⁸

B. Low-Carbon Patents

We collect patent data from the United States Patent and Trademark Office (USPTO) and link it to U.S. public firms' patent records of Kogan et al. (2017).¹⁹ Our dataset includes information on patents assigned to public firms (identified by CRSP identifiers) and contains details such as patent grant date, filing date, forward citation counts, patent valuations, brief

¹³The following greenhouse gases are regulated by GHGRP: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases (HFCs, PFCs, SF6, NF3, Other Fully Fluorinated GHGs, HFEs, Very Short Lived Compounds, Other). CO2 is the most prevalent GHG, accounting for 91.9% of all GHGRP-based GHGs reported in 2023, while CH4 represented 7.1% and N2O represented 0.7%. See https://www.epa.gov/ghgreporting/ghgrp-emissions-ghg

 $^{^{14}} See \ https://www.regulations.gov/document/EPA-HQ-OAR-2008-0508-0139/comment$

¹⁵The report is required to include three crucial elements: (a) the identification of personnel responsible for collecting emissions data along with their corresponding job titles, (b) an explanation of the procedures utilized for emissions data collection, and (c) a comprehensive account of methods and protocols employed for ensuring the quality, maintenance, and repair of continuous monitoring systems. See https://sgp.fas.org/crs/misc/IF11754.pdf

¹⁶After submission, a report is evaluated and undergoes an extensive verification process, including logical, statistical, and external data checks, to assess potential errors in reports submitted by facilities. Thousands of pre-submission and post-submission checks are employed to evaluate a given report. See https://www.epa.gov/ghgreporting/ghgrp-methodology-and-verification and Figure IA7 in the Internet Appendix. The latter illustrates the process for verifying GHGRP reports.

 $^{^{17} \}mathrm{See\ https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-98}$

¹⁸See https://www.epa.gov/ghgreporting/ghgrp-reported-data and https://www.epa.gov/ghgreporting/learn-about-greenhouse-gas-reporting-program-ghgrp

 $^{^{19}} See\ https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data$

descriptions, the number of claims, and inventor names as well as identifiers. We also collect each patent's process and product claims are obtained from Ganglmair, Robinson and Seeligson (2022), and inventor ages from Kaltenberg, Jaffe and Lachman (2023).

To identify low-carbon patents, we use the Cooperative Patent Classification (CPC) system: patents falling into the Y02 class in the CPC "technologies or applications for mitigation or adaptation against climate change" are defined as low-carbon ones.²⁰ It is noteworthy that, for patents filed before 2013, the patent office also assigns them new CPC codes after the introduction of the CPC system (Veefkind et al., 2012; Calel, 2020). Therefore, for most of our sample period (2002-2014), firms did not know the CPC codes of their patents, which mitigates the concern that firms can manipulate such patents or even mislabel them as low-carbon patents.

Many patents from our sample firms are not classified in Y02, but some of them may still contribute to low-carbon innovation. To account for these, we consider an alternative approach using a patent-domain large language model, BERT for Patents, which is a transformer-based language model pre-trained by Google on over 100 million patents (not just U.S. patents). We fine-tune the model using patents from non-sample firms that have been labeled as low-carbon, other green, or non-green based on CPC codes. The model is trained on the brief descriptions (titles and abstracts) of these patents to learn the relationship between language and the probability of contributing to low-carbon innovation. Since the model accepts a maximum of 512 tokens per input, we retain only the first 512 tokens of each brief description. We then apply the fine-tuned model to classify approximately 3.8 million patents from our sample firms. To reduce false positives, we keep only predictions with a probability (sigmoid output) above 0.7, labeling those below this threshold as "unclear." Our results remain robust when using higher thresholds of 0.8 or 0.9. Finally, we define a BERT-based low-carbon patent as one that either (a) is assigned a Y02 classification code or (b) is classified as low-carbon by our BERT for Patents model.

We also adopt an alternative definition of low-carbon patents based on keyword search as a robustness check. We begin by obtaining patent descriptions from PatentsView, a dataset provided by the USPTO that includes technical fields, backgrounds, and summaries of inventions. We then propose a list of keywords from Internet Appendix Table IA1 (e.g., carbon reduction, energy efficiency, cleaner energy),²² and we identify patents in category Y02 that also contain these keywords, classifying them as keyword-based low-carbon patents. This definition is narrower than our Y02-based low-carbon patents.

For placebo tests, we use the OECD's patent classification system to define firms' other green patents as those falling under the OECD's green patent classification system (Haščič and Migotto, 2015), but that are not included in the Y02 class (e.g., water adaptation technologies, biodiversity protection technologies). In our analyses, these patents should not be impacted by the proposal because they are not directly related to climate issues.

C. National Emissions Inventory Data and CO₂ Estimation

Prior to the passage of GHGRP, firms were not required to report their carbon dioxide (CO₂) emissions.²³ However, the National Emissions Inventory (NEI) database provides information about carbon monoxide (CO) emissions at the process level, which firms must report due to

²⁰The Y02 class was unveiled in 2010 as a new patent class that resulted from the joint efforts of the U.S. Patent and Trademark Office (USPTO) and the European Patent Office (EPO). See https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y.html#Y02. In 2018, the EPO extended and developed a similar definition for a classification scheme of climate change mitigation technologies that includes both the Y02 and Y04S (smart grids) classes (Angelucci, Hurtado-Albir and Volpe, 2018). Our results hold when we include the Y04S class.

²¹There are 41,007 low-carbon patents and 5,132 other green patents in our non-sample firms during the sample period. To balance the sample, we randomly select 41,007 "rest" patents to match the number of low-carbon patents. Twenty percent of the total training sample is held out as a validation set. We choose the second epoch based on overall performance. The final fine-tuned model achieves an accuracy of 86.00% and an F1 score of 0.8599.

²²We input these keywords into ChatGPT and DeepSeek to assess whether they capture the features of low-carbon patents. Both generative AI models consider the keywords to be comprehensive in scope.

²³CO₂ accounts for 91.9% of all GHGs reported to the GHGRP in 2023. See https://www.epa.gov/ghgreporting/ghgrp-emissions-ghg

CO's toxicity. While CO is not a direct measure of GHG emissions, it is nonetheless strongly correlated with CO₂ emissions (Gurney et al., 2009, 2010; Tomar, 2023), and thus makes the NEI database a valuable proxy for studying emissions patterns prior to mandatory CO₂ reporting. Updated every three years (e.g., 2005, 2008, 2011), the database includes detailed information on the sources of criteria air pollutants (CAPs) and 187 hazardous air pollutants (HAPs).²⁴ In Internet Appendix Section B1, we explain the steps we took to link the NEI database to public firms in the U.S.

To estimate CO₂ emissions of each process at each facility before the proposal, we utilize conversion factors from Gurney et al. (2010) that are known as Vulcan Science Methods Documentation.²⁵ Using these conversion factors, we calculate CO₂ emissions for each process and aggregate them to estimate total firm-level CO₂ emissions before the GHGRP proposal. The detailed methodology for these calculations is outlined in Internet Appendix Section B2. Figure 2 shows the relationship between the estimated CO₂ that we convert from CO by using NEI data and actual CO₂ emissions from the GHGRP in 2011. The estimates are positively correlated with actual firm-level emissions, supporting the validity of our estimation of CO₂ emissions.

[Figure 2 about here]

D. Summary Statistics

Table 1 presents summary statistics for our sample. Panel A reports summary statistics for the patent-level RDD sample, with Panel A1 for Y02 low-carbon patents and Panel A2 for BERT-based low-carbon patents. We define our sample as publicly listed firms with facilities in the NEI database that have CO emissions data before the GHGRP proposal. Specifically, firms must have CO emissions data for the years 2005 and 2008 (the NEI updates occur every three years). Additionally, these firms must be listed in the Compustat database for at least three years before and three years after the event to be included in our statistical analysis.

In our RDD estimation of changes in patent valuation (deflated to 1982 dollars) around the GHGRP proposal, we conduct patent-level regressions. We focus on patents granted to public firms in the Compustat/CRSP database in the 12-week window centered around the GHGRP proposal date. Patent valuation, which reflects a patent's private economic value, is estimated based on stock market reactions to patent grant announcements, adjusted for return volatility, day-of-week fixed effects, and firm-year fixed effects (Kogan et al., 2017). The market value of each patent is determined by the market capitalization change (benchmarked against the market return) over a 3-day window (from day t to day t+2) commencing on the announcement day when a patent is approved (day t). We also include several patent-level control variables, such as Brief Word Count, Backward Citations, Claims, Process Claim Ratio, Number of Inventors, and Inventor Average Age (definitions are provided in Appendix A).

In Table 1 Panel A1, the average Y02 low-carbon patent value is \$34 million (deflated to 1982 dollars). The brief description of each patent averages 1,250 words. Patents typically cite about 23 prior patents and have an average of 3 claims, of which about 40% are process claims and the rest are product claims. The average number of inventors is 3, and the average inventor age is 44. In Panel A2, which reports BERT-based low-carbon patents, the summary statistics are similar to those in Panel A1, but the sample size is nearly twice as large.

For our difference-in-differences estimation, the period spans 2002 to 2014. We define a variable, Emitter, that ranges from one to four, for which a value of one (four) indicates that a company's estimated CO2 emissions in 2005 fall within the lowest (highest) quartile of its industry (based on the three-digit NAICS code). We also use Compustat data to construct a

²⁵Tomar (2023) also uses these factors to estimate CO₂ emissions before the passage of GHGRP as a robust test. See https://vulcan.rc.nau.edu/assets/files/Vulcan.documentation.v2.0.online.pdf

²⁴CAPs refer to a group of pollutants that includes carbon monoxide (CO), ammonia (NH3), nitrogen oxides (NOX), particulate matter smaller than 10 microns (PM10), particulate matter smaller than 2.5 microns (PM2.5), sulfur dioxide (SO₂), volatile organic compounds (VOC), and lead (Pb). HAPs encompass the 187 pollutants specified in Section 112(b) of the 1990 Clean Air Act Amendments, such as mercury, hydrochloric acid, nickel, and benzene. See https://www3.epa.gov/ttn/atw/188polls.html

²⁵Tomar (2023) also uses these factors to estimate CO₂ emissions before the passage of GHGRP as a robust test. See

range of control variables, including $R \mathcal{E}D$ Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and $R \mathcal{E}D$ Missing (definitions are provided in Appendix A).

Table 1, Panel B reports firm-level summary statistics for the difference-in-differences analysis. The average number of Y02 low-carbon patents is about 5, the average number of Y02 low-carbon patent citations is 5.67, and the average firm-level Y02 low-carbon patent valuation is \$79 million (deflated to 1982 dollars). For BERT-based low-carbon patents, the average number is 10.07 per firm-year. This includes 5.00 patents classified under Y02 and an additional 5.07 patents identified by our fine-tuned BERT model.

[Table 1 about here]

Internet Appendix Table IA2 presents summary statistics of keyword-based low-carbon patents among firms. The average number of keyword-based low-carbon patents per firm-year in Panel A2 is 3.26, compared to 5.00 for Y02 low-carbon patents in Table 1.

III. Regression Discontinuity Design (RDD) for Valuation of Green Innovation

To empirically examine how the GHGRP proposal influences the value of green innovation, we use a RDD method for patents granted around the enactment of the Consolidated Appropriations Act of 2008 on December 26, 2007. A small difference in a grant date should not significantly affect a patent's value, as the timing of patent issuance is often random and determined by the efficiency of the USPTO (and presumably there is no major event related to patent value). To test the difference in valuation, we conduct a patent-level regression analysis, focusing on low-carbon patents filed between 2002 and 2006 and granted in the 12-week window centered around December 26, 2007. The RDD equation is specified as follows:

(1)
$$Ln(Patent\ Valuation)_p = \alpha + \beta_1 GHGRP_w + \beta_2 T_w + \gamma' Control_p + \theta_i + \theta_c + \varepsilon_p,$$

in which p indexes patents, w represents the patent issue week, θ_i indicates fixed effects for the patent-holding firm, and θ_c denotes fixed effects for the patent's four-digit CPC code. $Ln(Patent\ Valuation)_p$ is Kogan et al. (2017) value of patent p in logarithm. We define the variable $GHGRP_w$ as an indicator that equals one for patents being issued at weeks after December 26, 2007. The variable T_w is a flexible function of the running variable, the issue week. The vector $Control_p$ includes patent-level controls, such as $Brief\ Word\ Count$, $Cite\ Backward$, Claims, $Process\ Claim\ Ratio$, $Inventor\ Number$, and $Inventor\ Average\ Age$. We double-cluster standard errors based on the issue week as well as the four-digit CPC patent technology code.

Table 2 reports results using both local linear regression with a rectangular kernel function and flexible polynomials, all with a consistent 12-week bandwidth around the GHGRP proposal date. Columns (1) and (4) report results for Y02 low-carbon patents. Columns (2) and (5) for BERT-based low-carbon patents, and Columns (3) and (6) for other green patents. Columns (1) and (2) show that the GHGRP increases low carbon patent value by about 70%, significant at the 1% level. Column (3) reports insignificant effects for other green patents, which are classified as green under the OECD system but outside the Y02 class, serving as a placebo test. Results remain robust when we use a quadratic polynomial with the same bandwidth, as shown in Columns (4) through (6). Panel A of Internet Appendix Table IA3 reports similar results for keyword-based low-carbon patents, providing a robust relation that is not sensitive to our definitions of low-carbon patents.

[Table 2 about here]

Figure 3 presents our results graphically. The dots represent weekly averages of the residuals from a regression of Ln(*Patent Valuation*) on patent-holding firm fixed effects, the patent's four-digit CPC code fixed effects, and control variables. The red fitted curves depict separate linear or quadratic polynomials for the periods before and after the GHGRP proposal, illustrating a

clear cutoff in patent valuation for low-carbon patents: the value of low-carbon patents increases immediately after the proposal. These graphical results align with our findings reported in Table 2.

[Figure 3 about here]

The validity of an RDD relies on two key assumptions: (a) patent issue dates cannot be precisely manipulated to fall immediately after the GHGRP, and (b) all other patent characteristics vary smoothly with the running variable at the threshold. We find evidence supporting both of these assumptions. A formal density test (Cattaneo, Jansson and Ma, 2018) does not reject the null hypothesis of smooth density across the threshold (p-value=0.3914), and most patent characteristics, with the exception of *Brief Word Count*, do not show a discontinuous change at the threshold (see Internet Appendix Table IA4).²⁶ More importantly, we perform a joint test and find that the Multinomial ANOVA F-statistic in Internet Appendix Table IA4 does not reject the null hypothesis: all firm characteristics of patents granted before and after the GHGRP are statistically indifferent. Similar results can be found for BERT-based low-carbon patents.

One concern is that large firms often receive multiple patent grants on the same day, making it difficult to attribute stock market reactions to individual patents. This complicates the identification of value signals for specific innovations. Our results remain robust when we exclude large firms, defined as those with assets above the sample median (table unreported).²⁷

Our RDD results indicate that the GHGRP proposal increases the value of low-carbon patents, suggesting that the financial market assess low-carbon patents differently after the proposal date, confirming the enhanced value-relevance of those patents due to the GHGRP.

IV. Difference-in-Differences Analysis for Green Innovation Development

A. Patenting Activities

To measure how firms react to the proposal, we calculate the number of low-carbon patents filed by each firm in a year. We also calculate firm-level forward citations measure the frequency with which a firm's patents (filed in a year) is cited by subsequent patents, indicating its scientific value. It requires adjustment due to vintage (i.e., older patents tend to receive more citations) and to heterogeneity across fields (i.e., forward citations are more likely to occur in some fields than in others). Thus, we scale each patent's number of forward citations received by the average number of forward citations of public firms' patents filed in the same year and technology class (CPC Subclass 4-digit). If a patent is assigned to multiple subclasses, we then use the mode to define the patent's technology subclass. We sum up the adjusted forward citations of all low-carbon patents for which a firm applies (and which are eventually granted by the USPTO) in a given year. For the valuation of a firm's patents, we sum the values of its patents (deflated to 1982 dollars).

To examine how firms' low-carbon patenting activities react to the GHGRP proposal, we estimate the following difference-in-differences regression:

(2)
$$Ln(1 + Low - Carbon \ Tech_{it}) = \beta(GHGRP_t \times Emitter_i) + \gamma Controls_{it} + \eta_t + \varphi_{it} + \varepsilon_{it},$$

²⁶To measure document length (and possibly complexity), we use the Brief Word Count. One concern is that more complex patents might face longer approval delays. However, we find that patents granted before the proposal date actually have larger Brief Word Counts, as reported in Internet Appendix Table IA4. As a result, the before-versus-after differences in this variable are unlikely to invalidate our RDD setting because we find higher value of patents granted in the post-event period.

²⁷Admittedly, Kogan et al. (2017) acknowledge that information leakage during the patent application process may lead to a gradual incorporation of patent value into stock prices. Consequently, the market reaction on the grant date likely understates the patent's total value, potentially biasing our estimates downward.

in which i represents firms, t represents years 2002 to 2014, and j indicates a firm's industry (three-digit NAICS code). $Ln(1 + Low - Carbon \ Tech_{it})$ in Equation (2) denotes the natural logarithm of one plus the count, citations, or values of Y02 low-carbon patents or BERT-based low-carbon patents filed by firm i in year t. We also consider Poisson regressions using $Low - Carbon \ Tech_{it}$ as the dependent variable in a robustness check. $GHGRP_t$ is a binary variable that is equal to one for years after 2007 and zero otherwise.

Our variable for treatment, $Emitter_i$, ranges from one to four: firms with an estimated 2005 CO₂ emission level in the lowest industry quartile (based on the three-digit NAICS code) are assigned a value of one, while those in the highest quartile are assigned a value of four. We measure firms' emissions relative to their industry peers to identify treated firms, following Berrone et al. (2013). Given that the format, coverage, scope, and threshold of the GHGRP are largely unclear to firms before the proposal, their pre-proposal estimated CO₂ emissions (based on CO emissions in 2005) and corresponding treatment assignment are unlikely affected by firms' expectation of mandatory disclosure or their manipulation or misreporting of CO emissions. Thus, our treatment assignment is not subject to reverse causality and selection concerns.

Controls_{it} includes a range of control variables: $R \mathcal{E}D$ Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and $R \mathcal{E}D$ Missing (we provide their definitions in Appendix A). The results are robust when the control variables are not included, as shown in Internet Appendix Table IA6. In our regression analysis, we control for firm and industry-year fixed effects (η_t and φ_{jt}) and use double-clustered standard errors by industry and year.

Our results in Table 3 indicate that high-emission firms file significantly more, and higher-quality, low-carbon patents following the GHGRP proposal. Specifically, the estimated coefficients for $GHGRP \times Emitter$ in Columns (1) and (3) are 0.0353 for low-carbon patent counts and 0.0428 for citations, both of which are statistically significant at the 5% level. For BERT-based patent counts and citations in our regressions (Columns (2) and (4)), the coefficients on $GHGRP \times Emitter$ remain similar to those for Y02 low-carbon patents.

Table 3 also shows an increase in high-emission firms' low-carbon patent values following the GHGRP proposal. Columns (5) and (6) report firm-level results for Y02 and BERT-based low-carbon patent valuations. Low-carbon patent valuation of high-emission firms rises significantly, at least at the 10% level, after the proposal. Hence, the stock market perceives low-carbon patents as more valuable to those firms after the proposal.

[Table 3 about here]

In terms of economic significance, the coefficient of 0.0353 for low-carbon patent counts (Column (1)) implies that a one-quartile increase in a firm's industry emission rank (e.g., moving from the first to the second quartile) corresponds to a 3.5% rise in low-carbon patent filings following the GHGRP proposal. This translates to 0.21 additional patents annually per firm. ²⁹ Similarly, the coefficient of 0.0428 for patent citations (in Column (3)) suggests a 4.3% increase in forward citations of low-carbon patents for firms in higher emission quartiles, equating to 0.29 additional adjusted citations per year, consistent with improved patent quality post-GHGRP. For patent value, the proposal leads to a 6% economic gain, or approximately \$4.9 million in annual patent value per firm, for a one-quartile rise in emission rank.

²⁸Since taking the natural logarithm of one plus patents may alter the original interpretation of the log transformation, we present our robust results in Internet Appendix Table IA5 using a Poisson model that directly uses patent counts and citations without log transformation.

citations without log transformation.
$$\frac{29 \text{Differentiating both sides of the model:}}{\partial (GHGRP \times Emitter)} = \frac{\partial ln(1+Y)}{\partial Y} \cdot \frac{\partial Y}{\partial (GHGRP \times Emitter)}.$$
 Since
$$\frac{\partial ln(1+Y)}{\partial Y} = \frac{1}{1+Y}, \text{ we obtain } \frac{\partial Y}{\partial (GHGRP \times Emitter)} = \beta \cdot (1+Y).$$
 The change in the number of patents is:
$$\Delta Y = \frac{\partial Y}{\partial (GHGRP \times Emitter)} \cdot \Delta (GHGRP \times Emitter) = \beta \cdot (1+Y) \cdot \Delta (GHGRP \times Emitter).$$
 Taking the sample average for Y , and noting that after the proposal, a one-level higher emitter implies $\Delta (GHGRP \times Emitter) = 1$, the change in the number of patents is:
$$\Delta Y = \beta \cdot (1+\bar{Y}).$$

These findings underscore the economic significance of the GHGRP proposal. High-emission firms face greater pressure to internalize the externalities they create, which increases their incentives to invest in more and better carbon-related technologies.

We consider several robustness checks and find consistent results. First, we estimate Equation (2) using an alternative definition of low-carbon patents based on keyword-based classifications. Panel B of Internet Appendix Table IA3 shows that the counts, citations, and valuations of firms' keyword-based low-carbon patents remain robust, confirming that these patents are closely related to areas such as carbon emissions, energy efficiency, and cleaner energy. Second, we acknowledge possible offshored emissions and thus exclude firms with high foreign income (which reflects their overseas activities). Internet Appendix Table IA7 presents consistent results. Third, we use a binary variable $Emitter_i$, such that firms with an estimated 2005 CO₂ emission level above the industry median are assigned a value of one, and zero otherwise. We report our results in Internet Appendix Figure IA8 and Table IA8. Fourth, we consider synthetic difference-in-differences (SDID) (Arkhangelsky et al., 2021) with a specification similar to Equation (2). This approach combines difference-in-differences and synthetic control methods, reweighting and matching pre-exposure trends to force the parallel trend assumption to be valid. We report our results in Internet Appendix Figure IA9 and Table IA9.

B. Parallel Trends Assumption

To analyze cross-year differences in low-carbon innovation, we estimated a modified version of Equation (2) by including interactions between Emitters and year-specific dummy variables (I_t) as follows:

(3)
$$Ln (1 + Low - Carbon Tech_{it})$$

$$= \sum_{t=2002, t \neq 2008}^{2014} \beta_t (I_t \times Emitter_i) + \gamma Controls_{it} + \eta_i + \varphi_{jt} + \varepsilon_{it}.$$

Figure 4 displays the sequence of β_t for YO2 and BERT-based low-carbon patent counts, citations, and valuations estimated using the standard DID approach from Equation (3). The figure presents 90% confidence intervals annually for those panels presenting results that incorporate control variables. Figure 4 supports the validity of our parallel trends assumption, showing that the trends in low-carbon patent counts, citations, and valuations among higher quartile carbon emitters remain similar to those of lower quartile emitters prior to the proposal.

[Figure 4 about here]

We also use the "honestDiD" method of Rambachan and Roth (2023) to assess the sensitivity of our causal conclusions under different assumptions about potential deviations from the parallel trends assumption. Internet Appendix Figure IA10 presents our dynamic analysis results, showing stable confidence intervals for the average treatment effect during the post-period. Our findings are robust under a linear trend assumption (Mbar = 0), holding true for patent counts, citations, and valuations. As we increase allowance for nonlinearity (Mbar > 0), we reach a significance threshold of Mbar = 0.3 to fail to reject the null hypothesis for patent counts. In practical terms, a 30% increase in patent counts is unlikely. For patent citations and patent valuation (Panels B and C, respectively), our results remain consistent until Mbar reaches approximately 0.2. Our analysis confirms that our findings are robust to moderate deviations from the parallel trends assumption.

 $^{^{30}}$ Although about 60% of sample firms reported foreign sales in 2008, these sales were economically small, averaging only about 2% of total assets or total sales.

³¹Although the p-value for Y02 low-carbon patent valuation in the SDID model is approximately 0.13, our parallel trend plot shows a notable increase in patent value following the proposal. For BERT-based low-carbon patents, the results are statistically significant.

In our previous sections, we observe that after the GHGRP proposal, high-emission firms tend to invest more in low-carbon technologies. Prior research also indicates that firms typically reduce their GHG emissions after mandatory disclosure (Tomar, 2023).³² These findings motivate us to test if such technologies could result in a significant reduction in GHG emissions.

Moreover, when firms become more energy-efficient, low-carbon technologies could have spillover effects that could reduce other types of air pollutions. For example, the adoption of low-carbon technologies may lower the consumption of fossil fuels, resulting in reduced emissions of not only carbon dioxide but also other harmful pollutants such as sulfur dioxide (SO_2) and nitrogen oxides (NO_X). These pollutants are known contributors to smog formation and respiratory illnesses. Additionally, improvements in manufacturing processes that utilize low-carbon technologies can lead to less waste and lower emissions of volatile organic compounds (VOC_3), which can also enhance air quality.

As a validation test, we use estimated CO_2 emissions as the dependent variable in Equation (2) for our sample because (a) we only have data for 2005, 2008, 2011, and 2014, as the NEI database updates every three years; and (b) real CO_2 data are unavailable before 2010. Nevertheless, we find consistent results when we use estimated CO_2 emissions for the pre-period of 2008 and use actual CO_2 emissions for the post-period from 2010 to 2014, as shown in Table IA10 in the Internet Appendix. To further examine the spillover effects of low-carbon technologies, we also analyze non-CO criteria air releases (NH₃, NO_x, PM₁₀, SO₂, and VOC).

Our results, presented in Table 4, indicate that estimated CO_2 emissions significantly decline after the GHGR proposal. Non-CO criteria air releases also show significant results; however, the effects are much smaller: the difference in DID coefficients for estimated CO_2 and Non-CO criteria air releases is significant as shown in the bottom of the table. Overall, while low-carbon technologies primarily target carbon emissions, they also reduce other pollutants.

[Table 4 about here]

We also conduct an additional test by measuring a firm's environmental performance using its E score, which is calculated as the number of KLD environmental strengths (scaled by total environmental strengths items) minus the number of KLD environmental concerns (scaled by total environmental concerns items). Using the structure of Equation (2) with firm-level E scores as the dependent variable, Table 5 shows that firms with higher carbon emissions after the event exhibit a greater increase in E scores. These results suggest that mandatory GHG disclosure also enhances firms' environmental performance perceived by the rating agency.

[Table 5 about here]

D. Alternative Explanations

While our baseline results suggest that the GHGRP significantly stimulated low-carbon innovation among high-emission firms, it is important to consider potential alternative explanations. In particular, the observed increase in low-carbon patenting could reflect broader regulatory shifts or macroeconomic shocks that occurred around the same time as the GHGRP's introduction. For instance, the election of President Barack Obama in 2008 and the launch of the Green Technology Pilot Program in 2009 may have signalled a broader pro-environment policy stance, potentially encouraging green innovation. Similarly, the 2008 financial crisis brought substantial economic and energy market disruptions that may have differentially affected high-emission firms, particularly those in energy-intensive sectors, thereby inducing innovation patterns unrelated to the GHGRP itself.

To address these concerns, we conduct a series of placebo tests aimed at disentangling the effects of the GHGRP from other coinciding factors. First, we examine whether the observed

³²Unlike Tomar (2023), who uses the period 2010-2011 as the pre-event date and uses 2012 as the event date, we extend our analysis to include the period before 2010, similar to Yang, Muller and Liang (2021).

effects extend to other types of green patents that are unrelated to greenhouse gas emissions. Second, we assess whether exposure to oil price volatility or macroeconomic shocks, proxied by oil beta and market beta, can account for the observed innovation responses. Finally, we consider whether firms may have responded to the GHGRP through symbolic "greenwashing" rather than substantive innovation. The results of these tests consistently indicate that alternative explanations are unlikely to fully explain the increase in low-carbon patenting, thereby reinforcing our interpretation that the GHGRP was a key driver of this response.

Confounding Policies

The election of Barack Obama in 2008 and the subsequent implementation of the Green Technology Pilot Program³³ in 2009 may have potentially bolstered regulatory oversight on chemical releases, subsequently fostering a surge in overall green innovation that included low-carbon innovation within firms. To address these alternative explanations, we conduct placebo tests using other green patents (we define in Section 2.2) as our dependent variable in Equation (2). As shown in Panel A of Table 6, there is no statistically significant difference in the filing of other green patents between firms in the higher and lower quartiles of carbon emissions following the GHGRP proposal. The coefficients in all columns are also relatively small compared to our baseline results. These findings imply that the increase in low-carbon patents observed in our baseline analysis is more likely influenced by the GHGRP rather than other policies.

[Table 6 about here]

Macroeconomic Shocks and Crisis Responses

One can also argue that the observed increase in low-carbon patenting following the GH-GRP proposal may have been influenced by confounding macroeconomic events, most notably the onset of the 2008 financial crisis, which coincided almost exactly with the timing of the regulation's introduction. During this period, global oil prices collapsed, leading to significant revaluation of high-carbon industries, particularly the energy sector, which is also a major contributor to low-carbon technological innovation. In addition to oil price volatility, high-emission firms may have faced heightened pressure from investors to adopt more sustainable practices amid increasing risk aversion. Moreover, the clean energy stimulus provisions included in the 2009 American Recovery and Reinvestment Act could have independently motivated firms to shift toward green technologies, regardless of the GHGRP.

There is another possibility that high-emission firms responded to the crisis in ways distinct from their lower-emission peers within the same industry. For example, differences in access to capital during the credit freeze or variations in business diversification could have led to firm-level heterogeneity in innovation activity that is unrelated to the GHGRP itself. While our main specification includes industry-year fixed effects to control for common time-varying shocks within industries, these controls may not fully capture such within-industry differences.

To address these concerns, we further conduct placebo tests designed to isolate the impact of contemporaneous shocks. Specifically, we replace the Emitter indicator with two firm-level exposure measures: oil beta and market beta, both calculated using firm-level return data from 2007, excluding all observations after December 26, 2007—the date when the U.S. Congress passed the Consolidated Appropriations Act of 2008.³⁴ The oil beta captures a firm's sensitivity to oil price movements, while the market beta reflects exposure to aggregate macroeconomic conditions. We classify firms into quartiles based on these betas within their three-digit NAICS industry and construct indicator variables equal to one for firms in the top quartile, representing

$$Ret_{i,t} = \alpha_i + \beta_{oil,i} \times Ret_oil_t + \beta_{market,i} \times Ret_m_t + \varepsilon_{i,t}$$

where $Ret_{i,t}$ denotes the stock return of firm i on day t, Ret_oil_t is the return on Brent crude oil futures, and Ret_m_t is the return on a value-weighted market index.

 $^{^{33}}$ See https://www.uspto.gov/patents/initiatives/green-technology-pilot-program-closed 34 Oil beta $\beta_{oil,t}$ and market beta $\beta_{market,t}$ are estimated from the regression:

high exposure. These betas, as reported in Panels B and C of Table 6, show no statistically significant effects on low-carbon patenting when using oil beta or market beta as treatment variables. These findings suggest that neither oil price shocks nor broader financial market turbulence can explain the post-2007 low-carbon innovation patterns observed among high-emission firms. Taken together, these placebo tests help rule out alternative explanations related to the financial crisis.

ANTICIPATED ESG MANDATES AND REPUTATIONAL MOTIVES

Another potential explanation is that firms may have anticipated the introduction of broader environmental disclosure mandates, extending beyond GHG emissions to include areas such as water usage, pollution intensity, or other ESG dimensions. In response, they may have proactively increased their environmental innovation efforts. However, if this were the primary driver, we would expect to observe a uniform rise in all categories of green patents. Our placebo tests in Section 4.4.1, however, reveal that the increase is concentrated in patents specifically related to greenhouse gas emissions, making it unlikely that generalized regulatory anticipation alone can explain the pattern.

Finally, one might argue that high-emission firms engage in low-carbon patenting primarily for reputational purposes, as a form of strategic signaling or so-called "greenwashing." While plausible, this explanation appears insufficient. As shown in Section 4.3, firms that increased low-carbon patenting also experienced subsequent reductions in $\rm CO_2$ and other pollutant emissions. This alignment between innovation and actual environmental performance suggests that the observed patenting surge reflects substantive behavioral change rather than mere symbolic compliance or greenwashing.

V. Incentive Tests

A. Competition Pressure

In this section, we examine whether the effect of the GHGRP varies with firms' exposure to competition pressure that may be driven by customers' environmental preferences. Intense competition motivates firms to develop distinctive innovations that reshape the market and create product differentiation (Aghion et al., 2001, 2005). Intense competition also reduces the incentive for firms to share or license valuable technologies to others, as licensors typically maintain a competitive advantage by limiting access to rivals (Rockett, 1990).

We classify firms into high- and low-competition groups using two measures: (a) product market similarity and (b) climate risk-concerned analyst coverage. Higher product similarity indicates greater competitive pressure, as customers perceive fewer differences across products. Firms with product market similarity (Hoberg and Phillips 2016) in 2006 above the sample median are classified as *High Product Similarity*, and the remainder as Low Product Similarity.

On the other hand, analysts systematically respond to changes in customer sentiment (Luo, Homburg and Wieseke, 2010). In the context of climate risk, greater coverage of climate risk-concerned analysts signals stronger customer concerns about climate-related issues, making it a useful measure of competition pressure tied to customers' environmental preferences. To measure climate risk-concerned analyst coverage, we first use I/B/E/S data to calculate each analyst's climate risk orientation using the following formula:

(4) Climate Risk Orientation_a =
$$\frac{1}{N} \left(\sum_{i=1}^{N} \frac{\text{Low-Carbon Pat Val}_{ai}}{\text{Total Pat Val}_{ai}} \right)$$
,

in which N represents the total number of firms i covered by analyst a in 2006. For each analyst, we compute the ratio of low-carbon patent valuation (Low-Carbon Pat Val_{ai}) to total patent valuation (Total Pat Val_{ai}) for each firm that they cover and then take the average of these ratios. If the resulting average exceeds the median ratio of all analysts in I/B/E/S

for 2006, we then classify the analyst as being more concerned about climate risk. We then calculate the number of climate risk-concerned analysts for each sample firm by summing the total number of such analysts. Firms with a total number of such analysts that exceeds the sample median in 2006 are assigned to the group of high climate risk-concerned analyst coverage (*High Climate Risk Analyst*). All other firms are classified as having low climate risk-concerned analyst coverage.

We estimate Equation (2) separately for each group: Panel A is for product market similarity, and Panel B is for climate risk-concerned analyst coverage. Table 7 shows that high-emission firms facing greater competition pressure significantly increase their low-carbon patenting after the GHGRP proposal, whereas such firms with lower competition pressure show no significant change. We observe similar patterns for low-carbon patent citations (Columns (5) through (8) of Panels A and B) and for patent valuations in Internet Appendix Table IA11. Taken together, these results indicate that the GHGRP effect is stronger among firms under greater competitive pressure, consistent with the view that low-carbon innovation serves as a means of product differentiation.

[Table 7 about here]

B. Price Efficiency

Lower information asymmetry enables stock markets to better evaluate firms' technological capabilities, align stock prices with fundamentals, and reward firms' innovation efforts (Edmans and Manso, 2011). Since managers care about stock prices when making investment decisions (Chen, Goldstein and Jiang, 2007; Bakke and Whited, 2010; Lin, Liu and Sun, 2019), more efficient prices improve their efficiency in capital allocation. As stock markets react favorably to high-emission firms' low-carbon patents, we predict that such firms with higher price efficiency (lower information asymmetry) are more likely to be more active in low-carbon patenting following the GHGRP proposal.

We classify firms into high- and low-price-efficiency groups using two measures: (a) option trading volume and (b) the probability of informed trading (PIN). Options may impact firm value by helping to complete markets and stimulate informed trades (Roll, Schwartz and Subrahmanyam, 2009). Also, the enhanced informational efficiency driven by options leads to a more efficient allocation of corporate resources (Blanco and Wehrheim, 2017). PIN is derived from the Bayesian microstructure model of Easley, Hvidkjaer and O'Hara (2002) and estimates the probability that a given order originates from an informed trader. Thus, PIN measures the extent of informed trading in a stock; a lower PIN indicates lower information asymmetry.³⁵

We measure options trading volume by multiplying the total trade volume of each option by the end-of-day quote midpoint for that option, and then aggregating this value annually across all trading days and options listed for a focal firm's stocks. Firms with total option trading volume in 2006 above the sample median are classified in the group of high option trading, while all other firms are categorized in the group of low option trading. Similarly, firms with PIN in 2006 above the sample median are classified as High PIN, and the remainder as Low PIN.

We estimate Equation (2) separately for the high and low price efficiency groups. Panel A of Table 8 is for option trading, and Panel B is for PIN. Table 8 shows that, following the GHGRP proposal, high-emission firms with higher price efficiency are more active in low-carbon patenting. The DID coefficients in the high price efficiency group are statistically significant, whereas no significant effects appear for the low price efficiency group. We find similar patterns for patent citations (reported in Columns (5) to (8) in Table 8) and for patent valuation (reported in Internet Appendix Table IA12). Overall, these results suggest that the GHGRP effect is stronger for firms with more efficient stock pricing.

[Table 8 about here]

³⁵PIN data are obtained from https://terpconnect.umd.edu/ stephenb/EKOpins.html and are also used in Brown, Hillegeist and Lo (2004).

VI. Mechanisms

The proposal of the GHGRP placed substantial pressure on high-emission firms to internalize their environmental externalities through engaging in low-carbon technology. They might achieve this by hiring external inventors with expertise in low-carbon technologies or by encouraging internal inventors to develop green innovations. To examine these mechanisms, we investigate (a) firms' activities in hiring external inventors with low-carbon technology experience and (b) the increase in green patents produced by existing inventors.

A. Acquiring Inventors with Low-Carbon Technology Experience

To capture firms' acquisition of external inventors, we first define a newly hired inventor's low-carbon technology experience as the number of years between the year s/he first patented a low-carbon patent and the current year s/he joins the focal firm. We then sum up all these numbers for all inventors that the focal firm hires in a year, and estimate Equation (2) using this total experience measure. Our results in Table 10 show that, after the GHGRP proposal, high-emission firms are more likely to acquire low-carbon expertise from the human capital market. The coefficients in Columns (1) and (2) are both statistically significant at the 5% level or better. In terms of economic significance, a one-rank increase in a firm's emission quartile (e.g., from the first to the second) is associated with an increase of about 0.8 years in newly hired inventors' years of experience with low-carbon technologies. These findings suggest that the GHGRP proposal indeed incentivizes firms to recruit experienced inventors from external human capital market to develop their technologies.

[Table 9 about here]

B. Incumbent Inventors' Low-Carbon Patenting Activities

We also estimate the impact of the GHGRP proposal on low-carbon patenting activities of firms' existing inventors. Existing inventors are defined as those employees who produced patents for the firm before 2008. We estimate Equation (2) using the following dependent variables: (a) the number of Y02 or BERT-based low-carbon patents invented by existing inventors; and (b) the number of forward citations for these patents invented by existing inventors. Table 10 shows that the DID coefficients are insignificant, which seems to suggest that the GH-GRP proposal did not strongly increase incumbent inventors' productivity in terms of their low-carbon patenting activities.

[Table 10 about here]

All results we present in this section collectively suggest that firms prioritize external hiring to acquire targeted low-carbon expertise rather than retrain incumbent inventors. This finding appears intuitive because external hires bring relevant experience faster, enabling more efficient innovation. In contrast, existing inventors, especially those without prior exposure to low-carbon technologies, face steep learning curves when shifting their focus.

VII. Conclusion

While low-carbon technologies are important tools to achieve low/zero-emission economies, their development hinges on corporate resources and managerial incentives. In this paper, we focus on is how observed environmental externalities influence such technologies through mandatory disclosure. As the private sector often lacks the motivation to internalize externalities, policies that provide transparency and reduce uncertainty about future regulations can help redirect corporate choices in investment. We present compelling evidence that the GHGRP proposal incentivizes high-emission firms to invest in low-carbon technologies and reduce their GHG emissions. Moreover, the GHGRP not only helps reduce CO₂ emissions but also leads to broader environmental benefits (e.g., reduced non-GHG air pollutants) and hence positive

spillover effects. Such a transition in production technologies is positively received by the stock market, indicating that heavy emitters' incentives to mitigate environmental externalities are valued by investors.

We offer new insights into how corporate innovation decisions can be shaped by public disclosure. In addition, our research underscores the potential and efficiency of emissions disclosure as a policy tool for mitigating negative externalities and social welfare loss. Unlike other regulatory measures, such as carbon taxes and investment subsidies, the GHGRP proposal offers a low-cost approach that encourages firms to develop low-carbon technologies without imposing significant economic burdens.

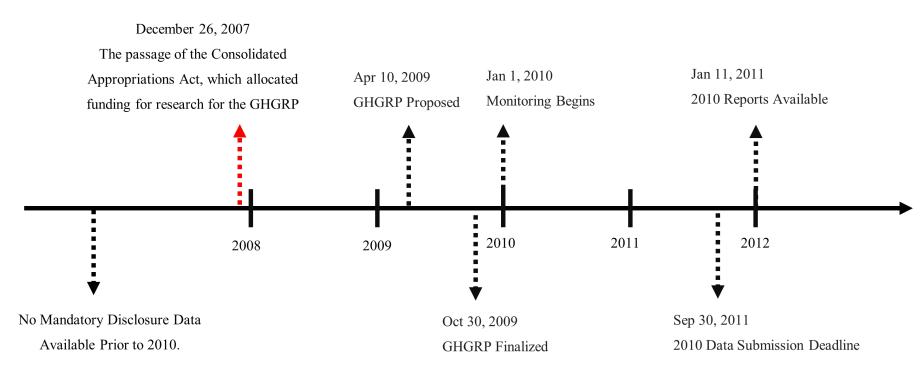
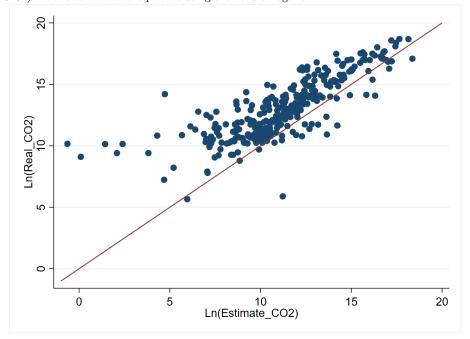
Appendix A Variables Definition

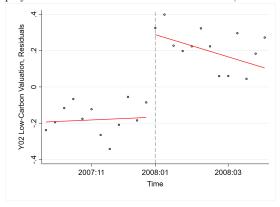
	Definition	Source
Panel A. Patent-level		HIGDEO II
Y02 Low-Carbon Valu-	The natural logarithm of the valuation of CPC Y02 low-carbon	USPTO; Ko-
ation	patents. Kogan et al. (2017) supplies patent value information, re-	gan et al.
	flecting the private economic value of patents. The market value of	(2017)
	each patent is determined by the market capitalization change (benchmarked against the market return) over a 3-day window (from day t	
	, , , , , , , , , , , , , , , , , , , ,	
	to day $t+2$) commencing on the announcement day when a patent is approved (day t).	
BERT Low-Carbon	The natural logarithm of the valuations of BERT-based low-carbon	USPTO; Ko-
Valuation	patents. A patent is classified as BERT-based low-carbon if it either	gan et al.
Variation	carries a Y02 code or is identified as low-carbon by our fine-tuned	(2017)
	BERT model.	(2011)
Other Green Valuation	The natural logarithm of the valuations of other green patents. Other	USPTO; Hašić
Guier Green Variation	green patents are defined by the OECD as green patents excluding	and Migotto
	CPC Y02.	(2015); Kogan
	010 102	et al. (2017)
Brief Word Count	The word count (in thousands) of a patent's brief introduction docu-	USPTO
Dilor Word Count	ment.	001 10
Cite Backward	The number of backward citations included in a patent.	USPTO
Claims	The total number of claims within a patent.	USPTO
Process Claim Ratio	The ratio of process claims to the total claims of a patent.	USPTO; Gan-
1 1000bb Claim 10acio	The radio of process claims to the total claims of a patient.	glmair et al.
		(2022)
Inventor Number	The total number of inventors listed on a patent.	USPTO
Inventor Average Age	The average age of inventors listed on a patent, with missing values	USPTO;
inventor riverage rige	replaced by the sample median.	Kaltenberg et
	replaced by the bampic median.	al. (2023)
Panel B. Firm-level I	OID Sample	(2020)
Estimated CO ₂	The CO ₂ emissions estimate is obtained by utilizing process-level CO	NEI
Estimated CC2	data and industry-process specific conversion factors (Gurney et al.	1121
	2009; Gurney et al. 2010) to convert CO to CO ₂ . These emissions	
	are then accumulated at the company level.	
Real CO ₂	The actual CO ₂ emissions data are obtained from the Greenhouse	GHGRP
20000	Gas Reporting Program (GHGRP). We aggregate facility-level data	0.22 0.242
	into firm-level data on an annual basis, spanning the years 2010 to	
	2014.	
Emitter	The variable Emitter ranges from one to four, where one indicates	NEI
	that a firm's estimated 2005 CO_2 emissions fall in the first quartile of	
	its three-digit NAICS industry. Emissions are estimated from process-	
	its three-digit NAICS industry. Emissions are estimated from process- level CO data using CO-to-CO ₂ conversion factors and aggregated at	
	its three-digit NAICS industry. Emissions are estimated from process- level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level.	
GHGRP	level CO data using CO-to-CO $_2$ conversion factors and aggregated at	USPTO
	level CO data using CO-to-CO $_2$ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later.	
Y02 Low-Carbon	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and	USPTO USPTO
	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given	
Y02 Low-Carbon Count	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year.	USPTO
Y02 Low-Carbon	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations	
Y02 Low-Carbon Count	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-	USPTO
Y02 Low-Carbon Count	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted	USPTO
Y02 Low-Carbon Count	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-	USPTO
Y02 Low-Carbon Count	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms	USPTO
Y02 Low-Carbon Count Y02 Low-Carbon Cite	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass).	USPTO USPTO
Y02 Low-Carbon Count Y02 Low-Carbon Cite Y02 Low-Carbon Valu-	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC	USPTO USPTO; Ko-
Y02 Low-Carbon Count Y02 Low-Carbon Cite Y02 Low-Carbon Valu-	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC Y02 low-carbon patents in a given year. Kogan et al. (2017) sup-	USPTO USPTO; Kogan et al.
Y02 Low-Carbon Count Y02 Low-Carbon Cite Y02 Low-Carbon Valu-	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC Y02 low-carbon patents in a given year. Kogan et al. (2017) supplies patent value information, reflecting the private economic value	USPTO USPTO; Kogan et al.
Y02 Low-Carbon Count Y02 Low-Carbon Cite Y02 Low-Carbon Valu-	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC Y02 low-carbon patents in a given year. Kogan et al. (2017) supplies patent value information, reflecting the private economic value of patents. The market value of each patent is determined by the	USPTO USPTO; Kogan et al.
Y02 Low-Carbon Count Y02 Low-Carbon Cite Y02 Low-Carbon Valu-	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC Y02 low-carbon patents in a given year. Kogan et al. (2017) supplies patent value information, reflecting the private economic value of patents. The market value of each patent is determined by the market capitalization change (benchmarked against the market re-	USPTO USPTO; Kogan et al.
Y02 Low-Carbon Count Y02 Low-Carbon Cite Y02 Low-Carbon Valu-	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC Y02 low-carbon patents in a given year. Kogan et al. (2017) supplies patent value information, reflecting the private economic value of patents. The market value of each patent is determined by the market capitalization change (benchmarked against the market return) over a 3-day window (from day t to day t+2) commencing on	USPTO USPTO; Kogan et al.
Y02 Low-Carbon Count Y02 Low-Carbon Cite Y02 Low-Carbon Valuation	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC Y02 low-carbon patents in a given year. Kogan et al. (2017) supplies patent value information, reflecting the private economic value of patents. The market value of each patent is determined by the market capitalization change (benchmarked against the market return) over a 3-day window (from day t to day t+2) commencing on the announcement day when a patent is approved (day t).	USPTO USPTO; Kogan et al. (2017)
Y02 Low-Carbon Cite Y02 Low-Carbon Valuation BERT Low-Carbon	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC Y02 low-carbon patents in a given year. Kogan et al. (2017) supplies patent value information, reflecting the private economic value of patents. The market value of each patent is determined by the market capitalization change (benchmarked against the market return) over a 3-day window (from day t to day t+2) commencing on the announcement day when a patent is approved (day t).	USPTO USPTO; Kogan et al. (2017)
Y02 Low-Carbon Cite Y02 Low-Carbon Valuation BERT Low-Carbon	level CO data using CO-to-CO ₂ conversion factors and aggregated at the firm level. GHGRP equals one if a year is 2008 or later. The natural logarithm of one plus the number of newly applied (and eventually granted) CPC Y02 low-carbon patents for a firm in a given year. The natural logarithm of one plus the number of adjusted citations received by a firm's newly applied (eventually granted) CPC Y02 low-carbon patents in a given year. Each patent's citations are adjusted by the average number of forward citations received by all public firms in the same year and technology class (CPC 4-digit subclass). The natural logarithm of one plus the total valuation of a firm's CPC Y02 low-carbon patents in a given year. Kogan et al. (2017) supplies patent value information, reflecting the private economic value of patents. The market value of each patent is determined by the market capitalization change (benchmarked against the market return) over a 3-day window (from day t to day t+2) commencing on the announcement day when a patent is approved (day t). The natural logarithm of one plus the number of newly applied (and eventually granted) BERT-based low-carbon patents for a firm in a	USPTO USPTO; Kogan et al. (2017)

BERT Low-Carbon	The natural logarithm of one plus the number of adjusted citations	USPTO
Cite	received by a firm's newly applied (eventually granted) BERT-based	
	low-carbon patents in a given year. Each patent's citations are ad-	
	justed by the average number of forward citations received by all	
	public firms in the same year and technology class (CPC 4-digit sub-	
	class). A patent is classified as BERT-based low-carbon if it either	
	carries a Y02 code or is identified as low-carbon by our fine-tuned	
	BERT model.	
BERT Low-Carbon	The natural logarithm of one plus the total valuation of a firm's	USPTO; Ko-
Valuation	BERT-based low-carbon patents in a given year. A patent is clas-	gan et al.
	sified as BERT-based low-carbon if it either carries a Y02 code or is	(2017)
	identified as low-carbon by our fine-tuned BERT model. Kogan et al.	
	(2017) supplies patent value information, reflecting the private eco-	
	nomic value of patents. The market value of each patent is determined	
	by the market capitalization change (benchmarked against the market	
	return) over a 3-day window (from day t to day t+2) commencing on	
0.1 0 0	the announcement day when a patent is approved (day t).	TIGDEO II VII
Other Green Count	The natural logarithm of one plus the number of patents related to	USPTO; Hašić
	other forms of environmental technology (OECD green patents, ex-	and Migotto
	cluding CPC Y02 patents).	(2015)
Other Green Cite	The natural logarithm of one plus the citations of patents related	USPTO; Hašić
	to other forms of environmental technology (OECD green patents,	and Migotto
	excluding CPC Y02 patents).	(2015)
Other Green Valuation	The natural logarithm of one plus the value of patents related to other	USPTO; Hašić
	forms of environmental technology (OECD green patents, excluding	and Migotto
	CPC Y02 patents). Kogan et al. (2017) supplies patent value infor-	(2015); Kogan
	mation, reflecting the private economic value of patents. The market	et al. (2017)
	value of each patent is determined by the market capitalization change	
	(benchmarked against the market return) over a 3-day window (from	
	day t to day $t+2$) commencing on the announcement day when a	
1.00	patent is approved (day t).	
Estimated CO ₂	The natural logarithm of one plus estimated CO ₂ emissions.	NEI
Non-CO Criteria Air	The natural logarithm of one plus the non-CO criteria air releases	NEI
D C	$(NH_3, NO_x, PM_{10}, SO_2, and VOC)$ of a firm.	IZLD
E Score	The natural logarithm of KLD environmental strengths (scaled by	KLD
	the total environmental strengths items) minus the number of KLD	
	environmental concerns (scaled by the total environmental concerns	
High/Low Product	items).	Unbown and
- /	Firms with product market similarity (Hoberg and Phillips 2016) in	Hoberg and
Similarity	2006 above the sample median are classified as High Product Similar-	Phillips (2016)
Himb /Lorr Climanta	ity, and the remainder as Low Product Similarity.	I/D/E/C
High/Low Climate	Firms with high climate risk analyst coverage (High Climate Risk Analyst) are those that had a greater number of alignets risk appearance	I/B/E/S
Risk Analyst	alyst) are those that had a greater number of climate risk-concerned	
	analysts in 2006 than the sample median. All other firms are considered to have low climate risk analyst coverage (Low Climate Risk	
	Analyst). For each analyst, we compute the ratio of low-carbon patent	
	valuation to total patent valuation for each firm that they cover and	
	then take the average of these ratios. If the resulting average exceeds	
	the median ratio of all analysts in I/B/E/S for 2006, we then classify	
High/Low Option	the analyst as having a greater focus on climate risk.	Ontion Motnica
0 /	Firms with total option trading volume in 2006 above the sample	OptionMetrics
Trading	median are classified as having High Option Trading volume, while	
II:l. /I DIN	all other firms are categorized as having Low Option Trading volume.	Deales at al
High/Low PIN	Firms with PIN in 2006 above the sample median are classified as	Easley et al.
	High PIN, and the remainder as Low PIN.	(2002); Brown
N MOOT CL	TILL AND CODO MODELLA DE LA COLONIA DE LA CO	et al. (2004)
New Y02 Low-Carbon	The total years of CPC Y02 low-carbon inventor experience acquired	USPTO
Experience	by a firm from the labor market. The total years of low-carbon in-	
	ventor experience is the sum of the years between the hiring of ex-	
	perienced inventors and the years that they first patented low-carbon	
	technology. An experienced inventor is defined as one with previous	
	low-carbon patents who was not previously employed by a given firm.	TIOD CO.
New BERT Low-	Similar to New Low-Carbon Experience, based on BERT-classified	USPTO
Carbon Experience	low-carbon patents.	Habmo
Existing Inventors Y02	The natural logarithm of one plus the total number of CPC Y02 low-	USPTO
Low-Carbon Count	carbon patents attributed to existing inventors.	Habao
Existing Inventors Y02	The natural logarithm of one plus the total citations of CPC Y02	USPTO
Low-Carbon Cite	low-carbon patents attributed to existing inventors.	

Existing Inventors Y02 Low-Carbon Valuation	The natural logarithm of one plus the total valuations of CPC Y02 low-carbon patents attributed to existing inventors.	USPTO; Kogan et al. (2017)			
Existing Inventors BERT Low-Carbon Count	The natural logarithm of one plus the total number of BERT-based low-carbon patents attributed to existing inventors.	USPTO			
Existing Inventors BERT Low-Carbon Cite	The natural logarithm of one plus the total citations of BERT-based low-carbon patents attributed to existing inventors.	USPTO			
Existing Inventors BERT Low-Carbon Valuation	The natural logarithm of one plus the total valuations of BERT-based low-carbon patents attributed to existing inventors.	USPTO; Kogan et al. (2017)			
R&D Intensity	Research and development expenditures divided by total assets, which are set to zero if missing.	Compustat			
XAD/AT	The ratio of advertising expenses to total assets, which are set to zero if data are not available.	Compustat			
CAPX/AT	The proportion of capital expenditures to the book value of total assets, which is set to zero if data are not available.	Compustat			
Ln(AT)	The natural logarithm of the book value of total assets (in millions), which is set to zero if data are not available.	Compustat			
Tangibility	The ratio of property, plant, and equipment to total assets, which is set to zero if data are not available.	Compustat			
Labor/Capital	The ratio of the number of employees to property, plant, and equipment, which is set to zero if data are not available.	Compustat			
Tobin's Q	The ratio of total assets plus the market value of equity minus the book value of equity to the book value of total assets, which is set to zero if data are not available.	Compustat			
Firm Age	The number of years a firm has been listed on Compustat.	Compustat			
Leverage	The ratio of total debt to shareholder equity, which is set to zero if data are not available.	Compustat			
ROA	The ratio of net income to the book value of assets, which is set to zero if data are not available.	Compustat			
Cash/AT	Cash/AT is defined as the ratio of a firm's cash and short-term investments to its total assets.	Compustat			
R&D Missing					

Figure 1. : Timeline of GHGRP


Figure 2. : Estimated CO_2 vs. Real CO_2 Reporting in 2011

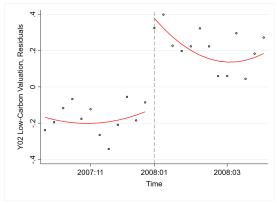
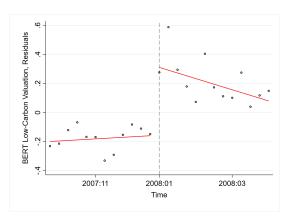
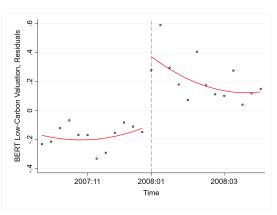

This figure shows the relationship between estimated and actual carbon dioxide emissions in 2011. Estimated CO_2 emissions are calculated by using conversion factors to transform process-level CO into CO_2 and aggregating results at the firm level, using data from the 2011 NEI database. The real CO_2 emissions data are sourced from the Greenhouse Gas Reporting Program (GHGRP). Both sets of data are plotted using the natural logarithm.

Figure 3. : The Effect of the GHGRP on Patent Valuation


This figure shows the impact of the Greenhouse Gas Reporting Program (GHGRP) on the market valuation of low-carbon patents, measured by CPC Y02 or BERT-based classifications. The dots represent weekly averages of residuals obtained from a regression of the logarithm of patent valuation (Y02 or BERT-based) on four-digit CPC fixed effects, parent firm fixed effects, and patent-level controls. The red fitted curves depict separate linear or quadratic polynomials for the periods before and after December 26, 2007, corresponding to the timing of the funding grant for the GHGRP. Panels A1 and B1 present results from local linear regressions with a 12-week bandwidth, while Panels A2 and B2 employ a quadratic polynomial on either side of the GHGRP date, also with a 12-week bandwidth.



Panel A1. Y02 Patent Local Linear

Panel B1. BERT Patent Local Linear

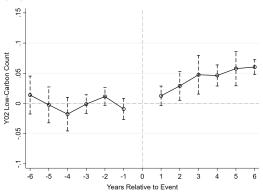
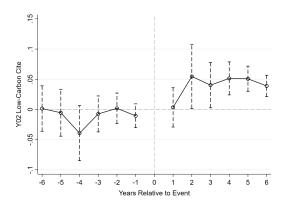
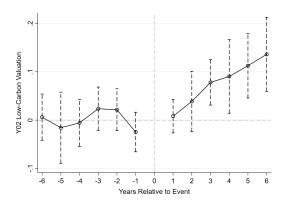
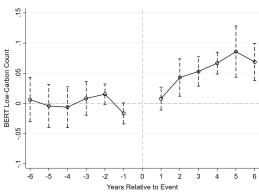

Panel B2. BERT Patent Quadratic Polynomial

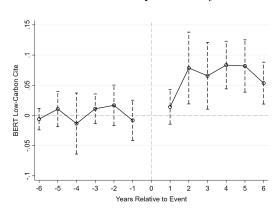
Figure 4.: Parallel Trend Plots

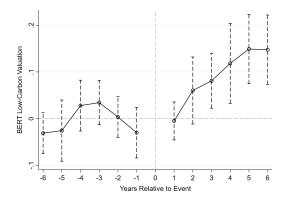

The following plots show how low-carbon innovation varies across different CO_2 emitter quartiles over time. We plot the estimated β_t 's of the DID model from the following regression:

$$\ln(1 + Low-Carbon\ Tech_{it}) = \sum_{t=2002, t \neq 2008}^{2014} \beta_t(I_t \times Emitter_i) + \gamma Controls_{it} + \eta_i + \varphi_{jt} + \varepsilon_{it}.$$


Panels A, B, and C report the counts, citations, and valuations of CPC Y02 or BERT-based low-carbon patents, respectively. Vertical lines in the plots represent 90% confidence intervals for the estimated β_t 's. The year 2008 is denoted as 0 on the x-axis.


Panel A1. Y02 Patent Local Linear


Panel B1. BERT Patent Local Linear


Panel B1. BERT Patent Local Linear

Panel A2.Y02 Patent Quadratic Polynomial

Panel B2. BERT Patent Quadratic Polynomial

Panel B2. BERT Patent Quadratic Polynomial

Table 2: Summary Statistics

This table presents summary statistics for the sample. Panel A reports patent-level variables for the RDD sample, with Panel A1 showing CPC Y02 low-carbon patents and Panel A2 showing BERT-based low-carbon patents. Panel B reports firm-level variables for the DID sample. For Count, Cite, or Valuation, this table reports the raw numbers without taking logarithms. Detailed variable definitions are provided in Appendix A.

Variables	Obs	Mean	SD	p10	p50	p90
Panel A1. Patent-level RDD Sample (Y02)					
Y02 Low-Carbon Valuation	524	34.24	59.22	3.01	13.35	76.85
Brief Word Count	524	1.25	1.33	0.31	0.88	2.30
Cite Backward	524	23.22	42.33	3.00	11.00	44.00
Claims	524	3.03	1.99	1.00	3.00	5.00
Process Claim Ratio	524	0.40	0.38	0.00	0.33	1.00
Inventor Number	524	3.09	2.26	1.00	3.00	6.00
Inventor Average Age	524	44.41	7.52	35.50	44.00	53.50
Panel A2. Patent-level RDD Sample (BERT)					
BERT Low-Carbon Valuation	996	33.99	73.26	4.46	13.12	72.17
Brief Word Count	996	1.23	1.25	0.30	0.88	2.32
Cite Backward	996	21.20	38.75	2.00	10.00	42.00
Claims	996	3.03	1.86	1.00	3.00	5.00
Process Claim Ratio	996	0.39	0.37	0.00	0.33	1.00
Inventor Number	996	2.99	2.07	1.00	3.00	6.00
Inventor Average Age	996	44.51	7.86	35.00	44.00	54.50
Panel B. Firm-level DID Sample						
Estimated CO ₂ 2005 (1000 tons)	444	1463.33	9168.91	0.08	6.05	1397.89
Emitter	5573	2.47	1.10	1.00	2.00	4.00
Y02 Low-Carbon Count	5573	5.00	27.02	0.00	0.00	6.00
Y02 Low-Carbon Cite	5573	5.67	30.35	0.00	0.00	6.92
Y02 Low-Carbon Valuation	5573	78.71	490.96	0.00	0.00	90.86
BERT Low-Carbon Count	5573	10.07	47.13	0.00	0.00	15.00
BERT Low-Carbon Cite	5573	10.48	47.82	0.00	0.00	15.45
BERT Low-Carbon Valuation	5573	160.23	852.36	0.00	0.00	238.79
Other Green Count	5573	1.10	6.78	0.00	0.00	1.00
Other Green Cite	5573	1.17	7.48	0.00	0.00	0.69
Other Green Valuation	5573	17.11	109.14	0.00	0.00	12.06
R&D Intensity	5573	0.02	0.05	0.00	0.00	0.06
XAD/AT	5573	0.01	0.02	0.00	0.00	0.02
CAPX/AT	5573	0.05	0.04	0.02	0.04	0.09
Ln(AT)	5573	8.30	1.87	5.91	8.29	10.64
Tangibility	5573	0.35	0.22	0.10	0.30	0.69
Labor/Capital	5573	0.02	0.02	0.00	0.01	0.04
Tobin's Q	5573	1.49	0.85	0.86	1.32	2.48
Firm Age	5573	31.99	16.49	9.00	35.00	52.00
Leverage	5573	1.34	23.11	0.04	0.63	2.30
ROA	5573	0.04	0.12	-0.02	0.05	0.12
Cash/AT	5573	0.10	0.13	0.01	0.06	0.24
R&D Missing	5573	0.42	0.49	0.00	0.00	1.00

Table 3: Patent Valuation

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on the market valuation of low-carbon patents using RDD models. The dependent variables are the natural logarithms of the valuations of (a) CPC Y02 low-carbon patents, (b) BERT model-based low-carbon patents, and (c) other green patents. Low-carbon patents are identified using either the CPC Y02 classification or a large language model (BERT for Patents). We also examine other green patents, defined by the OECD as green patents excluding CPC Y02. The sample includes low-carbon patents (in Columns (1), (2), and (5)) and other green patents (in Columns (3) and (6)) filed by our sample firms between 2002 and 2006 and issued by the USPTO within 12 weeks before or after the passage of the Consolidated Appropriations Act, which established funding for the GHGRP, on December 26, 2007. The regressions include fixed effects for patent parent firms and four-digit patent CPC codes. Columns (1) to (3) show results from local linear regressions with a 12-week bandwidth, while Columns (4) to (6) use a quadratic polynomial on either side of the GHGRP date, also with a 12-week bandwidth. All models control for patent-level variables, including Brief Word Count, Cite Backward, Claims, Process Claim Ratio, Inventor Number, and Inventor Average Age. Definitions for these variables are in Appendix A. Standard errors are double-clustered by patent industry (four-digit patent CPC) and issue week, and are shown in parentheses. Significance levels are indicated as follows: *p < 0.1, **p < 0.05, and ***p < 0.01.

Variables	(1) Y02 Low-Carbon Valuation	(2) BERT Low-Carbon Valuation	(3) Other Green Valuation	(4) Y02 Low-Carbon Valuation	(5) BERT Low-Carbon Valuation	(6) Other Green Valuation
GHGRP	0.6977***	0.6821***	0.2537	0.8384***	0.7232***	0.1747
	(0.1331)	(0.1213)	(0.2920)	(0.1351)	(0.1368)	(0.3893)
Brief Word Count	-0.0100	-0.0067	-0.1436*	-0.0078	-0.0050	-0.1476
	(0.0085)	(0.0090)	(0.0759)	(0.0089)	(0.0091)	(0.0837)
Cite Backward	-0.0009*	-0.0003	0.0013	-0.0009*	-0.0003	0.0011
	(0.0005)	(0.0004)	(0.0015)	(0.0005)	(0.0004)	(0.0013)
Claims	-0.0048	-0.0031	0.0389	-0.0050	-0.0033	0.0363
	(0.0090)	(0.0064)	(0.0263)	(0.0098)	(0.0067)	(0.0265)
Process Claim Ratio	-0.0066	-0.0050	0.0150	0.0010	-0.0010	0.0144
	(0.0387)	(0.0276)	(0.1824)	(0.0431)	(0.0278)	(0.2334)
Inventor Number	-0.0086	-0.0036	-0.0246	-0.0073	-0.0027	-0.0230
	(0.0116)	(0.0082)	(0.0273)	(0.0115)	(0.0082)	(0.0281)
Inventor Average Age	-0.0001	0.0027	0.0103	0.0001	0.0029	0.0077
	(0.0030)	(0.0031)	(0.0087)	(0.0030)	(0.0031)	(0.0078)
Constant	2.4994***	2.3804***	1.9377***	2.4852***	2.4228***	2.2264***
	(0.1197)	(0.1704)	(0.2524)	(0.1589)	(0.1685)	(0.1459)
Observations	524	996	120	524	996	120
R-squared	0.927	0.910	0.912	0.928	0.910	0.914
Specification	Local linear	Local linear	Local linear	Quadratic	Quadratic	Quadratic
•	regression	regression	regression	polynomial	polynomial	polynomial
Firm FE	YES	YES	YES	YES	YES	YES
CPC4 FE	YES	YES	YES	YES	YES	YES

Table 4: Firm Patenting Activities

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, (b) their citations, and (c) their valuation. Patents are classified using either the CPC Y02 code or a BERT-based model. The sample period is from 2002 to 2014. We define a patent as BERT-based low-carbon if it either carries a Y02 code or is classified as low-carbon by our fine-tuned BERT model. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p ; 0.1, ** indicates p ; 0.05, and *** indicates p ; 0.01.

	(1) Y02	(2) BERT	(3) Y02	(4) BERT	(5) Y02	(6) BERT
Variables	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon
	Count	Count	Cite	Cite	Valuation	Valuation
$GHGRP \times Emitter$	0.0353**	0.0435*	0.0428**	0.0501**	0.0611*	0.0767**
	(0.0161)	(0.0210)	(0.0160)	(0.0201)	(0.0307)	(0.0352)
R&D Intensity	0.3490*	0.2679	0.0091	0.1957	0.9652**	0.1812
	(0.1913)	(0.2150)	(0.3385)	(0.2475)	(0.4172)	(0.5632)
XAD/AT	-0.7415	-0.4246	0.6871	0.8139	-0.3961	0.2429
	(2.3996)	(2.9479)	(1.4703)	(1.7788)	(5.6617)	(5.7135)
CAPX/AT	-0.0178	-0.1467	-0.1732	-0.2711	-0.0135	-0.1101
	(0.2301)	(0.2484)	(0.2719)	(0.2475)	(0.4322)	(0.5234)
Ln(AT)	0.1203**	0.1522**	0.1355**	0.1555**	0.2631***	0.2983***
	(0.0502)	(0.0630)	(0.0490)	(0.0578)	(0.0712)	(0.0894)
Tangibility	0.0185	-0.0124	0.1668	0.0385	0.1837	-0.0392
	(0.1556)	(0.1784)	(0.1793)	(0.1830)	(0.3508)	(0.3440)
Labor/Capital	-0.3708	0.8068	-0.5552	-0.4202	-0.3535	1.4606
	(0.6174)	(0.9775)	(0.5828)	(0.8683)	(0.8382)	(1.3211)
Tobin's Q	0.0359*	0.0312	0.0452**	0.0574**	0.0634	0.0516
	(0.0170)	(0.0187)	(0.0205)	(0.0251)	(0.0361)	(0.0326)
Firm Age	-0.0031	-0.0076	0.0084	0.0051	0.0172	0.0010
	(0.0088)	(0.0080)	(0.0075)	(0.0078)	(0.0272)	(0.0091)
Leverage	-0.0002	-0.0001	-0.0001	0.0001	0.0000	0.0002
	(0.0004)	(0.0003)	(0.0003)	(0.0003)	(0.0005)	(0.0005)
ROA	0.0458	0.0079	0.0736	-0.0219	0.0673	-0.1919
	(0.0760)	(0.0707)	(0.0725)	(0.0816)	(0.1722)	(0.1637)
Cash/AT	-0.1229*	-0.0850	-0.0667	-0.1742**	0.1256	0.2189
	(0.0602)	(0.0943)	(0.0806)	(0.0747)	(0.2038)	(0.2951)
R&D Missing	-0.0500	-0.0566	-0.0809	-0.0463	-0.1215	-0.1901
	(0.0832)	(0.0927)	(0.1109)	(0.1113)	(0.1496)	(0.1475)
Observations	5,573	5,573	5,573	5,573	5,573	5,573
R-squared	0.905	0.926	0.859	0.892	0.847	0.889
Firm FE	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES

Table 5: Emissions Reduction

This table reports how the Greenhouse Gas Reporting Program (GHGRP) affects firm estimated CO_2 emissions and other criteria air emissions. The sample period is four years (2005, 2008, 2011 and 2014) because the NEI data is updated every three years. The dependent variables are the natural logarithm of one plus (a) the estimated CO_2 emissions through CO and (b) non-CO criteria air releases (NH₃, NO_x, PM₁₀, SO₂, and VOC). Estimated CO_2 emissions are derived from process-level CO data, using the CO-to-CO₂ industry process conversion factors, and are then aggregated at the firm level. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO_2 emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO -to- CO_2 conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Standard errors, double-clustered by industry and year, are reported in parentheses. The bottom of the table presents the p-values from the coefficient difference test for GHGRP×Emitter. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Variables	(1) Estimated CO_2	(2) Non-CO Criteria Air	(3) Estimated CO_2	(4) Non-CO Criteria Air
GHGRP×Emitter	-0.3190**	-0.1495*	-0.3305***	-0.1456*
	(0.0566)	(0.0514)	(0.0562)	(0.0528)
R&D Intensity	, ,	,	-1.8259	-0.6779
*			(1.3568)	(0.3021)
XAD/AT			-4.1750	0.6443
,			(6.0817)	(2.9066)
CAPX/AT			1.6081	1.3251
			(1.7561)	(0.9142)
Ln(AT)			0.0364	-0.0310
			(0.1307)	(0.0702)
Tangibility			1.1240	0.3010
			(0.6058)	(0.5198)
Labor/Capital			-2.3251	-6.2954
			(3.2500)	(3.2263)
Tobin's Q			0.0837	0.0124
			(0.0625)	(0.0260)
Firm Age			0.0517	0.0575
			(0.0713)	(0.0364)
Leverage			-0.0041	0.0077*
			(0.0061)	(0.0033)
ROA			-0.3959	-0.3135
			(0.4582)	(0.2751)
Cash/AT			0.6691	-0.2460
			(0.3013)	(0.3356)
R&D Missing			-0.1183	0.0487
			(0.3781)	(0.1708)
Observations	1,654	1,654	1,654	1,654
R-squared	0.945	0.961	0.945	0.962
Firm FE	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES
Diff Test (P-value)	0.0)100**	0.00	045***

Table 6: Environmental Score

This table examines the impact of the Greenhouse Gas Reporting Program (GHGRP) on Environmental scores over the sample period from 2002 to 2014. The dependent variable is the firm's total E score, calculated as the number of KLD environmental strengths (scaled by the total environmental strengths items) minus the number of KLD environmental concerns (scaled by the total environmental concerns items). The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Column (2) also include the following variables: R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Variables	(1) E Score	(2) E Score
variables		
$GHGRP \times Emitter$	0.0264**	0.0268**
	(0.0106)	(0.0102)
R&D Intensity		-0.7693**
		(0.3213)
XAD/AT		0.1324
		(0.8716)
CAPX/AT		0.1261
		(0.1740)
Ln(AT)		-0.0571***
		(0.0094)
Tangibility		0.1025
		(0.1709)
Labor/Capital		0.6651
		(0.5859)
Tobin's Q		-0.0073
		(0.0115)
Firm Age		-0.0041
		(0.0083)
Leverage		-0.0001
		(0.0001)
ROA		0.1439*
		(0.0711)
Cash/AT		-0.0382
		(0.1048)
R&D Missing		-0.0120
		(0.0404)
Observations	4,090	4,090
R-squared	0.662	0.667
Firm FE	YES	YES
Industry-Year FE	YES	YES

Table 7: Placebo Tests

This table reports placebo tests for the Greenhouse Gas Reporting Program (GHGRP), using data from 2002 to 2014. Panel A uses other green patents, defined as OECD green patents excluding CPC Y02 patents, as the dependent variable. Panels B and C use CPC Y02 or BERT-based low-carbon patents as the dependent variable, replacing the original Emitter variable with the firm's oil beta in Panel B and market beta in Panel C, respectively. In all panels, the dependent variables are measured as the natural logarithm of one plus: (a) the number of relevant patents, (b) their citation counts, and (c) their valuations. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. Oil beta and market beta are also categorized into quartiles by industry. A value of one represents firms in the first quartile of oil or market beta within their three-digit NAICS industry. Both betas are calculated using firm return data from 2007, excluding dates after December 26, 2007—the date the U.S. Congress passed the Consolidated Appropriations Act of 2008. Oil beta $\beta_{oil,i}$ and market beta $\beta_{market,i}$ are estimated from the regression: $Ret_{i,t} = \alpha_i + \beta_{oil,i} \times Ret_{oil,t} + \beta_{market,i} \times Ret_{m,t} + \varepsilon_{i,t}$. $Ret_{oil,t}$ is based on Brent crude oil futures prices, and $Ret_{m,t}$ is based on the value-weighted market index. Regressions presented in this table include firm and industry-year fixed effects. Control variables are R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1,

** indicates $p < 0.05$, as	nd *** indicates	p < 0.01.				
Panel A. Other Green I	Patents					
Variables	(1)	(2)	(3)	(4)	(5)	(6)
	Other Green	Other Green	Other Green	Other Green	Other Green	Other Green
	Count	Count	Cite	Cite	Valuation	Valuation
GHGRP×Emitter	0.0162	0.0157	0.0144	0.0146	0.0178	0.0172
	(0.0098)	(0.0090)	(0.0100)	(0.0095)	(0.0189)	(0.0180)
Observations R-squared Controls Firm FE	5,573	5,573	5,573	5,573	5,573	5,573
	0.844	0.844	0.806	0.806	0.791	0.791
	NO	YES	NO	YES	NO	YES
	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES
Panel B. Treatment Ba	sed on Firm Oil	Beta				
Variables	(1) Y02 Low- Carbon Count	(2) BERT Low- Carbon Count	(3) Y02 Low- Carbon Cite	(4) BERT Low- Carbon Cite	(5) Y02 Low- Carbon Valuation	(6) BERT Low- Carbon Valuation
GHGRP×Oil Beta	-0.0210	-0.0293	-0.0302	-0.0312	-0.0111	-0.0292
	(0.0247)	(0.0306)	(0.0241)	(0.0262)	(0.0361)	(0.0491)
Observations	5,573	5,573	5,573	5,573	5,573	5,573
R-squared	0.905	0.926	0.859	0.892	0.847	0.889
Controls	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES
Panel C. Treatment Ba	sed on Firm Mar	rket Beta				
Variables	(1) Y02 Low- Carbon Count	(2) BERT Low- Carbon Count	(3) Y02 Low- Carbon Cite	(4) BERT Low- Carbon Cite	(5) Y02 Low- Carbon Valuation	(6) BERT Low- Carbon Valuation
GHGRP×Market Beta	0.0124	0.0079	0.0258	0.0317	0.0416	0.0219
	(0.0160)	(0.0205)	(0.0203)	(0.0213)	(0.0334)	(0.0483)
Observations	5,573	5,573	5,573	5,573	5,573	5,573
R-squared	0.905	0.926	0.859	0.892	0.847	0.889
Controls	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES

Table 8: Competition Pressure

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents for firms with high and low competition pressure. The sample period is from 2002 to 2014. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, and (b) their citations. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. We classify firms into high and low competition pressure groups using two measures: (a) product market similarity and (b) climate risk analyst coverage. Firms with product market similarity, and the remainder as Low Product Similarity. Firms with climate risk analyst coverage above the sample median in 2006 are classified as High Climate Risk Analyst, and the remainder as Low Climate Risk Analyst. Regressions presented in this table include firm and industry-year fixed effects. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Panel A. Product Similarity

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Variables	Y02 Low- Carbon Count	Y02 Low- Carbon Count	BERT Low- Carbon Count	BERT Low- Carbon Count	Y02 Low- Carbon Cite	Y02 Low- Carbon Cite	BERT Low- Carbon Cite	BERT Low- Carbon Cite
Subsample	Low Product Similarity	High Product Similarity	$Low\ Product\\ Similarity$	High Product Similarity	Low Product Similarity	High Product Similarity	Low Product Similarity	High Product Similarity
$GHGRP \times Emitter$	0.0210	0.0505*	0.0216	0.0519*	0.0286	0.0538*	0.0172	0.0689*
	(0.0294)	(0.0243)	(0.0382)	(0.0266)	(0.0395)	(0.0260)	(0.0476)	(0.0328)
Observations	2,613	2,555	2,613	2,555	2,613	2,555	2,613	2,555
R-squared	0.912	0.914	0.923	0.934	0.872	0.867	0.892	0.907
Controls	YES	YES	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES	YES	YES

Panel B. Climate Risk Analyst Coverage

Variables	(1) Y02 Low- Carbon Count	(2) Y02 Low- Carbon Count	(3) BERT Low- Carbon Count	(4) BERT Low- Carbon Count	(5) Y02 Low- Carbon Cite	(6) Y02 Low- Carbon Cite	(7) BERT Low- Carbon Cite	(8) BERT Low- Carbon Cite
Subsample	Low Climate Risk Analyst	High Climate Risk Analyst	Low Climate Risk Analyst	High Climate Risk Analyst	Low Climate Risk Analyst	High Climate Risk Analyst	Low Climate Risk Analyst	High Climate Risk Analyst
${\rm GHGRP}{\times}{\rm Emitter}$	-0.0084 (0.0124)	0.0888** (0.0377)	-0.0033 (0.0159)	0.0980* (0.0490)	-0.0172 (0.0162)	0.1342*** (0.0353)	-0.0201 (0.0174)	0.1607*** (0.0422)
Observations	2,621	2,209	2,621	2,209	2,621	2,209	2,621	2,209
R-squared	0.869	0.903	0.893	0.923	0.816	0.848	0.843	0.884
Controls	YES	YES	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES	YES	YES

Table 9: Price Efficiency

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents for firms with high versus low price efficiency. The sample period is from 2002 to 2014. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, and (b) their citations. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. We classify firms into high and low price efficiency groups based on two measures: (a) option trading volume and (b) the probability of informed trading (PIN). Firms with option trading volume in 2006 above the sample median are classified as High Option Trading, and the rest as Low Option Trading. Similarly, firms with PIN above the sample median are classified as High PIN, and the rest as Low PIN. Regressions presented in this table include firm and industry-year fixed effects. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Panel A. Option Trading

Variables	(1) Y02 Low- Carbon Count	(2) Y02 Low- Carbon Count	(3) BERT Low- Carbon Count	(4) BERT Low- Carbon Count	(5) Y02 Low- Carbon Cite	(6) Y02 Low- Carbon Cite	(7) BERT Low- Carbon Cite	(8) BERT Low- Carbon Cite
Subsample	Low Option Trading	High Option Trading	$Low\ Option \ Trading$	High Option Trading	Low Option Trading	High Option Trading	Low Option Trading	$High\ Option \ Trading$
$GHGRP \times Emitter$	0.0218 (0.0351)	0.0931** (0.0382)	0.0400 (0.0000)	0.0900* (0.0453)	0.0159 (0.0315)	0.1342*** (0.0354)	0.0327 (0.0000)	0.1404*** (0.0398)
Observations	2,207	2,172	2,207	$2{,}172$	2,207	2,172	2,207	2,172
R-squared	0.809	0.924	0.845	0.943	0.738	0.874	0.783	0.907
Controls	YES	YES	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES	YES	YES

Panel B. PIN

Variables	(1) Y02 Low- Carbon Count	(2) Y02 Low- Carbon Count	(3) BERT Low- Carbon Count	(4) BERT Low- Carbon Count	(5) Y02 Low- Carbon Cite	(6) Y02 Low- Carbon Cite	(7) BERT Low- Carbon Cite	(8) BERT Low- Carbon Cite
Subsample	$High\ PIN$	$Low\ PIN$	$High\ PIN$	$Low\ PIN$	$High\ PIN$	$Low\ PIN$	$High\ PIN$	$Low\ PIN$
$GHGRP \times Emitter$	-0.0000 (0.0207)	0.0625** (0.0267)	0.0146 (0.0236)	0.0580* (0.0318)	-0.0095 (0.0184)	0.0922*** (0.0248)	0.0138 (0.0208)	0.0833** (0.0291)
Observations	2,702	2,726	2,702	2,726	2,702	2,726	2,702	2,726
R-squared	0.873	0.912	0.896	0.935	0.814	0.865	0.844	0.903
Controls	YES	YES	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES	YES	YES

Table 10: New Low-Carbon Experience Acquiring

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on firms acquiring inventors based on their years of experience in low-carbon patenting. The sample covers the period from 2002 to 2014. The dependent variable is the total years of CPC Y02 or BERT-based low-carbon inventor experience that a firm acquires from the labor market in a given year. The total years of low-carbon inventor experience is the sum of the years between the hiring of experienced inventors and the years they first patented low-carbon technology. An experienced inventor is defined as one with previous low-carbon patents who was not previously employed by the firm. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 $\rm CO_2$ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Columns (2) and (4) also include the following variables: R&D Intensity, XAD/AT, $\rm CAPX/AT$, $\rm Ln(AT)$, $\rm Tangibility$, $\rm Labor/Capital$, $\rm Tobin's Q$, $\rm Firm Age$, $\rm Leverage$, $\rm ROA$, $\rm Cash/AT$, and $\rm R&D$ Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

	(1)	(2)	(3)	(4)
Variables	New Y02 Low-	New Y02 Low-	New BERT Low-	New BERT Low-
V 411415155	Carbon Experience	Carbon Experience	Carbon Experience	Carbon Experience
$GHGRP \times Emitter$	0.8042***	0.8434***	1.0337***	1.0786***
	(0.2292)	(0.2616)	(0.3235)	(0.3430)
R&D Intensity		8.7477		7.9021
		(10.2061)		(10.8834)
XAD/AT		-93.2127		-111.7575
		(75.6099)		(87.0064)
CAPX/AT		-2.0779		-1.9974
		(14.3299)		(15.4806)
Ln(AT)		2.6851		2.8679
		(0.854)		(2.3468)
Tangibility		-1.2956		-1.5931
		(4.5960)		(5.1486)
Labor/Capital		-10.0152		-8.0420
		(20.7099)		(21.3990)
Tobin's Q		0.1915		0.1872
		(0.5564)		(0.6460)
Firm Age		-0.1050		-0.1290
		(0.1435)		(0.1906)
Leverage		-0.0022		-0.0014
		(0.0071)		(0.0074)
ROA		2.8491		3.1424
		(2.0691)		(2.1010)
Cash/AT		-17.5495		-19.8603
		(10.4523)		(12.0972)
R&D Missing		0.2883		0.3178
		(1.6747)		(1.7820)
Observations	5,573	5,573	5,573	5,573
R-squared	0.757	0.759	0.760	0.762
Firm FE	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES

Table 11: Existing Inventors' Low-Carbon Patenting Activities

This table examines the impact of the Greenhouse Gas Reporting Program (GHGRP) on the low-carbon patenting activities of firms' existing inventors. The sample covers the period from 2002 to 2014. The dependent variables are the natural logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents attributed to existing inventors, (b) the citations of these patents, and (c) the valuations of these patents. Existing inventors are defined as those hired by the firm who produced patents for the firm before 2008. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

	(1)	(2)	(3)	(4)	(5)	(6)
	Existing	Existing	Existing	Existing	Existing	Existing
Variables	Inventors Y02	Inventors	Inventors Y02	Inventors	Inventors Y02	Inventors
	Low-Carbon	BERT Low-	Low-Carbon	BERT Low-	Low-Carbon	BERT Low-
	Count	Carbon Count	Cite	Carbon Cite	Valuation	Carbon Valuation
GHGRP×Emitter	0.0068	0.0116	0.0085	0.0190	0.0008	0.0080
	(0.0161)	(0.0174)	(0.0174)	(0.0197)	(0.0397)	(0.0284)
R&D Intensity	0.0118	0.0732	-0.1578	-0.0840	$0.1477^{'}$	-0.1416
	(0.2039)	(0.3477)	(0.2362)	(0.3052)	(0.5066)	(0.7373)
XAD/AT	-0.0069	0.9271	1.1919	1.9687	-0.3795	1.5452
	(1.5511)	(1.9991)	(1.1827)	(1.5324)	(3.8914)	(4.0429)
CAPX/AT	-0.1148	-0.1808	-0.2010	-0.2223	-0.0440	0.0998
	(0.1921)	(0.2169)	(0.2343)	(0.2129)	(0.3352)	(0.4491)
Ln(AT)	0.1192**	0.1484**	0.1194***	0.1464***	0.2707***	0.3134***
	(0.0407)	(0.0513)	(0.0386)	(0.0473)	(0.0629)	(0.0739)
Tangibility	-0.0293	0.0732	0.0326	0.0254	0.0076	0.1847
	(0.0915)	(0.1364)	(0.1830)	(0.1743)	(0.2418)	(0.2967)
Labor/Capital	0.0621	0.4416	-0.3289	-0.2022	0.3463	1.0430
	(0.2394)	(0.2918)	(0.4400)	(0.4439)	(0.6228)	(0.7352)
Tobin's Q	0.0163	0.0129	0.0115	0.0196	0.0375**	0.0176
	(0.0153)	(0.0215)	(0.0220)	(0.0280)	(0.0168)	(0.0248)
Firm Age	0.0087	0.0096	0.0197***	0.0198**	0.0365	0.0384
	(0.0068)	(0.0078)	(0.0060)	(0.0065)	(0.0241)	(0.0243)
Leverage	-0.0003	-0.0001	-0.0002	-0.0000	-0.0000	0.0002
	(0.0004)	(0.0004)	(0.0004)	(0.0003)	(0.0006)	(0.0005)
ROA	-0.0307	-0.0344	-0.0008	-0.0655	-0.0671	-0.2499
	(0.0704)	(0.0636)	(0.0824)	(0.0827)	(0.2091)	(0.1778)
Cash/AT	-0.1056	-0.0421	-0.0174	-0.0710	0.0895	0.2738
	(0.0677)	(0.0624)	(0.0921)	(0.0640)	(0.2620)	(0.2062)
R&D Missing	-0.0596	-0.0855	-0.1092	-0.0980	-0.2051*	-0.3045**
	(0.0779)	(0.0788)	(0.1202)	(0.1021)	(0.1134)	(0.1381)
Observations	5,573	5,573	5,573	5,573	5,573	5,573
R-squared	0.902	0.924	0.847	0.880	0.844	0.883
Firm FE	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES

REFERENCES

- Acemoglu, Daron, Philippe Aghion, Leonardo Bursztyn, and David Hemous. 2012. "The Environment and Directed Technical Change." *American Economic Review*, 102: 131–166.
- Acemoglu, Daron, Ufuk Akcigit, Douglas Hanley, and William Kerr. 2016. "Transition to clean technology." *Journal of Political Economy*, 124: 52–104.
- Aghion, Philippe, Antoine Dechezleprètre, David Hémous, Ralf Martin, and John Van Reenen. 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry." *Journal of Political Economy*, 124: 1–51.
- Aghion, Philippe, Christopher Harris, Peter Howitt, and John Vickers. 2001. "Competition, imitation and growth with step-by-step innovation." *The Review of Economic Studies*, 68: 467–492.
- Aghion, Philippe, Nick Bloom, Richard Blundell, Rachel Griffith, and Peter Howitt. 2005. "Competition and innovation: An inverted-U relationship." The Quarterly Journal of Economics, 120: 701–728.
- Amore, Mario Daniele, and Morten Bennedsen. 2016. "Corporate governance and green innovation." *Journal of Environmental Economics and Management*, 75: 54–72.
- Angelucci, Simone, Francisco Javier Hurtado-Albir, and Alessandro Volpe. 2018. "Supporting global initiatives on climate change: The EPO's "Y02-Y04S" tagging scheme." World Patent Information, 54: S85–S92.
- Arkhangelsky, Dmitry, Susan Athey, David A. Hirshberg, Guido W. Imbens, and Stefan Wager. 2021. "Synthetic difference-in-differences." American Economic Review, 111: 4088–4118.
- Bakke, Tor-Erik, and Toni M. Whited. 2010. "Which firms follow the market? An analysis of corporate investment decisions." *The Review of Financial Studies*, 23: 1941–1980.
- Barwick, Patrick J., Shanjun Li, Ling Lin, and Eric Y. Zou. 2024. "From fog to smog: The value of pollution information." *American Economic Review*, 114: 1338–1381.
- Berman, Eli, and Linda T. M. Bui. 2001. "Environmental regulation and labor demand: evidence from the South Coast Air Basin." *Journal of Public Economics*, 79: 265–295.
- Berrone, Pascual, Andrea Fosfuri, Luis Gelabert, and Luis R. Gomez-Mejia. 2013. "Necessity as the mother of 'green' inventions: Institutional pressures and environmental innovations." *Strategic Management Journal*, 34: 891–909.
- Blanco, Iván, and David Wehrheim. 2017. "The bright side of financial derivatives: Options trading and firm innovation." *Journal of Financial Economics*, 125: 99–119.
- Bloom, Nicholas, Stephen Bond, and John Van Reenen. 2007. "Uncertainty and investment dynamics." The Review of Economic Studies, 74: 391–415.
- Bollinger, Brian, Phillip Leslie, and Alan Sorensen. 2011. "Calorie posting in chain restaurants." *American Economic Journal: Economic Policy*, 3: 91–128.
- Bolton, Patrick, and Marcin Kacperczyk. 2021. "Do investors care about carbon risk?" Journal of Financial Economics, 142: 517–549.
- Bolton, Patrick, Marcin T. Kacperczyk, and Michael Wiedemann. 2023. "The co2 question: Technical progress and the climate crisis." Available at SSRN 4212567.

- Boyer, Marcel, and Jean-Jacques Laffont. 1999. "Toward a political theory of the emergence of environmental incentive regulation." The RAND Journal of Economics, 137–157.
- Brown, Jason R., Gustav Martinsson, and Christian Thomann. 2022. "Can environmental policy encourage technical change? Emissions taxes and R&D investment in polluting firms." The Review of Financial Studies, 35: 4518–4560.
- Brown, Susan, Steven A. Hillegeist, and Kin Lo. 2004. "Conference calls and information asymmetry." *Journal of Accounting and Economics*, 37: 343–366.
- Brunnermeier, Smita B., and Mark A. Cohen. 2003. "Determinants of environmental innovation in US manufacturing industries." *Journal of Environmental Economics and Management*, 45: 278–293.
- Budish, Eric, Benjamin N. Roin, and Heidi Williams. 2016. "Patents and research investments: Assessing the empirical evidence." *American Economic Review*, 106: 183–187.
- Calel, Raphael. 2020. "Adopt or Innovate: Understanding Technological Responses to Capand-Trade." American Economic Journal: Economic Policy, 12: 170–201.
- Cattaneo, Matias D., Michael Jansson, and Xinwei Ma. 2018. "Manipulation testing based on density discontinuity." *The Stata Journal*, 18: 234–261.
- Chen, Qi, Itay Goldstein, and Wei Jiang. 2007. "Price informativeness and investment sensitivity to stock price." The Review of Financial Studies, 20: 619–650.
- Chen, Yu-Chin, Mingyi Hung, and Yuyan Wang. 2018. "The effect of mandatory CSR disclosure on firm profitability and social externalities: Evidence from China." *Journal of Accounting and Economics*, 65: 169–190.
- Christensen, Hans B., Eric Floyd, Liyan Liu, and Michelle Maffett. 2017. "The real effects of mandated information on social responsibility in financial reports: Evidence from mine-safety records." *Journal of Accounting and Economics*, 64: 284–304.
- Christensen, Hans B., Luzi Hail, and Christian Leuz. 2013. "Mandatory IFRS reporting and changes in enforcement." *Journal of Accounting and Economics*, 56: 147–177.
- Christensen, Hans B., Luzi Hail, and Christian Leuz. 2021. "Mandatory CSR and sustainability reporting: economic analysis and literature review." *Review of Accounting Studies*, 26: 1176–1248.
- Cohen, Lauren, Umit G. Gurun, and Quoc H. Nguyen. 2024. "The ESG-innovation disconnect: Evidence from green patenting." National Bureau of Economic Research.
- Darendeli, Aysa, Kevin K. Law, and Min Shen. 2022. "Green new hiring." Review of Accounting Studies, 27: 986–1037.
- Downar, Benjamin, Jannis Ernstberger, Stefan Reichelstein, Sebastian Schwenen, and Aleksandra Zaklan. 2021. "The impact of carbon disclosure mandates on emissions and financial operating performance." Review of Accounting Studies, 26: 1137–1175.
- **Duchin, Rodolphe, Jie Gao, and Qing Xu.** 2024. "Sustainability or greenwashing: Evidence from the asset market for industrial pollution." *Journal of Finance*. forthcoming.
- Easley, David, Soeren Hvidkjaer, and Maureen O'Hara. 2002. "Is information risk a determinant of asset returns?" *The Journal of Finance*, 57: 2185–2221.
- Edmans, Alex, and Gustavo Manso. 2011. "Governance through trading and intervention: A theory of multiple blockholders." *The Review of Financial Studies*, 24: 2395–2428.

- Farre-Mensa, Joan, Deepak Hegde, and Alexander Ljungqvist. 2020. "What is a patent worth? Evidence from the US patent "lottery"." The Journal of Finance, 75: 639–682.
- Frankel, Robert, S.P. Kothari, and Anup Raghunandan. 2025. "The economics of ESG disclosure regulation." Review of Accounting Studies, 1–36.
- Ganglmair, Bernhard, William K. Robinson, and Matthew Seeligson. 2022. "The rise of process claims: Evidence from a century of US patents." ZEW-Centre for European Economic Research Discussion Paper.
- Giannetti, Mariassunta, Martina Jasova, Maria Loumioti, and Caterina Mendicino. 2023. ""Glossy green" banks: the disconnect between environmental disclosures and lending activities." ECB Working Paper. Banks: The Disconnect between Environmental Disclosures and Lending Activities (December, 2023).
- **Gibbons**, **James B.** 2023. "The financially material effects of mandatory nonfinancial disclosure." *Journal of Accounting Research*.
- **Greenstone, Michael.** 2002. "The impacts of environmental regulations on industrial activity: Evidence from the 1970 and 1977 clean air act amendments and the census of manufactures." *Journal of Political Economy*, 110: 1175–1219.
- Greenstone, Michael, Guojun He, Ruixue Jia, and Tong Liu. 2022. "Can technology solve the principal-agent problem? Evidence from China's war on air pollution." *American Economic Review: Insights*, 4: 54–70.
- Greenstone, Michael, John A. List, and Chad Syverson. 2012. "The effects of environmental regulation on the competitiveness of US manufacturing." National Bureau of Economic Research.
- Grullon, Gustavo, and David L. Ikenberry. 2025. "Excess Capacity, Marginal q, and Corporate Investment." The Journal of Finance, 80: 1533–1592.
- Gurney, Kevin R., Daniel L. Mendoza, Yuyu Zhou, Marc L. Fischer, Charles C. Miller, Saravanan Geethakumar, and Stephane de la Rue du Can. 2009. "High resolution fossil fuel combustion CO2 emission fluxes for the United States." *Environmental Science & Technology*, 43: 5535–5541.
- Gurney, Kevin R., Daniel Mendoza, Yuyu Zhou, Marc Fisher, Chris Miller, Saravanan Geethakumar, and Stephane De La Rue Dy Can. 2010. "Vulcan science methods documentation, version 2.0." Available at vulcan.project.asu.edu/pdf/Vulcan.documentation.v2.0.online.pdf, Accessed September 1, 2014.
- Hall, Bronwyn H., and Christian Helmers. 2010. "The role of patent protection in (clean/green) technology transfer." National Bureau of Economic Research.
- Haščič, Ivan, and Matteo Migotto. 2015. "Measuring environmental innovation using patent data." OECD Environment Working Papers.
- Hastings, Justine S., and Jeffrey M. Weinstein. 2008. "Information, school choice, and academic achievement: Evidence from two experiments." The Quarterly Journal of Economics, 123: 1373–1414.
- **Healy, Paul M., and Krishna G. Palepu.** 2001. "Information asymmetry, corporate disclosure, and the capital markets: A review of the empirical disclosure literature." *Journal of Accounting and Economics*, 31: 405–440.
- Hege, Ulrich, Sebastien Pouget, and Yue Zhang. 2023. "The impact of corporate Climate action on financial markets: Evidence from climate-related patents."

- Hermalin, Benjamin E., and Michael S. Weisbach. 2012. "Information disclosure and corporate governance." *The Journal of Finance*, 67: 195–233.
- Huang, Shan, and Alexander Kopytov. 2023. "Sustainable finance under regulation." Available at SSRN 4231723.
- Ilhan, Emirhan, Philipp Krueger, Zacharias Sautner, and Laura T. Starks. 2023. "Climate risk disclosure and institutional investors." *The Review of Financial Studies*, 36: 2617–2650.
- Jaffe, Adam B., Richard G. Newell, and Robert N. Stavins. 2003. "Technological change and the environment." In *Handbook of Environmental Economics*. 461–516. Elsevier.
- Johnstone, Nick, Ivan Haščič, and David Popp. 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts." *Environmental and Resource Economics*, 45: 133–155.
- **Jouvenot, Valentin, and Philipp Krueger.** 2020. "Mandatory corporate carbon disclosure: Evidence from a natural experiment." Available at SSRN 3434490.
- Kaltenberg, Mary, Adam B. Jaffe, and Margie E. Lachman. 2023. "Invention and the life course: Age differences in patenting." *Research Policy*, 52: 104629.
- Keller, Wolfgang, and Arik Levinson. 2002. "Pollution abatement costs and foreign direct investment inflows to US states." Review of Economics and Statistics, 84: 691–703.
- Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman. 2017. "Technological innovation, resource allocation, and growth." *The Quarterly Journal of Economics*, 132: 665–712.
- Krueger, Philipp, Zacharias Sautner, Dragon Yongjun Tang, and Ruicheng Zhong. 2024. "The effects of mandatory ESG disclosure around the world." *Journal of Accounting Research*, 62: 1795–1847.
- **Lanjouw, Jean O., and Ashoka Mody.** 1996. "Innovation and the international diffusion of environmentally responsive technology." *Research Policy*, 25: 549–571.
- Lanoie, Paul, Jérôme Laurent-Lucchetti, Nick Johnstone, and Stefan Ambec. 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis." *Journal of Economics & Management Strategy*, 20: 803–842.
- Lanteri, Alessandro, and Adriano A. Rampini. 2023. "Financing the Adoption of Clean Technology."
- Lin, Tzu-Chun, Qifei Liu, and Bo Sun. 2019. "Contractual managerial incentives with stock price feedback." *American Economic Review*, 109: 2446–2468.
- Luo, Xueming, and C.B. Bhattacharya. 2006. "Corporate social responsibility, customer satisfaction, and market value." *Journal of Marketing*, 70: 1–18.
- Luo, Xueming, Christian Homburg, and Jan Wieseke. 2010. "Customer satisfaction, analyst stock recommendations, and firm value." *Journal of Marketing Research*, 47: 1041–1058.
- Matsumura, Eileen M., Rahul Prakash, and Sandra C. Vera-Muñoz. 2014. "Firm-value effects of carbon emissions and carbon disclosures." *The Accounting Review*, 89: 695–724.
- Myers, Emily, Steven L. Puller, and Jeremy West. 2022. "Mandatory energy efficiency disclosure in housing markets." *American Economic Journal: Economic Policy*, 14: 453–487.

- Newell, Richard G., Adam B. Jaffe, and Robert N. Stavins. 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change." *The Quarterly Journal of Economics*, 114: 941–975.
- Palmer, Karen, Wallace E. Oates, and Paul R. Portney. 1995. "Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?" *Journal of Economic Perspectives*, 9: 119–132.
- Pástor, L'ubomír, Robert F. Stambaugh, and Lucian A. Taylor. 2021. "Sustainable investing in equilibrium." *Journal of Financial Economics*, 142: 550–571.
- **Popp, David.** 2002. "Induced Innovation and Energy Prices." American Economic Review, 92: 160–180.
- **Popp, David.** 2003. "Pollution control innovations and the Clean Air Act of 1990." *Journal of Policy Analysis and Management*, 22: 641–660.
- **Popp, David.** 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany." *Journal of Environmental Economics and Management*, 51: 46–71.
- **Porter, Michael.** 1991. "America's green strategy." Business and the Environment: A Reader, 33: 1072.
- Porter, Michael E., and Class van der Linde. 1995. "Toward a New Conception of the Environment-Competitiveness Relationship." Journal of Economic Perspectives, 9: 97–118.
- Rambachan, Ashesh, and Jonathan Roth. 2023. "A more credible approach to parallel trends." Review of Economic Studies, 90: 2555–2591.
- Reza, S. Wahidur, and Yuxing Wu. 2024. "The value of green innovation." Available at SSRN 4212739.
- Rockett, Katharine E. 1990. "Choosing the competition and patent licensing." The RAND Journal of Economics, 161–171.
- Roll, Richard, Eduardo Schwartz, and Avanidhar Subrahmanyam. 2009. "Options trading activity and firm valuation." *Journal of Financial Economics*, 94: 345–360.
- Sautner, Zacharias, Laurence Van Lent, Grigory Vilkov, and Rui Zhang. 2023a. "Firm-level climate change exposure." *The Journal of Finance*, 78: 1449–1498.
- Sautner, Zacharias, Laurence Van Lent, Grigory Vilkov, and Rui Zhang. 2023b. "Pricing climate change exposure." *Management Science*, 69: 7540–7561.
- Seira, Enrique, Alejandra Elizondo, and Elizabeth Laguna-Müggenburg. 2017. "Are information disclosures effective? Evidence from the credit card market." *American Economic Journal: Economic Policy*, 9: 277–307.
- Shapiro, Adam Fox, and Gilbert E. Metcalf. 2023. "The macroeconomic effects of a carbon tax to meet the US Paris agreement target: The role of firm creation and technology adoption." *Journal of Public Economics*, 218: 104800.
- **Syverson, Chad.** 2011. "What determines productivity?" *Journal of Economic Literature*, 49: 326–365.
- **Tarui, Nori, and Stephen Polasky.** 2005. "Environmental regulation with technology adoption, learning and strategic behavior." *Journal of Environmental Economics and Management*, 50: 447–467.

- **Teece**, **David J.** 1986. "Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy." *Research Policy*, 15: 285–305.
- **Tomar, Shivani.** 2023. "Greenhouse gas disclosure and emissions benchmarking." *Journal of Accounting Research*, 61: 451–492.
- Veefkind, V., J. Hurtado-Albir, S. Angelucci, K. Karachalios, and N. Thumm. 2012.
 "A new EPO classification scheme for climate change mitigation technologies." World Patent Information, 34: 106–111.
- Wang, Xiting, Seung-Hyun Cho, and Alan Scheller-Wolf. 2021. "Green technology development and adoption: competition, regulation, and uncertainty—a global game approach." *Management Science*, 67: 201–219.
- Yang, Liyang, Nicholas Z. Muller, and Paul J. Liang. 2021. "The Real Effects of Mandatory CSR Disclosure on Emissions: Evidence from the Greenhouse Gas Reporting Program." National Bureau of Economic Research.
- Yu, Meng Li Ting. 2024. "Are Green Innovations Priced? Evidence Beyond Patents." Swiss Finance Institute Research Paper 23-21.

Internet Appendix for "Grow in the Sun: Valuation and Development of Green Innovation under Mandatory Carbon Disclosure"

A1. Representative Public Comments on the GHGRP Proposal

This section of the internet appendix presents selected public comments on the EPA's initial GHGRP proposal. The comments highlight significant uncertainty and disagreement over key program elements at the time of the proposal.

Corporations express concerns about emissions calculations, continuous reporting requirements for facilities that reduce emissions, and ambiguous definitions, including those of natural gas and offshore production facilities. For example, William A. Collins, Jr., Senior Director of Regulatory Affairs at Occidental Petroleum Corporation, urges that EPA's mandatory GHG reporting rule should be based only on actual emissions, not potential or allowable emissions, and opposes the "once in, always in" policy that requires perpetual reporting even if emissions fall below thresholds. He requests clarifications in definitions, excluding gases without commercially significant hydrocarbons from "natural gas" and specifying that artificial islands are not "platform structures," and emphasizes that CO₂ captured for enhanced oil recovery, which is largely sequestered, should not be counted as emissions. Collins also recommends developing voluntary or demonstration reporting protocols for supplied CO₂ and sequestered CO₂ and supports annual rather than quarterly measurement to ensure accurate, practical, and legally sound reporting. Available at https://www.regulations.gov/comment/EPA-HQ-OAR-2008-0508-0452

Comment submitted by William W. Grygar II, Environmental & Regulatory Manager, Anadarko Petroleum Corporation, emphasized several concerns regarding the GHGRP proposal. Anadarko supported the 25,000 metric tons per year threshold, recommended delaying implementation by one year, and opposed the "once in, always in" policy. They requested extending the annual reporting deadline to June 30, excluding indirect emissions, and allowing self-certification rather than third-party verification. Anadarko also highlighted the disproportionate burden on onshore oil and gas facilities, urged clarifications for definitions such as "natural gas processing facilities" and "fugitive emissions," and recommended excluding CO₂ used for enhanced oil recovery and avoiding double-counting in NGL reporting. Available at https://www.regulations.gov/comment/EPA-HQ-OAR-2008-0508-0459

Some industry associations argue that the 25,000 metric ton CO₂e threshold is arbitrary. The comment submitted by Joseph J. Croce, Senior Vice President of the Virginia Manufacturers Association (VMA), discusses this issue on page 4 (available at https://www.regulations.gov/comment/EPA-HQ-OAR-2008-0508-0526). The VMA argues that the 25,000 tCO₂e threshold is arbitrary and not based on science. They note that it is unclear why 25,000 tCO₂e is preferred over 25,500 or 30,000 tCO₂e and that applying this threshold would impose burdens on facilities not classified as major sources under existing Clean Air Act programs. Similarly, Lauren E. Freeman and Norman W. Fichthorn, Hunton & Williams LLP, on behalf of the Utility Air Regulatory Group (UARG), address the threshold on pages 4–5 of their comment (available at https://www.regulations.gov/comment/EPA-HQ-OAR-2008-0508-0493). They note that EPA did not explain any legal or regulatory basis for setting the threshold at 25,000 tons, which appears far above the 250-ton-per-year level established under the Clean Air Act for PSD applicability, and they recommend that EPA clarify and justify this threshold before proceeding.

Different stakeholders express divergent views on the reporting scope. RiskMetrics Group recommends including Scope 2 emissions, whereas Teck Alaska Incorporated proposes limiting reporting to upstream emissions to prevent double-counting. Comment by Geri Kantor and Doug Cogan, RiskMetrics Group, is available at https://www.regulations.gov/comment/EPA-HQ-OAR-2008-0508-0369; comment by Jeffrey L. Clark, Environmental Coordinator, Teck Alaska Incorporated, is available at https://www.regulations.gov/comment/EPA-HQ-OAR-2008-0508-0142.

Many commenters from certain industries opposed the proposed rule, arguing that it would increase the regulatory burden. The Portland Cement Association notes that the rule would

create a massive new reporting system for greenhouse gases and impose requirements greater than any other EPA Clean Air Act information-gathering effort. The association emphasizes that the obligations go far beyond what is needed to understand national emissions and would impose disproportionately high costs on cement plants (Comment submitted by Andrew T. O'Hare, Vice President, Regulatory Affairs, PCA, p. 2, available at https://www.regulations.gov/comment/EPA-HQ-OAR-2008-0508-0509). Similarly, the California Cattlemen's Association argues that livestock operations would face unnecessary reporting obligations, even though agriculture accounts for a small share of national emissions, and that the rule applies arbitrary thresholds without reflecting the actual impact of emissions (Comment submitted by Justin Oldfield, Director, Industry Affairs, CCA, available at https://www.regulations.gov/comment/EPA-HQ-OAR-2008-0508-0383).

DATA AND MATCHING DETAILS

B1. NEI Database

The National Emissions Inventory (NEI) is a national compilation of emissions sources that is created by combining data from various state, local and tribal air agencies (SLTs) with information from EPA emissions programs (e.g., Toxics Release Inventory (TRI), Acid Rain Program) and data gathered for EPA regulatory development aimed at reducing air toxic emissions. To create the NEI, the data from these different sources are blended together using quality assurance procedures. We use this section to show how we match NEI facilities with public firms.

Step 1: To access the NEI data, we visit the website https://www.epa.gov/air-emissions-inventories/2008-national-emissions-inventory-nei-data and download the "point" data. These data include process-level emissions information for various facilities.

The term "point" refers to large stationary sources (e.g., electric utilities, heavy industry) that have a distinct physical location. In contrast, "nonpoint" sources (e.g., field burning, residential wood combustion) have emissions that are distributed across a county area. Additionally, "mobile" category emissions, including "on-road" cars and trucks as well as "nonroad" sources such as aircraft and agricultural field equipment, are also typically estimated across county areas.

[Figure IA1 about here]

Step 2: In the NEI data, we utilize the "eis_facility_site_id," which is the identification number assigned to a facility in the EPA's Emissions Inventory System (EIS). We use this EIS ID to find the parent organization of a facility.

To find this information, we access the "National and State Comma Separated Value (CSV) files" available on the EPA website at https://www.epa.gov/frs/epa-state-combined-csv-download-files. The files include details of all Federal Reporting System (FRS) facilities.

Once we have downloaded these files, we use the "NATIONAL_ORGANIZATIO N_FILE.CSV" and select the rows where the "pgm_sys_acrnm" is "EIS" and "pgm_sys_id" matches the EIS ID of the facility. The "org_name" in this file provides the organization name (as shown in Figure IA2).

[Figure IA2 about here]

In some cases, an organization's name may be missing. In these instances, we extract the EIS ID from the "pgm_sys_acrnms" column of the "NATIONAL_FACI LITY_FILE.CSV" and use the "primary_name" to identify the facility name (as shown in Figure IA3). If the organization's name is not available, we then use the facility name.

[Figure IA3 about here]

- **Step 3**: In this step, we prepare the data by cleaning any special characters, capitalizing all names, and standardizing the suffixes of the NEI and Compustat firms' names. This includes converting "CORPORATION" to "CORP," "INDUSTRY" to "IND," and "GROUP" to "GRP," among others.
- Step 4: To match the names in the TRI and Compustat data sets, we utilize the SAS "compged()" function, which is a fuzzy name-matching algorithm. This function calculates the matching score (or edit distance) between two strings, with a score of 0 indicating that the strings are identical. To make the matching process more efficient, we first ensure that the initials of the names in the TRI and Compustat data sets are the same, and then calculate the edit distance. We keep outputs for cases in which the matching score is no more than 520, which yields a pool of potential matches.
- **Step 5**: To verify the matches, we manually check the names from the output file. This includes checking the matching score, conducting a Google search of names, and visiting firms' websites to confirm that the two names refer to the same company.

To determine the amount of CO₂ emissions for each process at each facility, we employ conversion factors outlined in the literature (Gurney et al. 2009; Gurney et al. 2010). These factors, detailed in the Vulcan Science Methods Documentation, can be found at: https://vulcan.rc.nau.edu/assets/files/Vulcan.documentation.v2.0.online.pdf

An overarching principle with respect to these factors is that when fuel is burned under consistent conditions in standard industrial processes, it will consistently produce CO_2 and CO in proportionate amounts. We use these conversion factors to calculate the CO_2 emissions for each process, and then add up the process-level estimates to arrive at the total CO_2 emissions for a company.

The process for converting CO emissions to CO₂ involves the following steps:

Step 1: We download the Source Classification Codes (SCCs) file from the website https://ofmpub.epa.gov/sccwebservices/sccsearch/, which contains a detailed description of each process. The file contains four levels of description for combustion processes that produce emissions. The higher levels contain more detailed information. For example, the SCC code 30500849 is for industrial processes (level 1), for mineral products (level 2), for clay ceramics manufacture (level 3), and is for a roller kiln: natural gas-fired (level 4).

[Figure IA4 about here]

- **Step 2**: We match the detailed description by using the SCC code in the NEI CO emissions with the Source Classification Codes (SCCs) file. Therefore, we have a four-level description of SCCs.
- **Step 3**: Following Table A.1 of the Vulcan Science Methods Documentation, we find key words in the four levels of the SCC description of each observation in the NEI. For example, we find the key words for materials "bituminous coal" and modifier for "pulverized" in the four levels of the SSC, and then assign the emission factors 0.021 for CO emissions.

[Figure IA5 about here]

Step 4: Following Table A.3 of the Vulcan Science Methods Documentation, we assign CO₂ factors for these materials. For example, the factor 0.0531 is for the material "natural gas," which SSCs include the key word "natural gas."

[Figure IA6 about here]

Step 5: We use the following formula provided by Gurney et al. (2010) to calculate the estimated CO_2 emissions for each CO observation in the NEI:

$$C_{pf} = \frac{12}{44} \frac{PE_{pf}}{PF_{pf}} CF_{pf}$$

In cases where p indexes combustion process (e.g., turbine and reciprocating engine), f is the fuel type such as distillate oil and natural gas, C is the emitted amount for carbon, PE is the amount of CO emissions, PF is the emission factor of CO, and CF is the emission factor of CO₂. Finally, we aggregate the process-level estimated CO₂ emissions at the firm-level.

Figure IA1: Data Download

We use the To access the NEI data, we visit the website and download the "point" data.

Data Summaries

The data posted at this site will include only the latest version of the 2008NEI. This webpage should not be used as a reference for past versions of the NEI and users wanting a record of data used in their analysis should archive and document those inventories to meet their own archival needs. Users should not assume that the data posted on this site will stay the same as the data they use at a given point time.

The full detail data files for the Point, Onroad, Nonroad and Nonpoint data categories can be downloaded from the list below. Please note these files are larger than previous inventories and can be linked in Access if importing fails. These SCC data files do not include "events" data -wildfires and prescribed burning emissions. The events data can be found at the "Prescribed/Wildfires by Pollutant" link below under "Other Emissions Summaries". To obtain a complete inventory total, please include these data in addition to the 4 SCC data files provided here.

- Point (ZIP CSV) (406.0 MB)
- Onroad (ZIP CSV) (208.0 MB)
- Nonroad (ZIP CSV) (322.0 MB)
- Nonpoint (ZIP CSV) (51.2 MB)

Additional Summary Data

Source: https://www.epa.gov/air-emissions-inventories/2008-national-emissions-inventory-nei-data

Figure IA2: National Organization File

We use the "NATIONAL-ORGANIZATION-FILE.CSV" and select the rows where the "pgm_sys_acrnm" is "EIS" and the "pgm_sys_id" matches the EIS ID of the facility. The "org_name" in this file provides the organization's name.

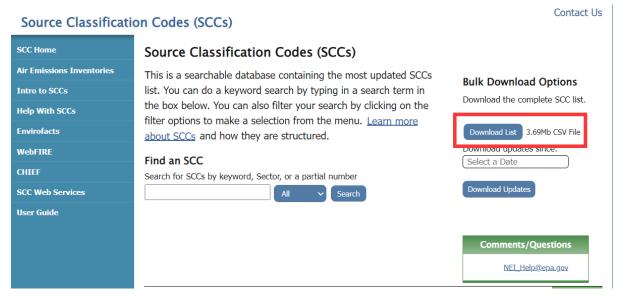

	registry_id	pgm_sys_acrnm	pgm_sys_id	org_name
1	110000491735	EIS	12663611	TESORO LOGISTICS OPERATIONS LLC
2	110000491780	EIS	680011	KOCH INDUSTRIES, INC.
3	110000498131	EIS	1075011	TO BE MERGED INTO 863511
4	110000498131	EIS	863511	PETRO STAR, INC.
5	110000507693	EIS	661411	ALYESKA SEAFOODS INC.
6	110000523595	EIS	12660411	ANCHORAGE WATER & WASTEWATER UTILITY
7	110000601705	EIS	542511	TECK ALASKA, INC. (TECK)
8	110000602250	EIS	12662311	GOLDEN VALLEY ELECTRIC ASSOC
9	110000707423	EIS	974811	TRIDENT SEAFOODS CORPORATION
10	110000908395	EIS	541511	ALYESKA PIPELINE SERVICE CO
11	110002003153	EIS	974911	TRIDENT SEAFOODS
12	110002003233	EIS	10564811	ALASKA POWER & TELEPHONE
13	110002003386	EIS	10591411	ALASKA ELECTRIC LIGHT AND POWER
14	110002151340	EIS	1134011	US AIR FORCE (CLEAR)
15	110002376679	EIS	10585911	KODIAK ELECTRIC ASSOCIATION
16	110002465779	EIS	542611	TECK ALASKA, INC. (TECK)
17	110003037883	EIS	679911	FAIRBANKS GOLD MINING INC
18	110003041994	EIS	680611	HILCORP ALASKA, LLC
19	110006002707	EIS	974611	US ARMY (FORT WAINWRIGHT)
20	110006002707	EIS	679211	DUPE IN 9746111
21	110006002707	EIS	12660811	DOYON UTILITIES LLC
22	110006377946	EIS	17987911	ALASKA POWER & TELEPHONE
23	110006532608	EIS	539611	PACIFIC ENERGY RESOURCES LTD.

Figure IA3: National Facility File

In some cases, the organization's name may be missing. In these instances, we extract the EIS ID from the "pgm_sys_acrnms" column of the "NATIONAL_FACILITY_FILE.CSV" and use the "primary_name" to identify the facility name.

	1C	AIR:AK00000	000202000032, AIRS/AFS:0202000032, BR:AKD980987499, EIS:12663611, EPS:EPS10057094, ICIS:2336, ICIS:
	registry_id	primary_name	pgm_sys_acrnms
1	110000491735	OCEAN DOCK TERMINAL AND	AIR:AK0000000202000032, AIRS/AFS:0202000032, BR:AKD980987499, EIS:12663611, EPS:EPS10057094, ICIS:
2	110000491744	INLET PERTROLEUM ANCHORA	EIS:677611, ICIS:2600029860, ICIS:5870869, NPDES:AK0000370, OTAQREG:OTAQREG10027527, RCRAINFO:AKDO
3	110000491762	UNIVAR USA	AIR:AK0000000202000105, BR:AKD981765902, EIS:677711, ICIS:1800046105, ICIS:3601086096, ICIS:360123
4	110000491780	FAIRBANKS PETROLEUM TERM	EIS:680011, ICIS:600007563, NPDES:AKR06AB58, NPDES:AKR06AF27, RCRAINFO:AKD000835033, TRIS:99707FRT
5	110000491824	TESORO ALASKA KETCHIKAN	EIS:540611, NPDES:AK0000523, RCRAINFO:AKD099832198, TRIS:99901TSRLS1010S
6	110000498131	ANCHORAGE TERMINALS I AN	AIR:100000000003, AIR:AK0000000202000031, AIR:AK0000000202000070, AIRS/AFS:0202000031, AIRS/AFS:02
7	110000507693	ALYESKA SEAFOOD UNALASKA	AIR:AK0000000201600004, AIRS/AFS:0201600004, CEDRI:CEDRI3186, EIS:661411, EPS:EPS10056652, ICIS:77
8	110000510215	EC PHILLIPS AND SON KETC	AIR:AK0000000213000020, AIRS/AFS:0213000020, ICIS:3600200426, NPDES:AKG520001, OSHA-OIS:341887826
9	110000514079	KETCHIKAN CHLORINATION P	
10	110000516558	GREAT WESTERN CHEMICAL A	RCRAINFO:AKD983069568
11	110000517940	BRENNTAG PACIFIC	BR:AKR000000836, EIS:10594111, ICIS:3601086108, ICIS:6683850, RCRAINFO:AKR000000836, SSTS:066887AK
12	110000523595	JOHN M ASPLUND WASTE WAT	AIR:AK0000000202000023, AIRS/AFS:0202000023, BR:AKR000206219, CEDRI:CEDRI82441, EIS:12660411, ICIS
13	110000526574	ALASKA PACIFIC SEAFOODS	CEDRI:CEDRI3611, ICIS:1800019577, ICIS:6683849, NCDB:I10#198609111513 1, NCDB:I10#19960917AX002 1
14	110000527920	ICICLE SEAFOODS SEWARD F	AIR:AK0000000201000016, AIR:AK0000000212200016, AIRS/AFS:0201000016, CEDRI:CEDRI1428, NPDES:AK0001
15	110000528947	CHANGEPOINT	NPDES:AKU000190
16	110000529599	TRIDENT SEAFOODS PILLAR	ICIS:6683847, NPDES:AK0000825, NPDES:AKG528825, OSHA-OIS:314292434, OSHA-OIS:316898022, TRIS:9961W
17	110000601705	RED DOG MINE	AIR:AK0000000218800002, AIRS/AFS:0218800002, EIS:10566811, EIS:542511, EPS:EPS10044885, ICIS:31546
18	110000602250	HEALY POWER PLANT	AIR:AK0000000229000002, AIRS/AFS:0229000002, CAMDBS:6288, EGRID:6288, EIA-860:6288, EIS:12662311,
19	110000608502	ALASKA RAILROAD CORP	BR:AKD981767403, ICIS:17055, ICIS:19977, ICIS:19978, ICIS:600035380, NCDB:C10#10-96344-01-NON, NCD
20	110000707423	TRIDENT SEAFOODS SAND PO	AIR:AK0000000201000025, AIRS/AFS:0201000025, CEDRI:CEDRI2619, EIS:974811, EPS:EPS10046876, ICIS:30
21	110000710632	EKUK FISHERIES	AIR:AK00000002070000002, AIRS/AFS:0207000002, NPDES:AKG520037, SFDW:AK2261208, SFDW:AK2261208 32533
22	110000730193	NORTH PACIFIC SEAFOODS S	NCDB:I10#198911170908 1, NPDES:AKG520065, NPDES:AKG523057
23	110000736151	NORQUEST SEAFOODS	NPDES:AK0045411
24	110000759162	SITKA WASTEWATER FACILITY	NPDES:AK0021474, NPDES:AKL021474
25	110000760917	PETERSBURG WWTP	NPDES:AK0021458, NPDES:AKL021458
26	110000761453	HAINES WWTP	NPDES:AK0021385, NPDES:AKL021385
27	110000779907	CCI INC	RCRAINFO:AK0000016709

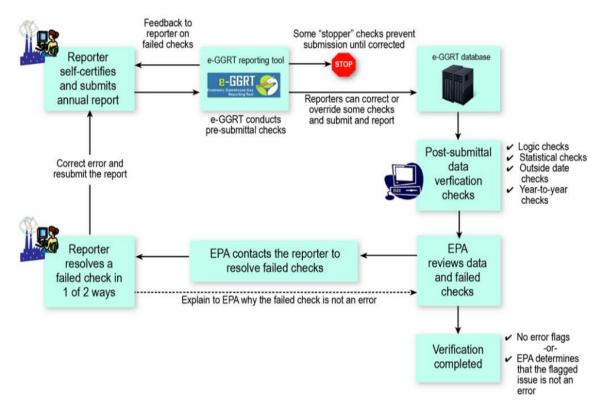
Figure IA4: Source Classification Codes (SCCs)

Source: https://ofmpub.epa.gov/sccwebservices/sccsearch/

Figure IA5: Examples of CO Emission Factors

Mat id	unit	lbs CO/ unit	lbs CO∕ 10 ⁶ btu	material name	modifier
663	TON	0.5	0.021	bituminous coal	scc contains: "pulverized"
663	TON	0.5	0.021	bituminous coal	scc contains: "cyclone"
663	TON	0.6	0.025	bituminous coal	scc contains: "cogeneration"
663	TON	275	11.441	bituminous coal	scc contains: "hand-fired"
663	TON	6	0.250	bituminous coal	scc contains: "spreader stoker"
663	TON	6	0.250	bituminous coal	scc contains: "overfeed stoker"
663	TON	18	0.749	bituminous coal	scc contains: "atmospheric fluidized bed"
663	TON	11	0.458	bituminous coal	scc contains: "underfeed stoker"

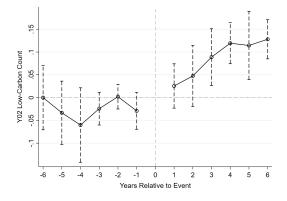
Source: Table A.1 of Vulcan Science Methods Documentation


Figure IA6: Examples of CO₂ Emission Factors

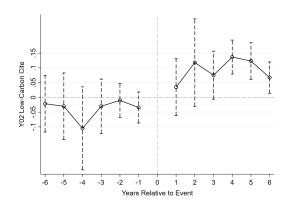
mat id	tonnes CO₂/10 ⁶ btu	material name	modifier	heat content	units
663	0.0931 ¹	bituminous coal		24.04 ³	10 ⁶ BTU/TON
323	0.0967 ¹	subbituminous coal		17.51 ³	10 ⁶ BTU/TON
664	0.0949 ¹	bituminous/subbituminous	Average of previous two	20.77 ³	10 ⁶ BTU/TON
717	0.0949 ¹	Coal	Use previous row	20.77 ³	10 ⁶ BTU/TON
640	0.1032 ¹	Anthracite		24.94	10 ⁶ BTU/TON
639	0.1032 ¹	anthracite culm	Use previous row	24.94	10 ⁶ BTU/TON
173	0.0961 ¹	Lignite		12.97 ³	10 ⁶ BTU/TON
209	0.0531	natural gas	"natural gas pipeline"	1032 ³	10 ⁶ BTU/10 ⁶ FT ³
251	0.0561	process gas	"refinery fuel gas" entry	1068.6 ¹	10 ⁶ BTU/10 ⁶ FT ³
553	0.0561	refinery gas	"refinery fuel gas" entry	1068.6 ¹	10 ⁶ BTU/10 ⁶ FT ³
310	0.0561	sour gas	"refinery fuel gas" entry	1068.6 ¹	10 ⁶ BTU/10 ⁶ FT ³
126	0.0561	Gas	"refinery fuel gas" entry	1068.6 ¹	10 ⁶ BTU/10 ⁶ FT ³

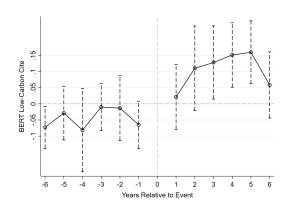
Source: Source: Table A.3 of Vulcan Science Methods Documentation

Figure IA7: GHGRP Report Verification Process


GHGRP Report Verification Process

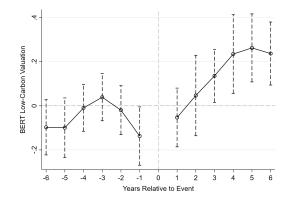
 $Source: \ \texttt{https://www.epa.gov/sites/default/files/2017-12/documents/ghgrp_verification_factsheet.pdf}$


Figure IA8: Parallel Trend Plots – Two Groups


These plots show the evolution of low-carbon innovation over time for high- and low-CO₂ emitters. Panels A to C present results for the count, citations, and valuation of CPC Y_{02} or BERT-based low-carbon patents, respectively. Vertical lines indicate 90% confidence intervals for the estimated β values. The x-axis marks 2008 as year 0.

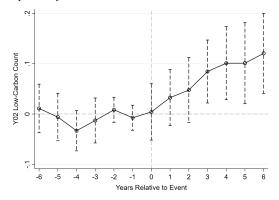
Panel A1. Y02 Count with Controls

Panel A2. BERT Count with Controls



Panel B1. Y02 Cite with Controls

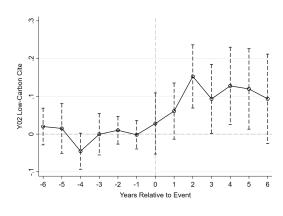
Panel B2. BERT Cite with Controls

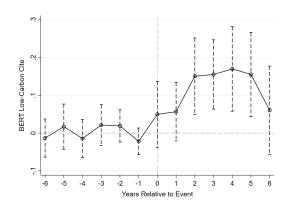


Panel C1. Y02 Valuation with Controls

Panel C2. BERT Valuation with Controls

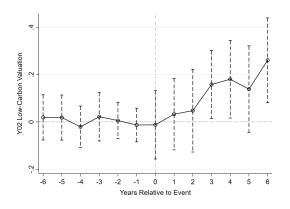
Figure IA9: Parallel Trend Plots – SDID

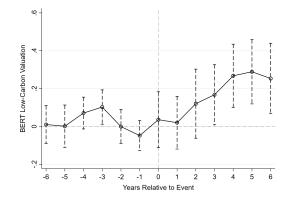

These plots display the variation in low-carbon innovation over time for high- and low-CO₂ emitters. Panels A to C report results from the SDID model for the count, citations, and valuation of CPC Y02 or BERT-based low-carbon patents, respectively. Vertical lines indicate 90% confidence intervals for the estimated β values.



Years Relative to Event

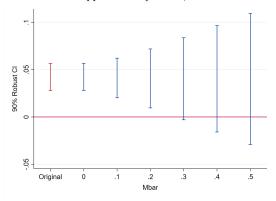
Panel A1. SDID Y02 Count with Controls

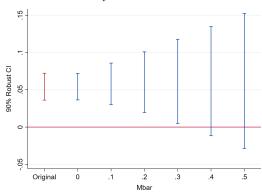

Panel A2. SDID BERT Count with Controls



Panel B1. SDID Y02 Cite with Controls

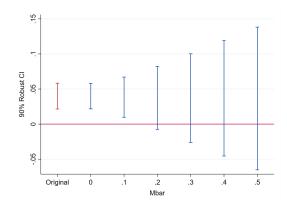
Panel B2. SDID BERT Cite with Controls

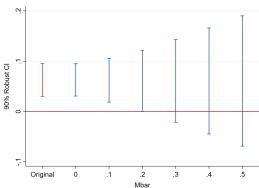



Panel C1. SDID Y02 Valuation with Controls

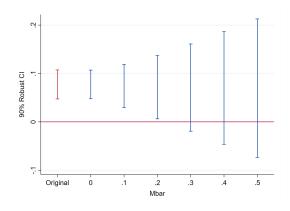
Panel C2. SDID BERT Valuation with Controls

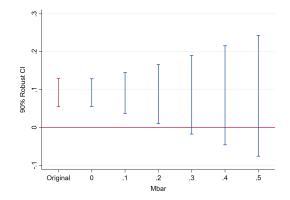
Figure IA10: Sensitivity Analysis using HonestDiD


This figure displays the results of the HonestDiD approach applied to the dynamic analysis, highlighting stable confidence intervals for the average treatment effect in the post-treatment period. When Mbar =0, we allow for violations of parallel trends that are approximately linear, whereas for Mbar >0, we permit more nonlinearity violations.



Panel A1. Y02 Count with Controls


Panel A2. BERT Count with Controls



Panel B1. Y02 Cite with Controls

Panel B2. BERT Cite with Controls

Panel C1. Y02 Valuation with Controls

Panel C2. BERT Valuation with Controls

Table IA1: Keywords

The table presents keywords for locating Y02 patents covering subjects associated with carbon reduction, energy efficiency, and cleaner energy.

and cleaner energy.				
carbon dioxide	carbon emissions	carbon emissions	carbon efficiency	climate change
emissions		efficiency		mitigation
carbon removal	carbon dioxide re-	removing carbon	remove carbon	carbon sequestra-
	moval	J		tion
carbon capture	carbon cycle	carbon-neutral	decarbonization	carbon footprint
_	carbon footprint		carbon offset	greenhouse gas
reduction	reduce	management		emissions
carbon neutral	climate positive	net zero	carbon reduction	greenhouse gas re-
	_			duction
low carbon emis-	low carbon diox-	low-carbon emis-		reduce carbon
sion	ide	sion	dioxide	emission
reduce carbon	~	reducing carbon	reduce green-	reducing green-
emissions	emission	emissions	house gas	house gas
carbon negative	net zero emission	carbon emission	carbon emission efficiency	carbon efficiency
combustion effi-	greenhouse gas	carbon neutral	climate positive	carbon negative
ciency	emission			
reduce fuel con-	reduce fuel con-	low fuel consump-	fuel efficient	fuel-efficient
sumption	sume	tion		
fuel efficiency	fuel-efficiency	energy efficiency	energy efficient	energy-efficiency
power saving	power save	saving more	saving power	saving energy
		power		
energy saving	saving fuel	energy save	fuel saving	fuel save
efficient power	reduce energy	reduce energy	low energy con-	low energy con-
	consumption	consume	sumption	sume
energy consump-	energy consume	power consump-	power consume	net zero emission
tion		tion		
net-zero emission	net-zero emis-	net-zero	renewable energy	renewable
	sions			
regenerating	regenerate	regeneration	efficiency	efficient
efficiently	clean energy	controlling com-	_	control combus-
		bustion processes	bustion	tion
power efficient	switch mode	power supply	power density	sustainability
efficiently produc-	conserve power	power conserve	power control	power loss
ing				
conserve energy	energy conserve	fuel conserve	conserve fuel	clean fuel
energy cycle	energy reuse	energy recycling	recycle	recycling
energy recovery	engine exhaust	exhaust purifying	exhaust gas	solar power
solar	zero waste	wind power	hydropower	geothermal en-
bioenergy	lowering the cost	lower the cost	energy conversion	ergy energy storage
energy density	energy capacity	power capacity	photovoltaic	photovoltaic
chergy density	chergy capacity	power capacity	power	Photovortale
utilization rate	internal combus-	adsorption	fuel cell	fluid loss
dumzanom rate	tion	adsorption	ruor con	naia ioss
efficient method	sustainable	efficient system	fuel economy	combustion effi-
emercin mennou	Sastanianic	omercin system	raci economy	cient

Table IA2: Summary Statistics of Keyword-Based Low-Carbon Patents

This table provides summary statistics for keyword-based low-carbon patents across the sample firms. A patent is classified as a Keyword Low-Carbon Patent if its CPC class falls under the Y02 category and if it includes keywords related to carbon reduction, energy efficiency, and cleaner energy in the technical field, background, and summary of the inventions. Corresponding keywords can be found in Table IA1. For Count, Cite, or Valuation, this table reports the raw numbers without taking logarithms.

Variables	Obs	Mean	SD	p10	p50	p90
Panel A. Patent Level RDD Sample						
Keyword Low-Carbon Valuation	328	34.26	58.88	2.27	13.92	89.77
Brief Word Count	328	1.33	1.47	0.37	0.92	2.40
Cite Backward	328	18.17	27.82	3.00	10.00	32.00
Claims	328	3.07	1.99	1.00	3.00	5.00
Process Claim Ratio	328	0.40	0.37	0.00	0.33	1.00
Inventor Number	328	3.04	2.14	1.00	3.00	6.00
Inventor Average Age	328	44.14	7.35	35.50	44.00	53.00
Panel B. Firm Level DID Sample						
Keyword Low-Carbon Count	5573	3.26	18.44	0.00	0.00	4.00
Keyword Low-Carbon Cite	5573	3.65	21.71	0.00	0.00	4.05
Keyword Low-Carbon Valuation	5573	52.87	350.78	0.00	0.00	45.04

Table IA3: Results for Keyword-based Low-carbon Patents

This table examines the impact of the Greenhouse Gas Reporting Program (GHGRP) on keyword-based low-carbon patents. A patent is classified as keyword-based low-carbon if its CPC class includes Y02 and its keywords relate to carbon reduction, energy efficiency, or cleaner energy in the technical field, background, or summary of the invention. The list of keywords is provided in Internet Appendix Table IA1. Panel A shows the effect of the GHGRP on the market valuation of keyword-based low-carbon patents using RDD models. The sample consists of keyword-based low-carbon patents filed by sample firms between 2002 and 2006 and issued by the USPTO within 12 weeks before or after December 26, 2007, the passage date of the Consolidated Appropriations Act that established GHGRP funding. The dependent variable is the natural logarithm of patent valuation. The GHGRP is measured by a binary variable equal to one if a patent is issued on or after December 26, 2007. Regressions include fixed effects for patent parent firms and four-digit CPC codes. Column (1) reports results from local linear regressions with a 12-week bandwidth, and Column (2) uses a quadratic polynomial on each side of the GHGRP cutoff date with the same bandwidth. All models control for patent-level characteristics, including Brief Word Count, Cite Backward, Claims, Process Claim Ratio, Inventor Number, and Inventor Average Age. Standard errors are double-clustered by CPC industry and issue week. Panel B shows the effect of the GHGRP on keyword-based low-carbon patents using DID models over the 2002-2014 period. The dependent variables are the natural logarithm of one plus (a) the number of keyword-based low-carbon patents, (b) citations to these patents, and (c) their market valuation. The GHGRP is measured by a binary variable equal to one for 2008 and later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO2 conversion factors and aggregated at the firm level. All regressions include firm and industry-year fixed effects. Columns (2), (4), and (6) additionally control for R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and an indicator for missing R&D data. Standard errors are double-clustered by industry and year and reported in parentheses. Variable definitions are in Appendix A. Statistical significance is denoted as * for p < 0.1, ** for p < 0.05, and *** for p < 0.01.

Panel A.	Patent	Valuation	(Keyword)	١

	(1)	(2)
Variables	Keyword Low-Carbon Valuation	Keyword Low-Carbon Valuation
GHGRP	0.8076***	0.9054***
	(0.1080)	(0.1222)
Brief Word Count	-0.0112	-0.0071
	(0.0175)	(0.0174)
Cite Backward	-0.0015*	-0.0018*
	(0.0008)	(0.0010)
Claims	-0.0001	-0.0018
	(0.0145)	(0.0172)
Process Claim Ratio	-0.0290	-0.0243
	(0.0759)	(0.0796)
Inventor Number	0.0002	0.0029
	(0.0189)	(0.0185)
Inventor Average Age	0.0008	0.0014
	(0.0029)	(0.0034)
Constant	2.3555***	2.3795***
	(0.1637)	(0.1916)
Observations	328	328
R-squared	0.943	0.944
Specification	Local linear regression	Quadratic polynomial
Firm FE	YES	YES
CPC4 FE	YES	YES

Panel B. Firm Pater	nting Activities (Keyword)				
	(1)	(2)	(3)	(4)	(5)	(6)
Variables	Keyword Low-Carbon Count	Keyword Low-Carbon Count	Keyword Low-Carbon Cite	Keyword Low-Carbon Cite	Keyword Low-Carbon Valuation	Keyword Low-Carbon Valuation
GHGRP×Emitter	0.0395**	0.0399**	0.0451**	0.0456***	0.0643*	0.0660**
	(0.0156)	(0.0147)	(0.0152)	(0.0147)	(0.0301)	(0.0281)
R&D Intensity		0.1617	, ,	0.0122	, ,	0.4716
		(0.1619)		(0.2877)		(0.3774)
XAD/AT		-1.1229		-0.0222		-2.0279
,		(1.4458)		(1.0808)		(2.8741)
CAPX/AT		0.1804		$0.0500^{'}$		$0.5187^{'}$
,		(0.2151)		(0.1907)		(0.4857)
Ln(AT)		0.0668		0.0810**		0.1538**
` '		(0.0393)		(0.0370)		(0.0609)
Tangibility		-0.1014		-0.0616		-0.1509
0 0		(0.0924)		(0.0955)		(0.2023)
Labor/Capital		-0.4857		-0.6100		-0.5455
, 1		(0.5502)		(0.6028)		(0.7004)
Tobin's Q		0.0111		0.0227		0.0078
•		(0.0119)		(0.0157)		(0.0358)
Firm Age		-0.0039		0.0041		0.0098
G		(0.0087)		(0.0073)		(0.0240)
Leverage		0.0001		-0.0000		0.0003
O		(0.0002)		(0.0003)		(0.0003)
ROA		0.0488		0.0687		0.0218
		(0.0683)		(0.0563)		(0.1616)
Cash/AT		-0.2591**		-0.3339***		-0.1561
,		(0.0927)		(0.0968)		(0.2065)
R&D Missing		-0.0348		-0.0013		-0.0653
		(0.0754)		(0.1016)		(0.1357)
Observations	5,573	5,573	5,573	5,573	5,573	5,573
R-squared	0.891	0.892	0.837	0.838	0.825	0.826
Firm FE	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES

Table IA4: Regression Discontinuity Design - Continuity in Patent Characteristics Across GH-GRP

This table reports the characteristics of patents granted immediately before and after the GHGRP. Panel A presents results for CPC Y02 low-carbon patents, and Panel B for BERT-based low-carbon patents. In both panels, Column (1) reports summary statistics for patents granted before the GHGRP, Column (2) for those granted after, and Column (3) the difference between Columns (1) and (2) with corresponding t-statistics. The reported F-statistic is from a multivariate ANOVA (MANOVA) test, and the density test statistic (T) follows Cattaneo et al. (2018). Statistical significance is denoted as *** for 1%, ** for 5%, and * for 10%.

Panel A.	Y02	low-carbon	patents
----------	-----	------------	---------

Brief Word Count	1.36	1.14	4 00*
		1.14	-1.83*
Cite Backward	21.15	25.39	1.15
Claims	3.09	2.96	-0.78
Process Claim Ratio	0.40	0.39	-0.25
Inventor Number	3.11	3.06	-0.23
Inventor Average Age	44.93	43.86	-1.62
MANOVA test	F=1.40 (p-value=0.2122)		
Density test	T=-0.86 (p-value=0.3914)		

Panel B. BERT low-carbon patents

	(1) Granted Before GHGRP	(2) Granted After GHGRP	(3) (1)-(2) t-value
Brief Word Count	1.15	1.31	-1.95*
Cite Backward	22.66	19.75	1.18
Claims	3.04	3.02	0.17
Process Claim Ratio	0.39	0.39	-0.2
Inventor Number	3.03	2.95	0.58
Inventor Average Age	44.15	44.87	-1.44
MANOVA test	F=1.26 (p-value=0.2718)		
Density test	T=-0.42 (p-value=0.6716)		

Table IA5: Robust – Poisson Regression

This table shows robust test of our baseline results by using Poisson model. The sample period is from 2002 to 2014. The firm-level dependent variables are (a) the number of CPC Y02 or BERT-based low-carbon patents, and (b) their citations. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity, XAD/AT, CAPX/AT, Ln(AT) Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Variables	(1) Y02 Low-Carbon Count	(2) Y02 Low-Carbon Cite	(3) BERT Low-Carbon Count	(4) BERT Low-Carbon Cite
$GHGRP \times Emitter$	0.094*	0.2180**	0.0878*	0.1810***
	(0.0557)	(0.1036)	(0.0466)	(0.0676)
R&D Intensity	2.8453**	-0.7855	1.7092**	1.1161
	(1.1409)	(1.3712)	(0.7765)	(1.3153)
XAD/AT	4.0778	9.5971	7.2002	10.7759**
	(8.9987)	(9.7477)	(6.4458)	(5.4296)
CAPX/AT	4.6938***	3.6218***	1.6128*	1.2258
	(1.8157)	(1.3386)	(0.8263)	(1.1525)
Ln(AT)	0.4366**	0.3438*	0.4530**	0.4318**
	(0.1856)	(0.1861)	(0.1947)	(0.1998)
Tangibility	-0.5701	-0.8535	0.4174	0.1203
	(0.4100)	(0.6942)	(0.4927)	(0.7795)
Labor/Capital	-21.2843***	-37.7528***	-10.0447**	-16.3345**
	(7.6977)	(8.4749)	(4.4937)	(7.0092)
Tobin's Q	-0.0340	0.0373	0.0110	0.0583*
	(0.0313)	(0.0501)	(0.0181)	(0.0346)
Firm Age	-	-	0.0062	0.0858
			(0.1338)	(0.1284)
Leverage	-0.0019**	-0.0024**	-0.0020**	-0.0025***
	(0.0008)	(0.0010)	(0.0009)	(0.0008)
ROA	0.5816**	0.7038	0.7794***	0.6208
	(0.2372)	(0.5463)	(0.2307)	(0.4359)
Cash/AT	-0.5027	-0.3887**	-0.7090*	-1.0870***
	(0.3132)	(0.1563)	(0.3765)	(0.2824)
R&D Missing	0.1103	-0.3419	0.2060	0.4455
	(0.4497)	(0.6312)	(0.3236)	(0.4305)
Observations	2,455	2,290	2,838	2,633
Pseudo R2	0.896	0.874	0.925	0.903
Firm FE	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES

Table IA6: Robust – Firm Patenting Activities without Control Variables

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents without including control variables. The sample period is from 2002 to 2014. Patents are classified using either the CPC Y02 code or a BERT-based model. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, (b) their citations, and (c) their valuation. We define a patent as BERT-based low-carbon if it either carries a Y02 code or is classified as low-carbon by our fine-tuned BERT model. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

		-				
	(1) Y02	(2) BERT	(3) Y02	(4) BERT	(5) Y02	(6) BERT
Variables	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon
	Count	Count	Cite	Cite	Valuation	Valuation
$GHGRP{\times}Emitter$	0.0364*	0.0443*	0.0449**	0.0512**	0.0631*	0.0782*
	(0.0181)	(0.0229)	(0.0176)	(0.0218)	(0.0339)	(0.0364)
Observations	5,573	5,573	5,573	5,573	5,573	5,573
R-squared	0.904	0.925	0.858	0.891	0.845	0.888
Firm FE	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES

Table IA7: Robust – Excluding Firms with High Foreign Income

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents by excluding firms with significant foreign income. We exclude firms with high foreign income, defined as those for which the ratio of foreign pretax income to firm total assets in 2006 exceeds the 80th percentile of the sample. The sample period is from 2002 to 2014. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, (b) their citations, and (c) their valuation. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 $\rm CO_2$ emissions fall in the first quartile of its three-digit NAICS industry. Indications are estimated from process-level CO emissions using $\rm CO$ -to- $\rm CO_2$ conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity, $\rm XAD/AT$, $\rm CAPX/AT$, $\rm Ln(AT)$, $\rm Tangibility$, $\rm Labor/Capital$, $\rm Tobin's Q$, $\rm Firm Age$, $\rm Leverage$, $\rm ROA$, $\rm Cash/AT$, and $\rm R\&D$ Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.05.

Variables	(1) Y02 Low-Carbon Patents	(2) BERT Low-Carbon Count	(3) Y02 Low-Carbon Cite	(4) BERT Low-Carbon Cite	(5) Y02 Low-Carbon Valuation	(6) BERT Low-Carbon Valuation
GHGRP×Emittter	0.0386**	0.0461**	0.0304*	0.0400*	0.0741***	0.0687*
	(0.0174)	(0.0225)	(0.0172)	(0.0232)	(0.0260)	(0.0341)
R&D Intensity	0.4127**	0.1270	0.0136	-0.0062	0.8384**	-0.0353
•	(0.1729)	(0.3057)	(0.3620)	(0.1599)	(0.4085)	(0.5666)
XAD/AT	-2.5694	-1.9630	-0.8834	-0.2680	-5.4228	-1.2382
·	(2.3126)	(2.9357)	(1.8288)	(2.1549)	(4.4821)	(5.2179)
CAPX/AT	-0.0668	-0.1848	-0.1091	-0.2733	-0.2987	-0.2456
•	(0.2005)	(0.2403)	(0.2401)	(0.2618)	(0.3628)	(0.4618)
Ln(AT)	0.0434	0.0771	0.0662	0.0749	0.1312	0.1943**
	(0.0435)	(0.0538)	(0.0473)	(0.0555)	(0.0786)	(0.0941)
Tangibility	-0.0195	-0.0873	0.0909	-0.0625	-0.0325	-0.2439
	(0.1723)	(0.2061)	(0.1875)	(0.2044)	(0.3637)	(0.4111)
Labor/Capital	-0.3486	0.8330	-0.4232	0.6440	-0.6246	1.1555
	(0.6129)	(0.9607)	(0.4194)	(1.0031)	(0.9806)	(1.3107)
Tobin's Q	0.0104	0.0021	0.0250	0.0325	0.0401	0.0233
	(0.0173)	(0.0209)	(0.0231)	(0.0288)	(0.0316)	(0.0398)
Firm Age	-0.0159*	-0.0137	-0.0119	-0.0079	-0.0142*	-0.0011
	(0.0079)	(0.0085)	(0.0071)	(0.0084)	(0.0075)	(0.0095)
Leverage	-0.0003	-0.0002	-0.0003	-0.0000	0.0001	0.0002
	(0.0006)	(0.0005)	(0.0006)	(0.0004)	(0.0008)	(0.0007)
ROA	0.0298	-0.0463	0.0339	-0.1190*	0.0528	-0.2346
	(0.0507)	(0.0586)	(0.0560)	(0.0662)	(0.1389)	(0.1749)
Cash/AT	-0.0288	-0.0204	0.0840	-0.0442	0.0810	0.1550
	(0.1193)	(0.1679)	(0.1049)	(0.1495)	(0.1704)	(0.2645)
R&D Missing	-0.0897	-0.0933	-0.1496	-0.1235	-0.1688	-0.1713
	(0.0903)	(0.0896)	(0.1189)	(0.0952)	(0.1514)	(0.1508)
Observations	4,440	4,440	4,440	4,440	4,440	4,440
R-squared	0.889	0.911	0.834	0.872	0.820	0.859
Firm FE	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES

Table IA8: Firm Patenting Activities – Two Groups

This table examines the impact of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents by dividing firms into two groups. The sample period covers 2002–2014. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, (b) their citations, and (c) their valuation. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable "Emittter" is binary, where a value of one indicates that a firm's estimated CO₂ emissions in 2005 fall within the higher half of its industry (based on the three-digit NAICS code). Estimated CO₂ emissions are derived from process-level CO data in 2005, using the CO-to-CO₂ industry process conversion factors, and are then aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Variables	(1) Y02 Low-Carbon Count	(2) BERT Low-Carbon Count	(3) Y02 Low-Carbon Cite	(4) BERT Low-Carbon Cite	(5) Y02 Low-Carbon Valuation	(6) BERT Low-Carbon Valuation
GHGRP×Emittter	0.0949**	0.1129**	0.1154**	0.1316**	0.1399*	0.1668**
GITGIGI A EMITOTO	(0.0414)	(0.0476)	(0.0471)	(0.0505)	(0.0673)	(0.0729)
R&D Intensity	0.3418	0.2591	0.0004	0.1856	0.9530**	0.1660
1002 1110115103	(0.1933)	(0.2169)	(0.3473)	(0.2485)	(0.4180)	(0.5586)
XAD/AT	-0.8275	-0.5272	0.5826	0.6944	-0.5252	0.0879
/	(2.4206)	(2.9720)	(1.4907)	(1.7949)	(5.6918)	(5.7370)
CAPX/AT	-0.0257	-0.1569	-0.1828	-0.2827	-0.0297	-0.1314
- /	(0.2310)	(0.2475)	(0.2730)	(0.2451)	(0.4344)	(0.5133)
Ln(AT)	0.1194**	0.1511**	0.1344**	0.1543**	0.2618***	0.2969***
,	(0.0512)	(0.0641)	(0.0499)	(0.0588)	(0.0718)	(0.0901)
Tangibility	$0.0292^{'}$	0.0015	$0.1797^{'}$	$0.0543^{'}$	0.2066	-0.0088
Ů .	(0.1599)	(0.1824)	(0.1822)	(0.1852)	(0.3493)	(0.3420)
Labor/Capital	-0.3363	0.8482	-0.5132	0.4683	-0.3012	$1.5237^{'}$
, -	(0.6144)	(0.9776)	(0.5715)	(0.8909)	(0.8114)	(1.2972)
Tobin's Q	0.0360*	0.0314	0.0454*	0.0576**	0.0640*	0.0524
	(0.0173)	(0.0191)	(0.0209)	(0.0258)	(0.0355)	(0.0317)
Firm Age	-0.0029	-0.0075	0.0086	0.0054	0.0169	0.0005
	(0.0086)	(0.0081)	(0.0072)	(0.0076)	(0.0270)	(0.0096)
Leverage	-0.0002	-0.0001	-0.0001	0.0001	0.0000	0.0002
	(0.0004)	(0.0004)	(0.0003)	(0.0003)	(0.0005)	(0.0005)
ROA	0.0439	0.0056	0.0712	-0.0246	0.0644	-0.1954
	(0.0778)	(0.0731)	(0.0743)	(0.0801)	(0.1747)	(0.1638)
Cash/AT	-0.1170*	-0.0775	-0.0596	-0.1657**	0.1372	0.2339
	(0.0626)	(0.0962)	(0.0828)	(0.0747)	(0.1922)	(0.2977)
R&D Missing	-0.0518	-0.0590	-0.0831	-0.0490	-0.1258	-0.1959
	(0.0816)	(0.0923)	(0.1094)	(0.1109)	(0.1467)	(0.1475)
Observations	5,573	5,573	5,573	5,573	5,573	5,573
R-squared	0.905	0.926	0.859	0.892	0.847	0.889
Firm FE	YES	YES	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES	YES	YES

Table IA9: Firm Patenting Activities – SDID

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents using the Synthetic Differences-in-Differences (SDID) method. The sample period is from 2002 to 2014. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, (b) their citations, and (c) their valuation. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable "Emittter" is binary, where a value of one indicates that a firm's estimated CO₂ emissions in 2005 fall within the higher half of its industry (based on the three-digit NAICS code). Estimated CO₂ emissions are derived from process-level CO data in 2005, using the CO-to-CO₂ industry process conversion factors, and are then aggregated at the firm level. Columns also include the following variables: R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin's Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The definitions for these variables can be found in Appendix A. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Variables	(1)	(2)	(3)	(4)	(5)	(6)
	Y02	BERT	Y02	BERT	Y02	BERT
	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon	Low-Carbon
	Count	Count	Cite	Cite	Valuation	Valuation
GHGRP×Emittter Controls Observations	0.0700*	0.1023**	0.0966**	0.1105**	0.1143	0.1588*
	(0.0372)	(0.0403)	(0.0426)	(0.0450)	(0.0790)	(0.0820)
	YES	YES	YES	YES	YES	YES
	5,018	5,018	5,018	5,018	5,018	5,018

Table IA10: Robust – Real CO2 Emissions After 2010

This table presents the impact of the Greenhouse Gas Reporting Program (GHGRP) on firms' CO_2 emissions. The dependent variable includes the natural logarithm of one plus estimated CO_2 emissions for the pre-period of 2008, or the actual CO_2 emissions for the post-period between 2010 and 2014. The real CO_2 emissions data from 2010 to 2014 are obtained from the Greenhouse Gas Reporting Program. We aggregate facility-level real CO_2 emission data into firm-level data annually from 2010 to 2014. For firms lacking actual CO_2 data but with NEI data and estimated CO_2 , we assigned a value of zero to represent actual CO_2 emissions in our sample. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO_2 emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to- CO_2 conversion factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

	(1)	(2)
Variables	Real CO_2	Real CO_2
GHGRP×Emittter	-0.4709***	-0.4885***
	(0.0954)	(0.0972)
R&D Intensity		-3.4207
		(2.6056)
XAD/AT		-11.4716
		(10.5096)
CAPX/AT		-0.0112
		(1.3422)
$\operatorname{Ln}(\operatorname{AT})$		0.0673
		(0.1901)
Tangibility		0.9269
		(1.7667)
Labor/Capital		8.1408
		(9.4800)
Tobin's Q		0.0873
		(0.1220)
Firm Age		-0.0744
		(0.1151)
Leverage		-0.0001
		(0.0023)
ROA		-1.0787*
		(0.5982)
Cash/AT		0.9020
		(1.0648)
R&D Missing		-0.2237
		(0.3830)
Observations	1,974	1,974
R-squared	0.947	0.947
Firm FE	YES	YES
Industry-Year FE	YES	YES

Table IA11: Competition Pressure (Patent Valuation)

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents for firms with high and low competition pressure. The sample period is from 2002 to 2014. The firm-level dependent variables are the logarithm of one plus the valuation of CPC Y02 or BERT-based low-carbon patents. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO_2 emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. We classify firms into high and low competition pressure groups using two measures: (a) product market similarity and (b) climate risk analyst coverage. Firms with product market similarity (Hoberg and Phillips 2016) in 2006 above the sample median are classified as High Product Similarity, and the remainder as Low Product Similarity. Firms with climate risk analyst coverage above the sample median in 2006 are classified as High Climate Risk Analyst, and the remainder as Low Climate Risk Analyst. Regressions presented in this table include firm and industry-year fixed effects. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Panal	Λ	Product	Simi	laritz
ranei	Α.	P roduct	эшп	iaritv

Variables	(1) Y02 Low-Carbon Valuation	(2) Y02 Low-Carbon Valuation	(3) BERT Low-Carbon Valuation	(4) BERT Low-Carbon Valuation
Subsample	Low Product Similarity	High Product Similarity	Low Product Similarity	High Product Similarity
${\rm GHGRP}{\times}{\rm Emittter}$	0.0248 (0.0603)	0.0945* (0.0471)	0.0311	0.0842* (0.0441)
Observations	2,613	(0.0471) $2,555$	(0.0619) $2,613$	(0.0441) $2,555$
R-squared	0.869	0.851	0.889	0.895
Controls	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES

Panel B. Analyst Coverage

Variables	(1) Y02 Low-Carbon Valuation	(2) Y02 Low-Carbon Valuation	(3) BERT Low-Carbon Valuation	(4) BERT Low-Carbon Valuation
Subsample	Low Climate Risk Analyst	$High\ Climate\ Risk$ $Analyst$	$Low~Climate~Risk\\Analyst$	$High\ Climate\ Risk \ Analyst$
$GHGRP{\times}Emittter$	-0.0083 (0.0452)	0.1293* (0.0653)	-0.0044 (0.0469)	0.1508* (0.0779)
Observations	2,621	2,209	2,621	2,209
R-squared	0.731	0.843	0.785	0.889
Controls	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES

Table IA12: Price Efficiency (Patent Valuation)

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents for firms with high versus low price efficiency. The sample period is from 2002 to 2014. The firm-level dependent variables are the logarithm of one plus the valuation of CPC Y02 or BERT-based low-carbon patents. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm's estimated 2005 CO₂ emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO₂ conversion factors and aggregated at the firm level. We classify firms into high and low price efficiency groups based on two measures: (a) option trading volume and (b) the probability of informed trading (PIN). Firms with option trading volume in 2006 above the sample median are classified as High Option Trading, and the rest as Low Option Trading. Similarly, firms with PIN above the sample median are classified as High PIN, and the rest as Low PIN. Regressions presented in this table include firm and industry-year fixed effects. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Panel A. Option Tradi	ing			
Variables	(1) Y02 Low-Carbon Valuation	(2) Y02 Low-Carbon Valuation	(3) BERT Low-Carbon Valuation	(4) BERT Low-Carbon Valuation
Subsample	Low Option Trading	$High\ Option \ Trading$	$\begin{array}{c} Low\ Option \\ Trading \end{array}$	$High\ Option \ Trading$
$GHGRP \times Emitter$	0.0313 (0.0651)	0.1677** (0.0759)	0.0691 (0.0726)	0.1496*** (0.0516)
Observations	2,207	$2{,}172$	2,207	$2{,}172$
R-squared	0.749	0.849	0.779	0.896
Controls	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES
Panel B. PIN				
	(1)	(2)	(3)	(4)
Variables	Y02 Low-Carbon Valuation	Y02 Low-Carbon Valuation	BERT Low-Carbon Valuation	BERT Low-Carbon Valuation
Subsample	High PIN	Low PIN	High PIN	Low PIN
GHGRP×Emittter	-0.0187	0.1138**	0.0013	0.1101**
	(0.0283)	(0.0506)	(0.0302)	(0.0470)
Observations	2,702	2,726	2,702	2,726
R-squared	0.797	0.849	0.853	0.890
Controls	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES
Industry-Year FE	YES	YES	YES	YES