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This study examines how mandatory carbon disclosure shifts corporate invest-
ment in and stock investors’ reactions to green innovation. Using a regression
discontinuity design, we show that the proposal of the Greenhouse Gas Report-
ing Program (GHGRP) increases the value of low-carbon patents, identified
either through patent office classifications or the large language model BERT.
A difference-in-differences analysis suggests that firms with higher estimated
COZ2 emissions in the past produce more low-carbon patents after the proposal.
Also, the values of these firms’ low-carbon patents increase, and their CO2
emissions decrease. These firms hire new inventors with low-carbon expertise
rather than convert incumbent inventors’ efforts. The effect of mandatory
disclosure is stronger among firms under higher competitive pressure and for
stocks with greater price efficiency.
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I. Introduction

Firms’ investment decisions hinge on different production technologies’ costs and productivity
(Jaffe, Newell and Stavins, 2003; Syverson, 2011; Grullon and Ikenberry, 2025). Among all
related costs, the externalities of carbon emissions present an especially pressing issue, given
heightened concerns about climate change and its potential economic costs to society. The
private sector lacks an incentive to disclose carbon emissions as such information asymmetry
enables emitters to externalize carbon costs, shifting climate-related risks onto society (Hall and
Helmers, 2010; Frankel, Kothari and Raghunandan, 2025)." Greenhouse gas (GHG) disclosure,
a policy initiative since the Kyoto Protocol in 1997, requires firms to report carbon emissions
transparently, which internalizes environmental costs of “brown” firms and likely motivates their
transition to green technologies.

The related literature primarily examines how policies like R&D grants, tax credits, subsidies,
and cap-and-trade systems drive green technology development (Acemoglu et al., 2012, 2016;
Calel, 2020), but less is known about the impact of mandatory disclosure on green innovation
before financial incentives or stricter regulations take effect. In this paper, we use the pro-
posal of the U.S. Greenhouse Gas Reporting Program (GHGRP) as a natural experiment to
examine whether the resultant transparency reshapes firms’ green technology development and
valuations.

On December 26, 2007, the U.S. Congress passed the Consolidated Appropriations Act of
2008 which, for the first time, allocated funds to the Environmental Protection Agency (EPA)
for an accelerated draft of reporting rules for GHG emissions. The Act required the EPA to
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1In 2002, the Carbon Disclosure Project (CDP), which promotes corporate transparency on climate risks, had only
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the world’s publicly traded firms in terms of market capitalization still do not disclose emissions. See the CDP Media
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publish a draft rule within nine months and a final rule within 18 months, which marks a
significant shift in federal climate policy. Beginning in January 2008, EPA staff held more than
100 meetings with over 250 stakeholders, including trade associations, industry representatives,
and state and regional groups, to develop the proposed rule. These meetings shaped market
expectations, reinforced the need for mandatory public GHG disclosures, and assessed their
potential economic impacts.? We thus define the effective period of the GHGRP proposal as
starting in 2008. This event is arguably exogenous to firms for two reasons. First, although the
EPA has requested funds since 2003 to implement a regulatory impact analysis (RIA) in order
to draft rules, such funds were never approved until December 26, 2007. Second, firms and
other interest groups expressed serious concerns over uncertainties with respect to reporting
thresholds, formats, scope, and industry coverage in the meetings held by the EPA.3

Policymakers often favor mandatory disclosure as a lower-cost, less intrusive alternative to
direct regulation, making it a significant policy tool across many economic sectors, includ-
ing health care, education, and finance (Hastings and Weinstein, 2008; Bollinger, Leslie and
Sorensen, 2011; Seira, Elizondo and Laguna-Miiggenburg, 2017). In theory, mandated disclo-
sure reduces information asymmetry between economic agents, enabling more informed decisions
(Myers, Puller and West, 2022). Empirical evidence shows that it narrows the gap between in-
siders and outsiders, strengthens external monitoring, and improves capital allocation (Healy
and Palepu, 2001; Hermalin and Weisbach, 2012; Christensen, Hail and Leuz, 2013; Chris-
tensen et al., 2017). Mandatory disclosure of greenhouse gas emissions increases transparency
about firms’ environmental impact, enabling stakeholders to better assess environmental risks
and performance. This transparency requirement incentivizes managers to attend to pollu-
tion abatement and green innovation in order to preempt reputational damage, litigation, and
regulatory penalties.

We propose that the GHGRP proposal encourages high-emission firms to pursue green innova-
tion internally, which results in more low-carbon patents, due to the following incentives. First,
customers’ green preferences and intensified competition incentivize these firms to demonstrate
their green transition efforts for corporate reputation and new product opportunities, as firms
in competitive industries have stronger incentives to innovate and differentiate (Aghion et al.,
2001, 2005). Second, green patenting sends strong signals to financial markets because such
intellectual property enhances firms’ appropriability of environmental technologies by deterring
imitation and strengthening litigation positions (Teece, 1986; Budish, Roin and Williams, 2016;
Farre-Mensa, Hegde and Ljungqvist, 2020).

To capture firms’ green innovation activities, we adopt two approaches to identify low-carbon
patents. In our first approach, we classify a patent as low-carbon if it belongs to the Cooperative
Patent Classification (CPC) Y02 class (Sautner et al., 2023a; Cohen, Gurun and Nguyen, 2024).4
Second, to capture patents that may contribute to addressing climate change but are not labeled
under Y02, we use the Bidirectional Encoder Representations from Transformers (BERT) for
Patents model to label low-carbon patents based on the brief descriptions of remaining non-
Y02 patents. Patents with a predicted probability of being low-carbon are included, thereby
extending the universe of low-carbon patents beyond the Y02 class. We then follow the method
of Kogan et al. (2017) based on the efficient market hypothesis and use stock price appreciation
upon the announcement of a green patent grant to measure its value.

We first use a regression discontinuity design (RDD) to examine whether the GHGRP proposal
increases the value of green innovation, which validates managers’ incentives under stakeholders’

2For more, see 1-3 and 2-3 of the Regulatory Impact Analysis for the Mandatory Reporting of Greenhouse Gas Emissions
Proposed Rule (GHG Reporting). Available at
https://19january2017snapshot.epa.gov/sites/production/files/2015-07 /documents/ghg_ria.pdf

3For example, after the EPA’s initial proposal, thousands of public comments raised concerns, including ambiguous
emissions definitions and the potential for arbitrary thresholds. Financial services firms like the RiskMetrics Group sug-
gested including Scope 2 emissions, while others proposed limiting reporting to upstream emissions. Many commenters
argued that the rule would increase regulatory burdens, particularly in certain industries. Further details are discussed in
Section 2.1.

4For robustness checks, we further refine this definition by requiring Y02 patents to contain at least one green innovation
keyword (e.g., carbon reduction, energy efficiency, or cleaner energy) in its brief description. We find consistent results.



pressure. We exploit the lag between patent filing and grant dates and compare the values of
low-carbon patents filed before but granted shortly after the proposal to those being granted
just before the proposal. Our results reveal a sharp 70% increase in the value of low-carbon
patents after the proposal, even though the two groups’ patent characteristics are similar and
vary smoothly around the threshold. We also implement a placebo test on other green patents
unrelated to climate change (e.g., water adaptation, biodiversity protection technologies), and
find no significant increase for these patents’ values. Our finding indicates that the stock market
assigns higher values to low-carbon patents after the proposal, likely due to perceived regula-
tory risks and the potential of these patents to mitigate such risks. These findings highlight
shareholders’ motivation for supporting firms’ green transition, which in turn influences firms’
investment in low-carbon technologies.

We then design a difference-in-differences (DID) regression to examine how the GHGRP pro-
posal changes firms’ incentives to develop green innovation. Our treatment variable is based
on firms’ estimated COo emissions before the proposal. At that time, firms were required to
report process-level carbon monoxide (CO) emissions because of its toxicity. We use CO emis-
sions from the National Emissions Inventory (NEI) to estimate firms’ pre-proposal greenhouse
gas emissions, converting CO to COy using standard conversion factors, as CO emissions are
highly correlated with COy emissions (Gurney et al., 2009, 2010; Tomar, 2023). We categorize
firms into within-industry quartiles based on their estimated 2005 COg emissions, so we may
examine variations in their low-carbon patent filings following the proposal. As we discussed
earlier, the format, coverage, scope, and threshold of the GHGRP are largely unclear to firms
before the proposal; thus, their pre-proposal estimated emissions in 2005 and corresponding
treatment assignments (i.e., within-industry quartiles) are unlikely related to their expectations
of mandatory disclosure or their manipulation of reported emissions, both of which mitigate
reverse causality and selection concerns.

We find that if a firm’s estimated emission quartile rank increases by one, then it produces
approximately 3.5% more low-carbon patents after the proposal. Additionally, the quality of
these patents, as measured by forward citations, increases by about 4.3%, and their total value
rises by about 6%. We then conduct a placebo test by examining other green patents unrelated
to climate change, and find no significant differences across firms in different estimated emission
quartiles. These results suggest that firms’ changes in low-carbon innovations are driven by the
GHGRP proposal, rather than overall environmental regulation and policy. We also account
for potential confounding effects from the 2008 financial crisis, including oil price shocks and
macroeconomic volatility, and do not find significant innovation responses to those issues.

Several additional tests confirm a causal interpretation of our difference-in-differences results.
First, we consider a synthetic DID approach (Arkhangelsky et al., 2021) that combines DID
and synthetic control methods, reweighting and matching pre-exposure trends in order to force
parallel trend assumptions to hold. Second, we apply the approach of Rambachan and Roth
(2023) to assess sensitivity under possible deviations from the parallel trends assumption, and
find that our results are robust to 20-30% deviations from that assumption.

We also observe a significant decline in estimated CO2 emissions among firms in higher emis-
sion quartiles. Additionally, non-COs air pollutants also show a notable reduction following the
GHGRP proposal. This finding suggests the spillover effects of firms’ investments in low-carbon
patents. As firms become more environmentally efficient, they also reduce their fuel use, further
decreasing emissions like sulfur dioxide (SO2) and nitrogen oxides (NOx). The results mitigate
concerns about strategic signaling or greenwashing by showing that increases in low-carbon
patenting coincide with actual declines in both COs and other pollutants. Moreover, we also
find that high-emission firms further improve their environmental scores rated by the KLD.

We next examine heterogeneous treatment effects to further justify high-emission firms’ incen-
tives related to competition and market valuation. First, these firms facing higher competitive
pressure or greater green preferences, proxied by product market similarity with peers and
the coverage of climate risk-oriented analysts, respectively, file more low-carbon patents after
the proposal. This finding confirms the competition incentive as low-carbon technologies help



high-emission firms differentiate from rivals. Second, high-emission firms with greater market
information efficiency, proxied by higher option trading volume and lower probability of in-
formed trading (PIN), also increase low-carbon patenting following the proposal. This confirms
these firms’ market valuation incentive because their efforts are more likely to be rewarded by
stock markets with greater price efficiency.

Our final step is to investigate the underlying mechanisms. Firms may enhance low-carbon
technologies by hiring external inventors with expertise in low-carbon technologies or by encour-
aging existing inventors to develop green innovations (Darendeli, Law and Shen, 2022; Sautner
et al., 2023a).> Our analysis shows that firms enhance their green technologies primarily through
external hires rather than from ordering their existing inventors to switch research focus. Such
a difference may be attributed to the time pressures that these firms faced and further supports
a causal interpretation of our main results.

This study adds to the literature in several ways. First, we contribute to the emerging liter-
ature on the valuation of green innovation and investment. Prior research has highlighted the
importance of green innovation in mitigating climate risk and reducing regulatory uncertainty
for firms (Brown, Martinsson and Thomann, 2022; Sautner et al., 2023a,b). Some parallel stud-
ies examine how stock investors react to firms’ green investment choices (Duchin, Gao and Xu,
2024) and their announcements of green patents and innovations (Hege, Pouget and Zhang,
2023; Reza and Wu, 2024; Yu, 2024).5 Our approach differs from those studies with respect to
methodology: we use an RDD approach based on the GHGRP proposal to identify (and quan-
tify) how the mandatory disclosure of GHG emissions increases the valuation of green patents.
In addition, we incorporate textual information and apply a large language model, BERT for
Patents, to extend our classification of low-carbon innovation beyond the Y02 class.

Second, our study aligns with recent research exploring the real effects of mandatory disclosure
with respect to GHG emissions (Yang, Muller and Liang, 2021; Ilhan et al., 2023; Tomar, 2023).
Although previous research has documented significant reductions in GHG emissions due to the
GHGRP in the U.S. and the GHG emissions disclosure law in the U.K. (Jouvenot and Krueger,
2020; Downar et al., 2021; Tomar, 2023), there is little discussion on how such reductions
are achieved other than from scaling down production. Our evidence of increased low-carbon
patents highlights the critical role that technology plays in addressing climate change and risk.
More broadly, our study adds to the expanding literature on the real effects of ESG disclosure
mandates.” Specifically, we offer a new perspective to this literature by focusing on the valuation
and development of firms’ innovation activities.

Third, this paper extends the literature on the determinants of firms’ investment in green
innovation (Bolton, Kacperczyk and Wiedemann, 2023; Cohen, Gurun and Nguyen, 2024), es-
pecially with respect to the internalization of negative externalities.® Our research complements
prior work in this direction that focuses on environmental regulations” or touches upon addi-

5Darendeli, Law and Shen (2022) and Sautner et al. (2023a) find that green transitions drive firms to increase green
human capital and produce more green patents.

6 Among those studies, Reza and Wu (2024) and Hege, Pouget and Zhang (2023) focus on identification tests to explain
why patent valuation changes: the former uses a difference-in-differences approach based on the 1970 and 1990 Clean Air
Act (CAA) Amendments, and the latter uses a quasi-random assignment of patent examiners.

"Prior research has examined the real effects of ESG disclosure mandates from different perspectives, such as that
of shareholders (Gibbons, 2023), institutional investors (Ilhan et al., 2023), banks (Giannetti et al., 2023), stakeholders
(Christensen, Hail and Leuz, 2021), and international markets (Krueger et al., 2024). In addition, the inclusion of safety
records in financial reports was found to be associated with a decrease in mining-related citations and injuries (Christensen
et al., 2017). Also, China’s 2008 mandate, which required firms to disclose their ESG activities, led to a reduction in
wastewater and SO2 emission levels (Chen, Hung and Wang, 2018). Air quality disclosure reduces pollution-related harm
by prompting public protective behaviors (Barwick et al., 2024). More accurate pollution data amplify these effects
(Greenstone et al., 2022).

8Public disclosures facilitate the internalization of pollution externalities, creating financial incentives for resource
reallocation: consumers prefer sustainable alternatives (Luo and Bhattacharya, 2006), investors price carbon risk into
stock returns (Bolton and Kacperczyk, 2021), shifting customer and investor preferences increase green asset values (Péstor,
Stambaugh and Taylor, 2021), and firms that disclose emissions enjoy higher valuations (Matsumura, Prakash and Vera-
Mufioz, 2014).

9Stricter environmental regulations may result in significant economic costs for firms and plants (Greenstone, 2002;
Keller and Levinson, 2002; Greenstone, List and Syverson, 2012; Huang and Kopytov, 2023), which reduce firms’ incentives
to adopt green technologies. However, such regulations may also spur green innovation (Lanjouw and Mody, 1996; Newell,
Jaffe and Stavins, 1999; Berman and Bui, 2001; Brunnermeier and Cohen, 2003; Popp, 2003; Johnstone, Has¢i¢ and Popp,



tional factors (e.g., energy prices, corporate governance, financial frictions, policy uncertainty,
climate risk exposure).! Our results, however, suggest that mandatory disclosure can be less
costly to implement and may even benefit compliant firms (Boyer and Laffont, 1999).!

The remainder of this paper is structured as follows. Section 2 presents a detailed overview of
the GHGRP proposal and describes our data and sample construction. In Section 3, we discuss
the results of our patent-level RDD analysis. Section 4 shows the difference-in-differences results
when we compare changes in low-carbon patents and GHG emissions of firms with different pre-
event estimated emission levels following the proposal. Section 5 examines corporate incentives
driven by the GHGRP, and Section 6 investigates the mechanisms through which firms develop
their low-carbon innovation. Section 7 concludes.

II. Background, Data, and Sample Construction
A.  The Greenhouse Gas Reporting Program (GHGRP)

On December 26, 2007, the U.S. government enacted the Consolidated Appropriations Act,
which for the first time allocated funds to the Environmental Protection Agency (EPA) to
implement a regulatory impact analysis (RIA) and draft regulations for curbing GHG emis-
sions.'? The Act stipulated that at least $3.5 million from the Environmental Programs and
Management budget be used to publish a draft rule within nine months and publish a final rule
within 18 months; the Act required the final rule to establish mandatory reporting standards
for greenhouse gas emissions above specified thresholds across all U.S. economic sectors. This
funding marked a pivotal shift in federal climate policy: it emphasized the need to collect and
manage GHG emissions data, and enabled the EPA to begin early planning for the GHGRP.
It is also noteworthy that this budget allocation and accelerated timeline are somewhat unex-
pected because the EPA’s budgetary request, first made in 2003, to implement an RIA and
draft such rules was not approved until December 26, 2007.

It is reasonable to argue that the GHGRP proposal (i.e., the budget allocation and the
initiation of the draft) is exogenous to firms. During the proposal preparation, firms faced
significant uncertainties regarding various program details, including reporting thresholds (i.e.,
minimum levels of GHG emissions to be reported), the reporting format (facility-level vs. firm-
level aggregation), and the extent to which the reporting requirement (if required at all) varied
across sectors. Furthermore, questions arose about coverage, such as whether direct or indirect
emissions should be reported. For instance, after the EPA’s initial GHGRP proposal, the
agency received thousands of public comments. These collective responses all suggest that the
majority of firms were unclear about specific emission requirements that would trigger reporting
obligations in advance. Representative examples of such comments are summarized in Internet
Appendix Section A.

While it is true that the GHGRP proposal occurred amid a broader global shift toward cli-
mate regulation following the Kyoto Protocol, the timing and specifics of the EPA’s proposal
were largely unexpected. Notably, the U.S. chose not to ratify the Kyoto Protocol and formally
withdrew from it in 2001. For years afterward, the federal government remained reluctant to
implement binding climate policies. Multiple federal climate bills, including the Lieberman-
McCain Climate Stewardship Acts of 2003 and 2005, failed to pass. This reinforced the per-
ception among firms that nationwide GHG disclosure mandates were politically unlikely in the

2010; Lanoie et al., 2011; Berrone et al., 2013; Calel, 2020; Brown, Martinsson and Thomann, 2022). Some studies focus
on the trade-offs of policies (Acemoglu et al., 2012, 2016; Aghion et al., 2016; Shapiro and Metcalf, 2023).

L0Popp (2002) reports the positive impact of higher energy prices on green patent incentives. Better-governed firms are
also more likely to generate green patents (Amore and Bennedsen, 2016). Lanteri and Rampini (2023) argue that financial
constraints and policy uncertainty can reduce incentives for firms to pursue pollution abatement activities. Also, Sautner
et al. (2023a) show how firms’ exposure to climate risk explains their green patenting decisions.

1 As noted by Porter (1991), well-designed environmental regulations can have positive side effects that boost com-
petitiveness by reducing costs associated with waste disposal and costly chemical use. The literature debates whether
environmental regulations can enhance competitiveness through firm innovation (Palmer, Oates and Portney, 1995; Porter
and Linde, 1995).

12121 STAT. 2128 of H.R.2764 - Consolidated Appropriations Act, 2008. See https://www.congress.gov/bill/110th-
congress/house-bill /2764 /text



near term. Thus, the GHGRP proposal represented a discrete policy shock from the perspective
of U.S. firms. In this paper, we use 2008 as the event year to capture the regulatory initiative
that laid the foundation for the GHGRP’s formal proposal and its lasting impact on federal
climate policy.

On April 10, 2009, building on the groundwork established in 2008, the EPA formally pre-
sented the GHGRP as a mandatory reporting rule for GHG emissions.'® This rule required large
GHG emitters, suppliers of fuel and industrial gas, and CO- injection sites to annually report
their emissions to the EPA. Facilities that emitted more than 25,000 metric tons of GHGs per
year were now required to report their emissions under the GHGRP. After receiving thousands
of comment letters from the public in response to the proposed GHGRP, the EPA released a
final version of the rule on October 30, 2009.'* The GHGRP went into effect on January 1,
2010, and monitoring began. Initial disclosure reports for 2010 were submitted to the EPA on
September 30, 2011 and they were made available to the public on January 11, 2012. Figure 1
illustrates the timeline for these events.

[Figure 1 about here]

In accordance with regulatory requirements, annual reports submitted to the EPA must incor-
porate a GHG Monitoring Plan.'® The EPA employs an advanced electronic reporting platform
that provides real-time feedback to identify potential errors prior to submission, which ensures
the accuracy, completeness, and truthfulness of reported data and information.'® If irregular-
ities are detected, the EPA may then request further information from a facility in question.
The EPA also has the authority to conduct inspections, require emissions monitoring or test-
ing, and request documents to identify any violations. Any instances of noncompliance (e.g.,
failure to report emissions, failure to retain records needed to verify emissions, falsification of
reports) with the GHGRP constitute violations of the Clean Air Act, making the offender liable
to administrative penalties up to $37,500 per day of violation.'”

The disclosed amount of GHG emissions is sizable: in 2023, more than 8,000 facilities and
suppliers report to the EPA’s Greenhouse Gas Reporting Program. Facilities in nine industrial
sectors disclose 2.58 billion metric tons of COsge in direct emissions, which account for about
half of total U.S. emissions. Nearly 1,000 fuel and gas suppliers also report, and their data
capture the emissions that occur when fuels are eventually used. When facility and supplier
data are combined, program coverage rises to about 90% of national emissions. The GHGRP
therefore provides granular facility-level information on major emitters while also capturing
most economy-wide emissions.!®

B. Low-Carbon Patents

We collect patent data from the United States Patent and Trademark Office (USPTO) and
link it to U.S. public firms’ patent records of Kogan et al. (2017).'9 Our dataset includes
information on patents assigned to public firms (identified by CRSP identifiers) and contains
details such as patent grant date, filing date, forward citation counts, patent valuations, brief

13 The following greenhouse gases are regulated by GHGRP: carbon dioxide (CO2), methane (CH4), nitrous oxide (N20),
and fluorinated gases (HFCs, PFCs, SF6, NF3, Other Fully Fluorinated GHGs, HFEs, Very Short Lived Compounds,
Other). CO2 is the most prevalent GHG, accounting for 91.9% of all GHGRP-based GHGs reported in 2023, while CH4
represented 7.1% and N2O represented 0.7%. See https://www.epa.gov/ghgreporting/ghgrp-emissions-ghg

14See https://www.regulations.gov/document /EPA-HQ-OAR-2008-0508-0139/comment

15The report is required to include three crucial elements: (a) the identification of personnel responsible for collecting
emissions data along with their corresponding job titles, (b) an explanation of the procedures utilized for emissions data
collection, and (c) a comprehensive account of methods and protocols employed for ensuring the quality, maintenance, and
repair of continuous monitoring systems. See https://sgp.fas.org/crs/misc/IF11754.pdf

16 After submission, a report is evaluated and undergoes an extensive verification process, including logical, statistical,
and external data checks, to assess potential errors in reports submitted by facilities. Thousands of pre-submission and post-
submission checks are employed to evaluate a given report. See https://www.epa.gov/ghgreporting/ghgrp-methodology-
and-verification and Figure IA7 in the Internet Appendix. The latter illustrates the process for verifying GHGRP reports.

17See https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-98

18See https://www.epa.gov/ghgreporting/ghgrp-reported-data and https://www.epa.gov/ghgreporting
/learn-about-greenhouse-gas-reporting-program-ghgrp

19See https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data



descriptions, the number of claims, and inventor names as well as identifiers. We also collect
each patent’s process and product claims are obtained from Ganglmair, Robinson and Seeligson
(2022), and inventor ages from Kaltenberg, Jaffe and Lachman (2023).

To identify low-carbon patents, we use the Cooperative Patent Classification (CPC) system:
patents falling into the Y02 class in the CPC “technologies or applications for mitigation or
adaptation against climate change” are defined as low-carbon ones.?? It is noteworthy that,
for patents filed before 2013, the patent office also assigns them new CPC codes after the
introduction of the CPC system (Veefkind et al., 2012; Calel, 2020). Therefore, for most of our
sample period (2002-2014), firms did not know the CPC codes of their patents, which mitigates
the concern that firms can manipulate such patents or even mislabel them as low-carbon patents.

Many patents from our sample firms are not classified in Y02, but some of them may still
contribute to low-carbon innovation. To account for these, we consider an alternative approach
using a patent-domain large language model, BERT for Patents, which is a transformer-based
language model pre-trained by Google on over 100 million patents (not just U.S. patents).
We fine-tune the model using patents from non-sample firms that have been labeled as low-
carbon, other green, or non-green based on CPC codes. The model is trained on the brief
descriptions (titles and abstracts) of these patents to learn the relationship between language
and the probability of contributing to low-carbon innovation.?! Since the model accepts a
maximum of 512 tokens per input, we retain only the first 512 tokens of each brief description.
We then apply the fine-tuned model to classify approximately 3.8 million patents from our
sample firms. To reduce false positives, we keep only predictions with a probability (sigmoid
output) above 0.7, labeling those below this threshold as “unclear.” Our results remain robust
when using higher thresholds of 0.8 or 0.9. Finally, we define a BERT-based low-carbon patent
as one that either (a) is assigned a Y02 classification code or (b) is classified as low-carbon by
our BERT for Patents model.

We also adopt an alternative definition of low-carbon patents based on keyword search as a
robustness check. We begin by obtaining patent descriptions from PatentsView, a dataset pro-
vided by the USPTO that includes technical fields, backgrounds, and summaries of inventions.
We then propose a list of keywords from Internet Appendix Table IA1 (e.g., carbon reduction,
energy efficiency, cleaner energy),?? and we identify patents in category Y02 that also con-
tain these keywords, classifying them as keyword-based low-carbon patents. This definition is
narrower than our Y02-based low-carbon patents.

For placebo tests, we use the OECD’s patent classification system to define firms’ other
green patents as those falling under the OECD’s green patent classification system (Hasci¢ and
Migotto, 2015), but that are not included in the Y02 class (e.g., water adaptation technologies,
biodiversity protection technologies). In our analyses, these patents should not be impacted by
the proposal because they are not directly related to climate issues.

C. National Emissions Inventory Data and COg Estimation

Prior to the passage of GHGRP, firms were not required to report their carbon dioxide (CO2)
emissions.?> However, the National Emissions Inventory (NEI) database provides information
about carbon monoxide (CO) emissions at the process level, which firms must report due to

20The Y02 class was unveiled in 2010 as a new patent class that resulted from the joint ef-
forts of the U.S. Patent and Trademark Office (USPTO) and the European Patent Office (EPO). See
https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y . html#Y02. In 2018, the EPO extended and de-
veloped a similar definition for a classification scheme of climate change mitigation technologies that includes both the
Y02 and Y04S (smart grids) classes (Angelucci, Hurtado-Albir and Volpe, 2018). Our results hold when we include the
Y04S class.

21 There are 41,007 low-carbon patents and 5,132 other green patents in our non-sample firms during the sample period.
To balance the sample, we randomly select 41,007 “rest” patents to match the number of low-carbon patents. Twenty
percent of the total training sample is held out as a validation set. We choose the second epoch based on overall performance.
The final fine-tuned model achieves an accuracy of 86.00% and an F1 score of 0.8599.

22We input these keywords into ChatGPT and DeepSeek to assess whether they capture the features of low-carbon
patents. Both generative Al models consider the keywords to be comprehensive in scope.

23C032 accounts for 91.9% of all GHGs reported to the GHGRP in 2023. See https://www.epa.gov/ghgreporting/ghgrp-
emissions-ghg



CO’s toxicity. While CO is not a direct measure of GHG emissions, it is nonetheless strongly
correlated with COg emissions (Gurney et al., 2009, 2010; Tomar, 2023), and thus makes the NEI
database a valuable proxy for studying emissions patterns prior to mandatory COs reporting.
Updated every three years (e.g., 2005, 2008, 2011), the database includes detailed information
on the sources of criteria air pollutants (CAPs) and 187 hazardous air pollutants (HAPs).?* In
Internet Appendix Section B1, we explain the steps we took to link the NEI database to public
firms in the U.S.

To estimate CO2 emissions of each process at each facility before the proposal, we utilize
conversion factors from Gurney et al. (2010) that are known as Vulcan Science Methods Doc-
umentation.?” Using these conversion factors, we calculate CO5 emissions for each process and
aggregate them to estimate total firm-level CO2 emissions before the GHGRP proposal. The
detailed methodology for these calculations is outlined in Internet Appendix Section B2. Figure
2 shows the relationship between the estimated CO4 that we convert from CO by using NEI data
and actual COy emissions from the GHGRP in 2011. The estimates are positively correlated
with actual firm-level emissions, supporting the validity of our estimation of CO2 emissions.

[Figure 2 about here]
D. Summary Statistics

Table 1 presents summary statistics for our sample. Panel A reports summary statistics for
the patent-level RDD sample, with Panel Al for Y02 low-carbon patents and Panel A2 for
BERT-based low-carbon patents. We define our sample as publicly listed firms with facilities
in the NEI database that have CO emissions data before the GHGRP proposal. Specifically,
firms must have CO emissions data for the years 2005 and 2008 (the NEI updates occur every
three years). Additionally, these firms must be listed in the Compustat database for at least
three years before and three years after the event to be included in our statistical analysis.

In our RDD estimation of changes in patent valuation (deflated to 1982 dollars) around the
GHGRP proposal, we conduct patent-level regressions. We focus on patents granted to public
firms in the Compustat/CRSP database in the 12-week window centered around the GHGRP
proposal date. Patent valuation, which reflects a patent’s private economic value, is estimated
based on stock market reactions to patent grant announcements, adjusted for return volatility,
day-of-week fixed effects, and firm-year fixed effects (Kogan et al., 2017). The market value of
each patent is determined by the market capitalization change (benchmarked against the market
return) over a 3-day window (from day t to day t+2) commencing on the announcement day
when a patent is approved (day t). We also include several patent-level control variables, such
as Brief Word Count, Backward Citations, Claims, Process Claim Ratio, Number of Inventors,
and Inventor Average Age (definitions are provided in Appendix A).

In Table 1 Panel A1, the average Y02 low-carbon patent value is $34 million (deflated to 1982
dollars). The brief description of each patent averages 1,250 words. Patents typically cite about
23 prior patents and have an average of 3 claims, of which about 40% are process claims and
the rest are product claims. The average number of inventors is 3, and the average inventor age
is 44. In Panel A2, which reports BERT-based low-carbon patents, the summary statistics are
similar to those in Panel A1, but the sample size is nearly twice as large.

For our difference-in-differences estimation, the period spans 2002 to 2014. We define a
variable, Emitter, that ranges from one to four, for which a value of one (four) indicates that
a company’s estimated CO2 emissions in 2005 fall within the lowest (highest) quartile of its
industry (based on the three-digit NAICS code). We also use Compustat data to construct a

24CAPs refer to a group of pollutants that includes carbon monoxide (CO), ammonia (NH3), nitrogen oxides (NOX),
particulate matter smaller than 10 microns (PM10), particulate matter smaller than 2.5 microns (PM2.5), sulfur diox-
ide (SO2), volatile organic compounds (VOC), and lead (Pb). HAPs encompass the 187 pollutants specified in Sec-
tion 112(b) of the 1990 Clean Air Act Amendments, such as mercury, hydrochloric acid, nickel, and benzene. See
https://www3.epa.gov/ttn/atw/188polls.html

25Tomar (2023) also uses these factors to estimate CO2 emissions before the passage of GHGRP as a robust test. See
https://vulcan.rc.nau.edu/assets/files/Vulcan.documentation.v2.0.online.pdf
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range of control variables, including RéD Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility,
Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing (definitions
are provided in Appendix A).

Table 1, Panel B reports firm-level summary statistics for the difference-in-differences analysis.
The average number of Y02 low-carbon patents is about 5, the average number of Y02 low-
carbon patent citations is 5.67, and the average firm-level Y02 low-carbon patent valuation is
$79 million (deflated to 1982 dollars). For BERT-based low-carbon patents, the average number
is 10.07 per firm-year. This includes 5.00 patents classified under Y02 and an additional 5.07
patents identified by our fine-tuned BERT model.

[Table 1 about here]

Internet Appendix Table A2 presents summary statistics of keyword-based low-carbon patents
among firms. The average number of keyword-based low-carbon patents per firm-year in Panel
A2 is 3.26, compared to 5.00 for Y02 low-carbon patents in Table 1.

ITII. Regression Discontinuity Design (RDD) for Valuation of Green Innovation

To empirically examine how the GHGRP proposal influences the value of green innovation,
we use a RDD method for patents granted around the enactment of the Consolidated Appro-
priations Act of 2008 on December 26, 2007. A small difference in a grant date should not
significantly affect a patent’s value, as the timing of patent issuance is often random and de-
termined by the efficiency of the USPTO (and presumably there is no major event related to
patent value). To test the difference in valuation, we conduct a patent-level regression analysis,
focusing on low-carbon patents filed between 2002 and 2006 and granted in the 12-week window
centered around December 26, 2007. The RDD equation is specified as follows:

1 Ln(Patent Valuation), = a + B1GHGRP,, + BTy, + ~' Control, + 0; + 0. + €,
p v P P

in which p indexes patents, w represents the patent issue week, 6; indicates fixed effects for
the patent-holding firm, and 6. denotes fixed effects for the patent’s four-digit CPC code.
Ln(Patent Valuation), is Kogan et al. (2017) value of patent p in logarithm. We define
the variable GHGRP,, as an indicator that equals one for patents being issued at weeks after
December 26, 2007. The variable Ty, is a flexible function of the running variable, the issue week.
The vector Control, includes patent-level controls, such as Brief Word Count, Cite Backward,
Claims, Process Claim Ratio, Inventor Number, and Inventor Average Age. We double-cluster
standard errors based on the issue week as well as the four-digit CPC patent technology code.

Table 2 reports results using both local linear regression with a rectangular kernel function
and flexible polynomials, all with a consistent 12-week bandwidth around the GHGRP proposal
date. Columns (1) and (4) report results for Y02 low-carbon patents. Columns (2) and (5) for
BERT-based low-carbon patents, and Columns (3) and (6) for other green patents. Columns
(1) and (2) show that the GHGRP increases low carbon patent value by about 70%, significant
at the 1% level. Column (3) reports insignificant effects for other green patents, which are
classified as green under the OECD system but outside the Y02 class, serving as a placebo test.
Results remain robust when we use a quadratic polynomial with the same bandwidth, as shown
in Columns (4) through (6). Panel A of Internet Appendix Table IA3 reports similar results
for keyword-based low-carbon patents, providing a robust relation that is not sensitive to our
definitions of low-carbon patents.

[Table 2 about here|

Figure 3 presents our results graphically. The dots represent weekly averages of the residuals
from a regression of Ln(Patent Valuation) on patent-holding firm fixed effects, the patent’s four-
digit CPC code fixed effects, and control variables. The red fitted curves depict separate linear
or quadratic polynomials for the periods before and after the GHGRP proposal, illustrating a
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clear cutoff in patent valuation for low-carbon patents: the value of low-carbon patents increases
immediately after the proposal. These graphical results align with our findings reported in Table
2.

[Figure 3 about here]

The validity of an RDD relies on two key assumptions: (a) patent issue dates cannot be pre-
cisely manipulated to fall immediately after the GHGRP, and (b) all other patent characteristics
vary smoothly with the running variable at the threshold. We find evidence supporting both
of these assumptions. A formal density test (Cattaneo, Jansson and Ma, 2018) does not reject
the null hypothesis of smooth density across the threshold (p-value=0.3914), and most patent
characteristics, with the exception of Brief Word Count, do not show a discontinuous change
at the threshold (see Internet Appendix Table IA4).26 More importantly, we perform a joint
test and find that the Multinomial ANOVA F-statistic in Internet Appendix Table A4 does
not reject the null hypothesis: all firm characteristics of patents granted before and after the
GHGRP are statistically indifferent. Similar results can be found for BERT-based low-carbon
patents.

One concern is that large firms often receive multiple patent grants on the same day, making
it difficult to attribute stock market reactions to individual patents. This complicates the
identification of value signals for specific innovations. Our results remain robust when we
exclude large firms, defined as those with assets above the sample median (table unreported).?”

Our RDD results indicate that the GHGRP proposal increases the value of low-carbon patents,
suggesting that the financial market assess low-carbon patents differently after the proposal date,
confirming the enhanced value-relevance of those patents due to the GHGRP.

IV. Difference-in-Differences Analysis for Green Innovation Development
A. Patenting Activities

To measure how firms react to the proposal, we calculate the number of low-carbon patents
filed by each firm in a year. We also calculate firm-level forward citations measure the frequency
with which a firm’s patents (filed in a year) is cited by subsequent patents, indicating its scientific
value. It requires adjustment due to vintage (i.e., older patents tend to receive more citations)
and to heterogeneity across fields (i.e., forward citations are more likely to occur in some fields
than in others). Thus, we scale each patent’s number of forward citations received by the average
number of forward citations of public firms’ patents filed in the same year and technology class
(CPC Subclass 4-digit). If a patent is assigned to multiple subclasses, we then use the mode
to define the patent’s technology subclass. We sum up the adjusted forward citations of all
low-carbon patents for which a firm applies (and which are eventually granted by the USPTO)
in a given year. For the valuation of a firm’s patents, we sum the values of its patents (deflated
to 1982 dollars).

To examine how firms’ low-carbon patenting activities react to the GHGRP proposal, we
estimate the following difference-in-differences regression:

Ln(1+ Low — Carbon Tech;;) =B(GHGRP; x Emitter;)
+ yControls; + n + @js + it

(2)

26To measure document length (and possibly complexity), we use the Brief Word Count. One concern is that more
complex patents might face longer approval delays. However, we find that patents granted before the proposal date
actually have larger Brief Word Counts, as reported in Internet Appendix Table IA4. As a result, the before-versus-after
differences in this variable are unlikely to invalidate our RDD setting because we find higher value of patents granted in
the post-event period.

27 Admittedly, Kogan et al. (2017) acknowledge that information leakage during the patent application process may lead
to a gradual incorporation of patent value into stock prices. Consequently, the market reaction on the grant date likely
understates the patent’s total value, potentially biasing our estimates downward.
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in which ¢ represents firms, ¢ represents years 2002 to 2014, and j indicates a firm’s industry
(three-digit NAICS code). Ln(1 + Low — Carbon Tech;) in Equation (2) denotes the natural
logarithm of one plus the count, citations, or values of Y02 low-carbon patents or BERT-based
low-carbon patents filed by firm 4 in year ¢.?® We also consider Poisson regressions using
Low — Carbon Tech;; as the dependent variable in a robustness check. GHGRP; is a binary
variable that is equal to one for years after 2007 and zero otherwise.

Our variable for treatment, Emitter;, ranges from one to four: firms with an estimated 2005
COg4 emission level in the lowest industry quartile (based on the three-digit NAICS code) are
assigned a value of one, while those in the highest quartile are assigned a value of four. We
measure firms’ emissions relative to their industry peers to identify treated firms, following
Berrone et al. (2013). Given that the format, coverage, scope, and threshold of the GHGRP
are largely unclear to firms before the proposal, their pre-proposal estimated CO2 emissions
(based on CO emissions in 2005) and corresponding treatment assignment are unlikely affected
by firms’ expectation of mandatory disclosure or their manipulation or misreporting of CO
emissions. Thus, our treatment assignment is not subject to reverse causality and selection
concerns.

Controls; includes a range of control variables: R&D Intensity, XAD/AT, CAPX/AT,
Ln(AT), Tangibility, Labor/Capital, Tobin’s @, Firm Age, Leverage, ROA, Cash/AT, and
R&D Missing (we provide their definitions in Appendix A). The results are robust when the
control variables are not included, as shown in Internet Appendix Table IA6. In our regression
analysis, we control for firm and industry-year fixed effects (1; and ¢;;) and use double-clustered
standard errors by industry and year.

Our results in Table 3 indicate that high-emission firms file significantly more, and higher-
quality, low-carbon patents following the GHGRP proposal. Specifically, the estimated coeffi-
cients for GHGRP x Emitter in Columns (1) and (3) are 0.0353 for low-carbon patent counts
and 0.0428 for citations, both of which are statistically significant at the 5% level. For BERT-
based patent counts and citations in our regressions (Columns (2) and (4)), the coefficients on
GHGRP x Emitter remain similar to those for Y02 low-carbon patents.

Table 3 also shows an increase in high-emission firms’ low-carbon patent values following the
GHGRP proposal. Columns (5) and (6) report firm-level results for Y02 and BERT-based low-
carbon patent valuations. Low-carbon patent valuation of high-emission firms rises significantly,
at least at the 10% level, after the proposal. Hence, the stock market perceives low-carbon
patents as more valuable to those firms after the proposal.

[Table 3 about here]

In terms of economic significance, the coefficient of 0.0353 for low-carbon patent counts (Col-
umn (1)) implies that a one-quartile increase in a firm’s industry emission rank (e.g., moving
from the first to the second quartile) corresponds to a 3.5% rise in low-carbon patent filings
following the GHGRP proposal. This translates to 0.21 additional patents annually per firm.?
Similarly, the coefficient of 0.0428 for patent citations (in Column (3)) suggests a 4.3% increase
in forward citations of low-carbon patents for firms in higher emission quartiles, equating to 0.29
additional adjusted citations per year, consistent with improved patent quality post-GHGRP.
For patent value, the proposal leads to a 6% economic gain, or approximately $4.9 million in
annual patent value per firm, for a one-quartile rise in emission rank.

28Gince taking the natural logarithm of one plus patents may alter the original interpretation of the log transformation,
we present our robust results in Internet Appendix Table IA5 using a Poisson model that directly uses patent counts and
citations without log transformation.

oln(l+Y oln(l+Y Y
29Differentiating both sides of the model: n(1+Y) - = n( +Y) . - . Since
O(GHGRP x Emitter) oYy O(GHGRP x Emitter)

Jin(1+Y 1 oYy

n(1+Y) = , we obtain - = B-(1+Y). The change in the number of patents is:

oYy 1+Y O(GHGRP x Emitter)
Y

AY = - A(GHGRP x Emitter) = - (1+Y) - A(GHGRP x Emitter). Taking the sample

O(GHGRP x Emitter)
average for Y, and noting that after the proposal, a one-level higher emitter implies A(GHGRP x Emitter) = 1, the
change in the number of patents is: AY =8-(1+Y).
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These findings underscore the economic significance of the GHGRP proposal. High-emission
firms face greater pressure to internalize the externalities they create, which increases their
incentives to invest in more and better carbon-related technologies.

We consider several robustness checks and find consistent results. First, we estimate Equation
(2) using an alternative definition of low-carbon patents based on keyword-based classifications.
Panel B of Internet Appendix Table IA3 shows that the counts, citations, and valuations of firms’
keyword-based low-carbon patents remain robust, confirming that these patents are closely
related to areas such as carbon emissions, energy efficiency, and cleaner energy. Second, we
acknowledge possible offshored emissions and thus exclude firms with high foreign income (which
reflects their overseas activities).>’ Internet Appendix Table IA7 presents consistent results.
Third, we use a binary variable Emitter;, such that firms with an estimated 2005 CO9 emission
level above the industry median are assigned a value of one, and zero otherwise. We report our
results in Internet Appendix Figure IA8 and Table IA8. Fourth, we consider synthetic difference-
in-differences (SDID) (Arkhangelsky et al., 2021) with a specification similar to Equation (2).
This approach combines difference-in-differences and synthetic control methods, reweighting
and matching pre-exposure trends to force the parallel trend assumption to be valid. We report
our results in Internet Appendix Figure IA9 and Table IA9.3!

B. Parallel Trends Assumption

To analyze cross-year differences in low-carbon innovation, we estimated a modified version
of Equation (2) by including interactions between Emitters and year-specific dummy variables
(Iy) as follows:

Ln (14 Low — Carbon Tech)

2014
3
3) = Z Be(Iy x Emitter;) + yControlsy + n; + ©jt + €it.
+=2002,1£2008

Figure 4 displays the sequence of 5; for YO2 and BERT-based low-carbon patent counts, cita-
tions, and valuations estimated using the standard DID approach from Equation (3). The figure
presents 90% confidence intervals annually for those panels presenting results that incorporate
control variables. Figure 4 supports the validity of our parallel trends assumption, showing that
the trends in low-carbon patent counts, citations, and valuations among higher quartile carbon
emitters remain similar to those of lower quartile emitters prior to the proposal.

[Figure 4 about here]

We also use the “honestDiD” method of Rambachan and Roth (2023) to assess the sensitivity
of our causal conclusions under different assumptions about potential deviations from the par-
allel trends assumption. Internet Appendix Figure TA10 presents our dynamic analysis results,
showing stable confidence intervals for the average treatment effect during the post-period. Our
findings are robust under a linear trend assumption (Mbar = 0), holding true for patent counts,
citations, and valuations. As we increase allowance for nonlinearity (Mbar > 0), we reach a
significance threshold of Mbar = 0.3 to fail to reject the null hypothesis for patent counts. In
practical terms, a 30% increase in patent counts is unlikely. For patent citations and patent
valuation (Panels B and C, respectively), our results remain consistent until Mbar reaches ap-
proximately 0.2. Our analysis confirms that our findings are robust to moderate deviations
from the parallel trends assumption.

30 Although about 60% of sample firms reported foreign sales in 2008, these sales were economically small, averaging
only about 2% of total assets or total sales.

31 Although the p-value for Y02 low-carbon patent valuation in the SDID model is approximately 0.13, our parallel trend
plot shows a notable increase in patent value following the proposal. For BERT-based low-carbon patents, the results are
statistically significant.
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C.  Real Effects: COg Emissions, Air Pollution, and Environmental Scores

In our previous sections, we observe that after the GHGRP proposal, high-emission firms
tend to invest more in low-carbon technologies. Prior research also indicates that firms typi-
cally reduce their GHG emissions after mandatory disclosure (Tomar, 2023).32 These findings
motivate us to test if such technologies could result in a significant reduction in GHG emissions.

Moreover, when firms become more energy-efficient, low-carbon technologies could have spillover
effects that could reduce other types of air pollutions. For example, the adoption of low-carbon
technologies may lower the consumption of fossil fuels, resulting in reduced emissions of not
only carbon dioxide but also other harmful pollutants such as sulfur dioxide (SO2) and nitrogen
oxides (NOx). These pollutants are known contributors to smog formation and respiratory
illnesses. Additionally, improvements in manufacturing processes that utilize low-carbon tech-
nologies can lead to less waste and lower emissions of volatile organic compounds (VOCs), which
can also enhance air quality.

As a validation test, we use estimated COg emissions as the dependent variable in Equation (2)
for our sample because (a) we only have data for 2005, 2008, 2011, and 2014, as the NEI database
updates every three years; and (b) real COs2 data are unavailable before 2010. Nevertheless,
we find consistent results when we use estimated COs emissions for the pre-period of 2008 and
use actual COs emissions for the post-period from 2010 to 2014, as shown in Table IA10 in the
Internet Appendix. To further examine the spillover effects of low-carbon technologies, we also
analyze non-CO criteria air releases (NHs, NO,, PM;jp, SO, and VOC).

Our results, presented in Table 4, indicate that estimated CO» emissions significantly decline
after the GHGR proposal. Non-CO criteria air releases also show significant results; however,
the effects are much smaller: the difference in DID coefficients for estimated COs and Non-CO
criteria air releases is significant as shown in the bottom of the table. Overall, while low-carbon
technologies primarily target carbon emissions, they also reduce other pollutants.

[Table 4 about here]

We also conduct an additional test by measuring a firm’s environmental performance using
its E score, which is calculated as the number of KLD environmental strengths (scaled by total
environmental strengths items) minus the number of KLD environmental concerns (scaled by
total environmental concerns items). Using the structure of Equation (2) with firm-level E
scores as the dependent variable, Table 5 shows that firms with higher carbon emissions after
the event exhibit a greater increase in E scores. These results suggest that mandatory GHG
disclosure also enhances firms’ environmental performance perceived by the rating agency.

[Table 5 about here]

D. Alternative Explanations

While our baseline results suggest that the GHGRP significantly stimulated low-carbon inno-
vation among high-emission firms, it is important to consider potential alternative explanations.
In particular, the observed increase in low-carbon patenting could reflect broader regulatory
shifts or macroeconomic shocks that occurred around the same time as the GHGRP’s introduc-
tion. For instance, the election of President Barack Obama in 2008 and the launch of the Green
Technology Pilot Program in 2009 may have signalled a broader pro-environment policy stance,
potentially encouraging green innovation. Similarly, the 2008 financial crisis brought substan-
tial economic and energy market disruptions that may have differentially affected high-emission
firms, particularly those in energy-intensive sectors, thereby inducing innovation patterns un-
related to the GHGRP itself.

To address these concerns, we conduct a series of placebo tests aimed at disentangling the
effects of the GHGRP from other coinciding factors. First, we examine whether the observed

32Unlike Tomar (2023), who uses the period 2010-2011 as the pre-event date and uses 2012 as the event date, we extend
our analysis to include the period before 2010, similar to Yang, Muller and Liang (2021).
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effects extend to other types of green patents that are unrelated to greenhouse gas emissions.
Second, we assess whether exposure to oil price volatility or macroeconomic shocks, proxied
by oil beta and market beta, can account for the observed innovation responses. Finally, we
consider whether firms may have responded to the GHGRP through symbolic “greenwashing”
rather than substantive innovation. The results of these tests consistently indicate that alter-
native explanations are unlikely to fully explain the increase in low-carbon patenting, thereby
reinforcing our interpretation that the GHGRP was a key driver of this response.

CONFOUNDING POLICIES

The election of Barack Obama in 2008 and the subsequent implementation of the Green
Technology Pilot Program3? in 2009 may have potentially bolstered regulatory oversight on
chemical releases, subsequently fostering a surge in overall green innovation that included low-
carbon innovation within firms. To address these alternative explanations, we conduct placebo
tests using other green patents (we define in Section 2.2) as our dependent variable in Equation
(2). As shown in Panel A of Table 6, there is no statistically significant difference in the filing of
other green patents between firms in the higher and lower quartiles of carbon emissions following
the GHGRP proposal. The coefficients in all columns are also relatively small compared to our
baseline results. These findings imply that the increase in low-carbon patents observed in our
baseline analysis is more likely influenced by the GHGRP rather than other policies.

[Table 6 about here]
MACROECONOMIC SHOCKS AND CRISIS RESPONSES

One can also argue that the observed increase in low-carbon patenting following the GH-
GRP proposal may have been influenced by confounding macroeconomic events, most notably
the onset of the 2008 financial crisis, which coincided almost exactly with the timing of the
regulation’s introduction. During this period, global oil prices collapsed, leading to significant
revaluation of high-carbon industries, particularly the energy sector, which is also a major con-
tributor to low-carbon technological innovation. In addition to oil price volatility, high-emission
firms may have faced heightened pressure from investors to adopt more sustainable practices
amid increasing risk aversion. Moreover, the clean energy stimulus provisions included in the
2009 American Recovery and Reinvestment Act could have independently motivated firms to
shift toward green technologies, regardless of the GHGRP.

There is another possibility that high-emission firms responded to the crisis in ways distinct
from their lower-emission peers within the same industry. For example, differences in access
to capital during the credit freeze or variations in business diversification could have led to
firm-level heterogeneity in innovation activity that is unrelated to the GHGRP itself. While
our main specification includes industry-year fixed effects to control for common time-varying
shocks within industries, these controls may not fully capture such within-industry differences.

To address these concerns, we further conduct placebo tests designed to isolate the impact
of contemporaneous shocks. Specifically, we replace the Emitter indicator with two firm-level
exposure measures: oil beta and market beta, both calculated using firm-level return data from
2007, excluding all observations after December 26, 2007—the date when the U.S. Congress
passed the Consolidated Appropriations Act of 2008.3* The oil beta captures a firm’s sensitivity
to oil price movements, while the market beta reflects exposure to aggregate macroeconomic
conditions. We classify firms into quartiles based on these betas within their three-digit NAICS
industry and construct indicator variables equal to one for firms in the top quartile, representing

33See https://www.uspto.gov/patents/initiatives/green-technology-pilot-program-closed
3401l beta Boil,+ and market beta S,qrket,t are estimated from the regression:
Ret;; = a; + Boit,i X Ret_oilt + Brarket,i X Ret-my + €54

where Ret; ; denotes the stock return of firm ¢ on day ¢, Ret_oil; is the return on Brent crude oil futures, and Ret_my is
the return on a value-weighted market index.
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high exposure. These betas, as reported in Panels B and C of Table 6, show no statistically
significant effects on low-carbon patenting when using oil beta or market beta as treatment
variables. These findings suggest that neither oil price shocks nor broader financial market
turbulence can explain the post-2007 low-carbon innovation patterns observed among high-
emission firms. Taken together, these placebo tests help rule out alternative explanations related
to the financial crisis.

ANTICIPATED ESG MANDATES AND REPUTATIONAL MOTIVES

Another potential explanation is that firms may have anticipated the introduction of broader
environmental disclosure mandates, extending beyond GHG emissions to include areas such
as water usage, pollution intensity, or other ESG dimensions. In response, they may have
proactively increased their environmental innovation efforts. However, if this were the primary
driver, we would expect to observe a uniform rise in all categories of green patents. Our placebo
tests in Section 4.4.1, however, reveal that the increase is concentrated in patents specifically
related to greenhouse gas emissions, making it unlikely that generalized regulatory anticipation
alone can explain the pattern.

Finally, one might argue that high-emission firms engage in low-carbon patenting primarily
for reputational purposes, as a form of strategic signaling or so-called “greenwashing.” While
plausible, this explanation appears insufficient. As shown in Section 4.3, firms that increased
low-carbon patenting also experienced subsequent reductions in CO9 and other pollutant emis-
sions. This alignment between innovation and actual environmental performance suggests that
the observed patenting surge reflects substantive behavioral change rather than mere symbolic
compliance or greenwashing.

V. Incentive Tests
A.  Competition Pressure

In this section, we examine whether the effect of the GHGRP varies with firms’ exposure
to competition pressure that may be driven by customers’ environmental preferences. Intense
competition motivates firms to develop distinctive innovations that reshape the market and
create product differentiation (Aghion et al., 2001, 2005). Intense competition also reduces
the incentive for firms to share or license valuable technologies to others, as licensors typically
maintain a competitive advantage by limiting access to rivals (Rockett, 1990).

We classify firms into high- and low-competition groups using two measures: (a) product
market similarity and (b) climate risk-concerned analyst coverage. Higher product similarity
indicates greater competitive pressure, as customers perceive fewer differences across products.
Firms with product market similarity (Hoberg and Phillips 2016) in 2006 above the sample
median are classified as High Product Similarity, and the remainder as Low Product Similarity.

On the other hand, analysts systematically respond to changes in customer sentiment (Luo,
Homburg and Wieseke, 2010). In the context of climate risk, greater coverage of climate risk-
concerned analysts signals stronger customer concerns about climate-related issues, making it
a useful measure of competition pressure tied to customers’ environmental preferences. To
measure climate risk-concerned analyst coverage, we first use I/B/E/S data to calculate each
analyst’s climate risk orientation using the following formula:

N
. . . . 1 Low-Carbon Pat Valy;
(4) Climate Risk Orientation, = N < E Total Pat Val, ) ,

in which N represents the total number of firms ¢ covered by analyst a in 2006. For each
analyst, we compute the ratio of low-carbon patent valuation (Low-Carbon Pat Val;) to total
patent valuation (Total Pat Val,;) for each firm that they cover and then take the average of
these ratios. If the resulting average exceeds the median ratio of all analysts in I/B/E/S
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for 2006, we then classify the analyst as being more concerned about climate risk. We then
calculate the number of climate risk-concerned analysts for each sample firm by summing the
total number of such analysts. Firms with a total number of such analysts that exceeds the
sample median in 2006 are assigned to the group of high climate risk-concerned analyst coverage
(High Climate Risk Analyst). All other firms are classified as having low climate risk-concerned
analyst coverage.

We estimate Equation (2) separately for each group: Panel A is for product market similarity,
and Panel B is for climate risk-concerned analyst coverage. Table 7 shows that high-emission
firms facing greater competition pressure significantly increase their low-carbon patenting after
the GHGRP proposal, whereas such firms with lower competition pressure show no significant
change. We observe similar patterns for low-carbon patent citations (Columns (5) through (8)
of Panels A and B) and for patent valuations in Internet Appendix Table IA11. Taken together,
these results indicate that the GHGRP effect is stronger among firms under greater competitive
pressure, consistent with the view that low-carbon innovation serves as a means of product
differentiation.

[Table 7 about here]
B. Price Efficiency

Lower information asymmetry enables stock markets to better evaluate firms’ technological
capabilities, align stock prices with fundamentals, and reward firms’ innovation efforts (Edmans
and Manso, 2011). Since managers care about stock prices when making investment decisions
(Chen, Goldstein and Jiang, 2007; Bakke and Whited, 2010; Lin, Liu and Sun, 2019), more
efficient prices improve their efficiency in capital allocation. As stock markets react favorably
to high-emission firms’ low-carbon patents, we predict that such firms with higher price effi-
ciency (lower information asymmetry) are more likely to be more active in low-carbon patenting
following the GHGRP proposal.

We classify firms into high- and low-price-efficiency groups using two measures: (a) option
trading volume and (b) the probability of informed trading (PIN). Options may impact firm
value by helping to complete markets and stimulate informed trades (Roll, Schwartz and Sub-
rahmanyam, 2009). Also, the enhanced informational efficiency driven by options leads to a
more efficient allocation of corporate resources (Blanco and Wehrheim, 2017). PIN is derived
from the Bayesian microstructure model of Easley, Hvidkjaer and O’Hara (2002) and estimates
the probability that a given order originates from an informed trader. Thus, PIN measures the
extent of informed trading in a stock; a lower PIN indicates lower information asymmetry.>®

We measure options trading volume by multiplying the total trade volume of each option by
the end-of-day quote midpoint for that option, and then aggregating this value annually across
all trading days and options listed for a focal firm’s stocks. Firms with total option trading
volume in 2006 above the sample median are classified in the group of high option trading, while
all other firms are categorized in the group of low option trading. Similarly, firms with PIN in
2006 above the sample median are classified as High PIN, and the remainder as Low PIN.

We estimate Equation (2) separately for the high and low price efficiency groups. Panel
A of Table 8 is for option trading, and Panel B is for PIN. Table 8 shows that, following the
GHGRP proposal, high-emission firms with higher price efficiency are more active in low-carbon
patenting. The DID coefficients in the high price efficiency group are statistically significant,
whereas no significant effects appear for the low price efficiency group. We find similar patterns
for patent citations (reported in Columns (5) to (8) in Table 8) and for patent valuation (reported
in Internet Appendix Table TA12). Overall, these results suggest that the GHGRP effect is
stronger for firms with more efficient stock pricing.

[Table 8 about here]

35PIN data are obtained from https://terpconnect.umd.edu/ stephenb/EKOpins.html and are also used in Brown,
Hillegeist and Lo (2004).
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VI. Mechanisms

The proposal of the GHGRP placed substantial pressure on high-emission firms to internal-
ize their environmental externalities through engaging in low-carbon technology. They might
achieve this by hiring external inventors with expertise in low-carbon technologies or by en-
couraging internal inventors to develop green innovations. To examine these mechanisms, we
investigate (a) firms’ activities in hiring external inventors with low-carbon technology experi-
ence and (b) the increase in green patents produced by existing inventors.

A.  Acquiring Inventors with Low-Carbon Technology Experience

To capture firms’ acquisition of external inventors, we first define a newly hired inventor’s
low-carbon technology experience as the number of years between the year s/he first patented
a low-carbon patent and the current year s/he joins the focal firm. We then sum up all these
numbers for all inventors that the focal firm hires in a year, and estimate Equation (2) using
this total experience measure. Our results in Table 10 show that, after the GHGRP proposal,
high-emission firms are more likely to acquire low-carbon expertise from the human capital
market. The coefficients in Columns (1) and (2) are both statistically significant at the 5% level
or better. In terms of economic significance, a one-rank increase in a firm’s emission quartile
(e.g., from the first to the second) is associated with an increase of about 0.8 years in newly
hired inventors’ years of experience with low-carbon technologies. These findings suggest that
the GHGRP proposal indeed incentivizes firms to recruit experienced inventors from external
human capital market to develop their technologies.

[Table 9 about here]

B. Incumbent Inventors’ Low-Carbon Patenting Activities

We also estimate the impact of the GHGRP proposal on low-carbon patenting activities
of firms’ existing inventors. Existing inventors are defined as those employees who produced
patents for the firm before 2008. We estimate Equation (2) using the following dependent
variables: (a) the number of Y02 or BERT-based low-carbon patents invented by existing in-
ventors; and (b) the number of forward citations for these patents invented by existing inventors.
Table 10 shows that the DID coefficients are insignificant, which seems to suggest that the GH-
GRP proposal did not strongly increase incumbent inventors’ productivity in terms of their
low-carbon patenting activities.

[Table 10 about here]

All results we present in this section collectively suggest that firms prioritize external hiring
to acquire targeted low-carbon expertise rather than retrain incumbent inventors. This finding
appears intuitive because external hires bring relevant experience faster, enabling more efficient
innovation. In contrast, existing inventors, especially those without prior exposure to low-carbon
technologies, face steep learning curves when shifting their focus.

VII. Conclusion

While low-carbon technologies are important tools to achieve low/zero-emission economies,
their development hinges on corporate resources and managerial incentives. In this paper,
we focus on is how observed environmental externalities influence such technologies through
mandatory disclosure. As the private sector often lacks the motivation to internalize external-
ities, policies that provide transparency and reduce uncertainty about future regulations can
help redirect corporate choices in investment. We present compelling evidence that the GHGRP
proposal incentivizes high-emission firms to invest in low-carbon technologies and reduce their
GHG emissions. Moreover, the GHGRP not only helps reduce COs emissions but also leads
to broader environmental benefits (e.g., reduced non-GHG air pollutants) and hence positive
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spillover effects. Such a transition in production technologies is positively received by the stock
market, indicating that heavy emitters’ incentives to mitigate environmental externalities are
valued by investors.

We offer new insights into how corporate innovation decisions can be shaped by public disclo-
sure. In addition, our research underscores the potential and efficiency of emissions disclosure
as a policy tool for mitigating negative externalities and social welfare loss. Unlike other regu-
latory measures, such as carbon taxes and investment subsidies, the GHGRP proposal offers a
low-cost approach that encourages firms to develop low-carbon technologies without imposing
significant economic burdens.



Appendix A Variables Definition

Variables Definition Source
Panel A. Patent-level RDD Sample
Y02 Low-Carbon Valu- The natural logarithm of the valuation of CPC Y02 low-carbon USPTO; Ko-

ation

patents. Kogan et al. (2017) supplies patent value information, re-
flecting the private economic value of patents. The market value of
each patent is determined by the market capitalization change (bench-
marked against the market return) over a 3-day window (from day t
to day t+2) commencing on the announcement day when a patent is
approved (day t).

gan et al.
(2017)

BERT
Valuation

Low-Carbon

The natural logarithm of the valuations of BERT-based low-carbon
patents. A patent is classified as BERT-based low-carbon if it either
carries a Y02 code or is identified as low-carbon by our fine-tuned
BERT model.

USPTO; Ko-
gan et al.
(2017)

Other Green Valuation

The natural logarithm of the valuations of other green patents. Other
green patents are defined by the OECD as green patents excluding
CPC YO02.

USPTO; Hasié¢
and  Migotto
(2015); Kogan
et al. (2017)

Brief Word Count The word count (in thousands) of a patent’s brief introduction docu- USPTO
ment.
Cite Backward The number of backward citations included in a patent. USPTO
Claims The total number of claims within a patent. USPTO
Process Claim Ratio The ratio of process claims to the total claims of a patent. USPTO; Gan-
glmair et al.
(2022)
Inventor Number The total number of inventors listed on a patent. USPTO
Inventor Average Age The average age of inventors listed on a patent, with missing values USPTO;
replaced by the sample median. Kaltenberg et
al. (2023)
Panel B. Firm-level DID Sample
Estimated COo The COg2 emissions estimate is obtained by utilizing process-level CO  NEI
data and industry-process specific conversion factors (Gurney et al.
2009; Gurney et al. 2010) to convert CO to CO2. These emissions
are then accumulated at the company level.
Real CO2 The actual COs emissions data are obtained from the Greenhouse GHGRP
Gas Reporting Program (GHGRP). We aggregate facility-level data
into firm-level data on an annual basis, spanning the years 2010 to
2014.
Emitter The variable Emitter ranges from one to four, where one indicates NEI
that a firm’s estimated 2005 CO2 emissions fall in the first quartile of
its three-digit NAICS industry. Emissions are estimated from process-
level CO data using CO-to-CO2 conversion factors and aggregated at
the firm level.
GHGRP GHGRP equals one if a year is 2008 or later. USPTO
Y02 Low-Carbon  The natural logarithm of one plus the number of newly applied (and USPTO
Count eventually granted) CPC Y02 low-carbon patents for a firm in a given
year.
Y02 Low-Carbon Cite The natural logarithm of one plus the number of adjusted citations USPTO
received by a firm’s newly applied (eventually granted) CPC Y02 low-
carbon patents in a given year. Each patent’s citations are adjusted
by the average number of forward citations received by all public firms
in the same year and technology class (CPC 4-digit subclass).
Y02 Low-Carbon Valu-  The natural logarithm of one plus the total valuation of a firm’s CPC  USPTO; Ko-

ation

Y02 low-carbon patents in a given year. Kogan et al. (2017) sup-
plies patent value information, reflecting the private economic value
of patents. The market value of each patent is determined by the
market capitalization change (benchmarked against the market re-
turn) over a 3-day window (from day t to day t+2) commencing on
the announcement day when a patent is approved (day t).

gan et al.
(2017)

BERT
Count

Low-Carbon

The natural logarithm of one plus the number of newly applied (and
eventually granted) BERT-based low-carbon patents for a firm in a
given year. A patent is classified as BERT-based low-carbon if it
either carries a Y02 code or is identified as low-carbon by our fine-
tuned BERT model.

USPTO

19
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The natural logarithm of one plus the number of adjusted citations
received by a firm’s newly applied (eventually granted) BERT-based
low-carbon patents in a given year. Each patent’s citations are ad-
justed by the average number of forward citations received by all
public firms in the same year and technology class (CPC 4-digit sub-
class). A patent is classified as BERT-based low-carbon if it either
carries a Y02 code or is identified as low-carbon by our fine-tuned
BERT model.

USPTO

BERT Low-Carbon
Cite

BERT Low-Carbon
Valuation

The natural logarithm of one plus the total valuation of a firm’s
BERT-based low-carbon patents in a given year. A patent is clas-
sified as BERT-based low-carbon if it either carries a Y02 code or is
identified as low-carbon by our fine-tuned BERT model. Kogan et al.
(2017) supplies patent value information, reflecting the private eco-
nomic value of patents. The market value of each patent is determined
by the market capitalization change (benchmarked against the market
return) over a 3-day window (from day t to day t+2) commencing on
the announcement day when a patent is approved (day t).

USPTO; Ko-
gan et al.
(2017)

Other Green Count

The natural logarithm of one plus the number of patents related to
other forms of environmental technology (OECD green patents, ex-
cluding CPC Y02 patents).

USPTO; Hasié¢

Other Green Cite

The natural logarithm of one plus the citations of patents related
to other forms of environmental technology (OECD green patents,
excluding CPC Y02 patents).

Other Green Valuation

The natural logarithm of one plus the value of patents related to other
forms of environmental technology (OECD green patents, excluding
CPC Y02 patents). Kogan et al. (2017) supplies patent value infor-
mation, reflecting the private economic value of patents. The market
value of each patent is determined by the market capitalization change
(benchmarked against the market return) over a 3-day window (from
day t to day t+2) commencing on the announcement day when a
patent is approved (day t).

and  Migotto
(2015)

USPTO; Hasié
and  Migotto
(2015)

USPTO; Hasi¢
and  Migotto

(2015); Kogan
et al. (2017)

Estimated CO2

The natural logarithm of one plus estimated CO2 emissions.

NEI

Non-CO Criteria Air

The natural logarithm of one plus the non-CO criteria air releases
(NHs, NOz, PMig, SO2, and VOC) of a firm.

NEI

E Score

The natural logarithm of KLD environmental strengths (scaled by
the total environmental strengths items) minus the number of KLD
environmental concerns (scaled by the total environmental concerns
items).

KLD

High/Low Product

Similarity

Firms with product market similarity (Hoberg and Phillips 2016) in
2006 above the sample median are classified as High Product Similar-
ity, and the remainder as Low Product Similarity.

Hoberg and
Phillips (2016)

High/Low Climate

Risk Analyst

Firms with high climate risk analyst coverage (High Climate Risk An-
alyst) are those that had a greater number of climate risk-concerned
analysts in 2006 than the sample median. All other firms are con-
sidered to have low climate risk analyst coverage (Low Climate Risk
Analyst). For each analyst, we compute the ratio of low-carbon patent
valuation to total patent valuation for each firm that they cover and
then take the average of these ratios. If the resulting average exceeds
the median ratio of all analysts in I/B/E/S for 2006, we then classify
the analyst as having a greater focus on climate risk.

I/B/E/S

High/Low
Trading

Option

Firms with total option trading volume in 2006 above the sample
median are classified as having High Option Trading volume, while
all other firms are categorized as having Low Option Trading volume.

OptionMetrics

High/Low PIN

Firms with PIN in 2006 above the sample median are classified as
High PIN, and the remainder as Low PIN.

Easley et al.
(2002); Brown
et al. (2004)

New Y02 Low-Carbon
Experience

The total years of CPC Y02 low-carbon inventor experience acquired
by a firm from the labor market. The total years of low-carbon in-
ventor experience is the sum of the years between the hiring of ex-
perienced inventors and the years that they first patented low-carbon
technology. An experienced inventor is defined as one with previous
low-carbon patents who was not previously employed by a given firm.

USPTO

BERT
Carbon Experience

New Low-

Similar to New Low-Carbon Experience, based on BERT-classified
low-carbon patents.

USPTO

Existing Inventors Y02
Low-Carbon Count

The natural logarithm of one plus the total number of CPC Y02 low-
carbon patents attributed to existing inventors.

USPTO

Existing Inventors Y02
Low-Carbon Cite

The natural logarithm of one plus the total citations of CPC Y02
low-carbon patents attributed to existing inventors.

USPTO
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Existing Inventors Y02  The natural logarithm of one plus the total valuations of CPC Y02 USPTO; Ko-
Low-Carbon Valuation low-carbon patents attributed to existing inventors. gan et al.
(2017)

Existing Inventors  The natural logarithm of one plus the total number of BERT-based USPTO

BERT Low-Carbon  low-carbon patents attributed to existing inventors.

Count

Existing Inventors  The natural logarithm of one plus the total citations of BERT-based USPTO

BERT Low-Carbon  low-carbon patents attributed to existing inventors.

Cite

Existing Inventors  The natural logarithm of one plus the total valuations of BERT-based USPTO; Ko-

BERT Low-Carbon  low-carbon patents attributed to existing inventors. gan et al.

Valuation (2017)

R&D Intensity Research and development expenditures divided by total assets, which ~ Compustat
are set to zero if missing.

XAD/AT The ratio of advertising expenses to total assets, which are set to zero ~ Compustat
if data are not available.

CAPX/AT The proportion of capital expenditures to the book value of total Compustat
assets, which is set to zero if data are not available.

Ln(AT) The natural logarithm of the book value of total assets (in millions), Compustat
which is set to zero if data are not available.

Tangibility The ratio of property, plant, and equipment to total assets, which is  Compustat
set to zero if data are not available.

Labor/Capital The ratio of the number of employees to property, plant, and equip- Compustat
ment, which is set to zero if data are not available.

Tobin’s Q The ratio of total assets plus the market value of equity minus the Compustat
book value of equity to the book value of total assets, which is set to
zero if data are not available.

Firm Age The number of years a firm has been listed on Compustat. Compustat

Leverage The ratio of total debt to shareholder equity, which is set to zero if = Compustat
data are not available.

ROA The ratio of net income to the book value of assets, which is set to  Compustat
zero if data are not available.

Cash/AT Cash/AT is defined as the ratio of a firm’s cash and short-term in- Compustat
vestments to its total assets.

R&D Missing R&D Missing is a dummy variable that equals one if a firm has missing ~ Compustat

R&D data for the year, and zero otherwise.
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Figure 2. : Estimated CO9 vs. Real CO9 Reporting in 2011

This figure shows the relationship between estimated and actual carbon dioxide emissions in 2011. Estimated CO2 emissions
are calculated by using conversion factors to transform process-level CO into CO2 and aggregating results at the firm level,
using data from the 2011 NEI database. The real CO2 emissions data are sourced from the Greenhouse Gas Reporting
Program (GHGRP). Both sets of data are plotted using the natural logarithm.

o
N

15
|

)

1

Real_CO2
0

Ln(

T T T T T
0 5 10 15 20
Ln(Estimate_CO2)



24

Figure 3. : The Effect of the GHGRP on Patent Valuation

This figure shows the impact of the Greenhouse Gas Reporting Program (GHGRP) on the market valuation of low-carbon
patents, measured by CPC Y02 or BERT-based classifications. The dots represent weekly averages of residuals obtained
from a regression of the logarithm of patent valuation (Y02 or BERT-based) on four-digit CPC fixed effects, parent firm
fixed effects, and patent-level controls. The red fitted curves depict separate linear or quadratic polynomials for the periods
before and after December 26, 2007, corresponding to the timing of the funding grant for the GHGRP. Panels A1l and
B1 present results from local linear regressions with a 12-week bandwidth, while Panels A2 and B2 employ a quadratic
polynomial on either side of the GHGRP date, also with a 12-week bandwidth.
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Figure 4. : Parallel Trend Plots

The following plots show how low-carbon innovation varies across different CO2 emitter quartiles over time. We plot the
estimated (¢’s of the DID model from the following regression:

2014
In(1 + Low-Carbon Tech;) = Z Be(Iy x Emitter;) 4+ ~yControls;s +n; + @j¢ + €it-
t=2002,t#2008

Panels A, B, and C report the counts, citations, and valuations of CPC Y02 or BERT-based low-carbon patents, respectively.
Vertical lines in the plots represent 90% confidence intervals for the estimated S:’s. The year 2008 is denoted as 0 on the
X-axis.
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Table 2: Summary Statistics

This table presents summary statistics for the sample. Panel A reports patent-level variables for the RDD sample, with
Panel A1l showing CPC Y02 low-carbon patents and Panel A2 showing BERT-based low-carbon patents. Panel B reports
firm-level variables for the DID sample. For Count, Cite, or Valuation, this table reports the raw numbers without taking
logarithms. Detailed variable definitions are provided in Appendix A.

Variables Obs Mean SD plo p50 p90

Panel Al. Patent-level RDD Sample (Y02)

Y02 Low-Carbon Valuation 524 34.24 59.22 3.01 13.35 76.85
Brief Word Count 524 1.25 1.33 0.31 0.88 2.30
Cite Backward 524 23.22 42.33 3.00 11.00 44.00
Claims 524 3.03 1.99 1.00 3.00 5.00
Process Claim Ratio 524 0.40 0.38 0.00 0.33 1.00
Inventor Number 524 3.09 2.26 1.00 3.00 6.00
Inventor Average Age 524 44.41 7.52 35.50 44.00 53.50

Panel A2. Patent-level RDD Sample (BERT)

BERT Low-Carbon Valuation 996 33.99 73.26 4.46 13.12 72.17
Brief Word Count 996 1.23 1.25 0.30 0.88 2.32
Cite Backward 996 21.20 38.75 2.00 10.00 42.00
Claims 996 3.03 1.86 1.00 3.00 5.00
Process Claim Ratio 996 0.39 0.37 0.00 0.33 1.00
Inventor Number 996 2.99 2.07 1.00 3.00 6.00
Inventor Average Age 996 44.51 7.86 35.00 44.00 54.50

Panel B. Firm-level DID Sample

Estimated CO2 2005 (1000 tons) 444 1463.33 9168.91 0.08 6.05 1397.89
Emitter 5573 2.47 1.10 1.00 2.00 4.00
Y02 Low-Carbon Count 5573 5.00 27.02 0.00 0.00 6.00
Y02 Low-Carbon Cite 5573 5.67 30.35 0.00 0.00 6.92
Y02 Low-Carbon Valuation 5573 78.71 490.96 0.00 0.00 90.86
BERT Low-Carbon Count 5573 10.07 47.13 0.00 0.00 15.00
BERT Low-Carbon Cite 5573 10.48 47.82 0.00 0.00 15.45
BERT Low-Carbon Valuation 5573 160.23 852.36 0.00 0.00 238.79
Other Green Count 5573 1.10 6.78 0.00 0.00 1.00
Other Green Cite 5573 1.17 7.48 0.00 0.00 0.69
Other Green Valuation 5573 17.11 109.14 0.00 0.00 12.06
R&D Intensity 5573 0.02 0.05 0.00 0.00 0.06
XAD/AT 5573 0.01 0.02 0.00 0.00 0.02
CAPX/AT 5573 0.05 0.04 0.02 0.04 0.09
Ln(AT) 5573 8.30 1.87 5.91 8.29 10.64
Tangibility 5573 0.35 0.22 0.10 0.30 0.69
Labor/Capital 5573 0.02 0.02 0.00 0.01 0.04
Tobin’s Q 5573 1.49 0.85 0.86 1.32 2.48
Firm Age 5573 31.99 16.49 9.00 35.00 52.00
Leverage 5573 1.34 23.11 0.04 0.63 2.30
ROA 5573 0.04 0.12 -0.02 0.05 0.12
Cash/AT 5573 0.10 0.13 0.01 0.06 0.24

R&D Missing 5573 0.42 0.49 0.00 0.00 1.00




Table 3: Patent Valuation

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on the market valuation of low-carbon patents using RDD models. The dependent variables are the
natural logarithms of the valuations of (a) CPC Y02 low-carbon patents, (b) BERT model-based low-carbon patents, and (c) other green patents. Low-carbon patents are identified using
either the CPC Y02 classification or a large language model (BERT for Patents). We also examine other green patents, defined by the OECD as green patents excluding CPC Y02. The
sample includes low-carbon patents (in Columns (1), (2), and (5)) and other green patents (in Columns (3) and (6)) filed by our sample firms between 2002 and 2006 and issued by the
USPTO within 12 weeks before or after the passage of the Consolidated Appropriations Act, which established funding for the GHGRP, on December 26, 2007. The regressions include fixed
effects for patent parent firms and four-digit patent CPC codes. Columns (1) to (3) show results from local linear regressions with a 12-week bandwidth, while Columns (4) to (6) use a
quadratic polynomial on either side of the GHGRP date, also with a 12-week bandwidth. All models control for patent-level variables, including Brief Word Count, Cite Backward, Claims,
Process Claim Ratio, Inventor Number, and Inventor Average Age. Definitions for these variables are in Appendix A. Standard errors are double-clustered by patent industry (four-digit
patent CPC) and issue week, and are shown in parentheses. Significance levels are indicated as follows: * p < 0.1, ** p < 0.05, and *** p < 0.01.

(1) (2) ®3) (4) (5) (6)

Variables Y02 Low-Carbon BERT Low-Carbon Other Green Y02 Low-Carbon BERT Low-Carbon Other Green
Valuation Valuation Valuation Valuation Valuation Valuation
GHGRP 0.6977*** 0.6821*** 0.2537 0.8384*** 0.7232%** 0.1747
(0.1331) (0.1213) (0.2920) (0.1351) (0.1368) (0.3893)
Brief Word Count -0.0100 -0.0067 -0.1436* -0.0078 -0.0050 -0.1476
(0.0085) (0.0090) (0.0759) (0.0089) (0.0091) (0.0837)
Cite Backward -0.0009* -0.0003 0.0013 -0.0009* -0.0003 0.0011
(0.0005) (0.0004) (0.0015) (0.0005) (0.0004) (0.0013)
Claims -0.0048 -0.0031 0.0389 -0.0050 -0.0033 0.0363
(0.0090) (0.0064) (0.0263) (0.0098) (0.0067) (0.0265)
Process Claim Ratio -0.0066 -0.0050 0.0150 0.0010 -0.0010 0.0144
(0.0387) (0.0276) (0.1824) (0.0431) (0.0278) (0.2334)
Inventor Number -0.0086 -0.0036 -0.0246 -0.0073 -0.0027 -0.0230
(0.0116) (0.0082) (0.0273) (0.0115) (0.0082) (0.0281)
Inventor Average Age -0.0001 0.0027 0.0103 0.0001 0.0029 0.0077
(0.0030) (0.0031) (0.0087) (0.0030) (0.0031) (0.0078)
Constant 2.4994*** 2.3804*** 1.9377%%* 2.4852%** 2.4228*** 2.2264***
(0.1197) (0.1704) (0.2524) (0.1589) (0.1685) (0.1459)
Observations 524 996 120 524 996 120
R-squared 0.927 0.910 0.912 0.928 0.910 0.914
. . Local linear Local linear Local linear Quadratic Quadratic Quadratic
Specification . . . . . .
regression regression regression polynomial polynomial polynomial
Firm FE YES YES YES YES YES YES
CPC4 FE YES YES YES YES YES YES

L&
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Table 4: Firm Patenting Activities

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents. The firm-level
dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, (b)
their citations, and (c) their valuation. Patents are classified using either the CPC Y02 code or a BERT-based model. The
sample period is from 2002 to 2014. We define a patent as BERT-based low-carbon if it either carries a Y02 code or is
classified as low-carbon by our fine-tuned BERT model. GHGRP is represented by a binary variable, with a value of one
indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm’s
estimated 2005 CO2 emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from
process-level CO data using CO-to-CO2 conversion factors and aggregated at the firm level. Regressions presented in this
table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity, XAD/AT,
CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The
definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are
reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p j 0.1,
** indicates p | 0.05, and *** indicates p j 0.01.

(1) (2) 3) (4) (5) (6)

Y02 BERT Y02 BERT Y02 BERT
Variables Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon
Count Count Cite Cite Valuation Valuation
GHGRP x Emitter 0.0353** 0.0435* 0.0428** 0.0501** 0.0611* 0.0767**
(0.0161) (0.0210) (0.0160) (0.0201) (0.0307) (0.0352)
R&D Intensity 0.3490* 0.2679 0.0091 0.1957 0.9652** 0.1812
(0.1913) (0.2150) (0.3385) (0.2475) (0.4172) (0.5632)
XAD/AT -0.7415 -0.4246 0.6871 0.8139 -0.3961 0.2429
(2.3996) (2.9479) (1.4703) (1.7788) (5.6617) (5.7135)
CAPX/AT -0.0178 -0.1467 -0.1732 -0.2711 -0.0135 -0.1101
(0.2301) (0.2484) (0.2719) (0.2475) (0.4322) (0.5234)
Ln(AT) 0.1203** 0.1522%* 0.1355** 0.1555** 0.2631*** 0.2983***
(0.0502) (0.0630) (0.0490) (0.0578) (0.0712) (0.0894)
Tangibility 0.0185 -0.0124 0.1668 0.0385 0.1837 -0.0392
(0.1556) (0.1784) (0.1793) (0.1830) (0.3508) (0.3440)
Labor/Capital -0.3708 0.8068 -0.5552 -0.4202 -0.3535 1.4606
(0.6174) (0.9775) (0.5828) (0.8683) (0.8382) (1.3211)
Tobin’s Q 0.0359* 0.0312 0.0452** 0.0574** 0.0634 0.0516
(0.0170) (0.0187) (0.0205) (0.0251) (0.0361) (0.0326)
Firm Age -0.0031 -0.0076 0.0084 0.0051 0.0172 0.0010
(0.0088) (0.0080) (0.0075) (0.0078) (0.0272) (0.0091)
Leverage -0.0002 -0.0001 -0.0001 0.0001 0.0000 0.0002
(0.0004) (0.0003) (0.0003) (0.0003) (0.0005) (0.0005)
ROA 0.0458 0.0079 0.0736 -0.0219 0.0673 -0.1919
(0.0760) (0.0707) (0.0725) (0.0816) (0.1722) (0.1637)
Cash/AT -0.1229%* -0.0850 -0.0667 -0.1742%* 0.1256 0.2189
(0.0602) (0.0943) (0.0806) (0.0747) (0.2038) (0.2951)
R&D Missing -0.0500 -0.0566 -0.0809 -0.0463 -0.1215 -0.1901
(0.0832) (0.0927) (0.1109) (0.1113) (0.1496) (0.1475)
Observations 5,573 5,573 5,573 5,573 5,573 5,573
R-squared 0.905 0.926 0.859 0.892 0.847 0.889
Firm FE YES YES YES YES YES YES

Industry-Year FE YES YES YES YES YES YES
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Table 5: Emissions Reduction

This table reports how the Greenhouse Gas Reporting Program (GHGRP) affects firm estimated CO2 emissions and other
criteria air emissions. The sample period is four years (2005, 2008, 2011 and 2014) because the NEI data is updated
every three years. The dependent variables are the natural logarithm of one plus (a) the estimated COg2 emissions through
CO and (b) non-CO criteria air releases (NHsz, NO,, PMjg, SOz, and VOC). Estimated CO2 emissions are derived from
process-level CO data, using the CO-to-COg2 industry process conversion factors, and are then aggregated at the firm
level. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The
variable Emitter ranges from one to four, where one indicates that a firm’s estimated 2005 CO2 emissions fall in the first
quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-COg2 conversion
factors and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects.
Standard errors, double-clustered by industry and year, are reported in parentheses. The bottom of the table presents the
p-values from the coefficient difference test for GHGRP x Emitter. The estimated coefficient p-values are indicated using
the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2) 3) 4)

Variables Estimated CO2 Non-CO Criteria Air Estimated COg Non-CO Criteria Air
GHGRP x Emitter -0.3190** -0.1495%* -0.3305%** -0.1456*
(0.0566) (0.0514) (0.0562) (0.0528)
R&D Intensity -1.8259 -0.6779
(1.3568) (0.3021)
XAD/AT -4.1750 0.6443
(6.0817) (2.9066)
CAPX/AT 1.6081 1.3251
(1.7561) (0.9142)
Ln(AT) 0.0364 -0.0310
(0.1307) (0.0702)
Tangibility 1.1240 0.3010
(0.6058) (0.5198)
Labor/Capital -2.3251 -6.2954
(3.2500) (3.2263)
Tobin’s Q 0.0837 0.0124
(0.0625) (0.0260)
Firm Age 0.0517 0.0575
(0.0713) (0.0364)
Leverage -0.0041 0.0077*
(0.0061) (0.0033)
ROA -0.3959 -0.3135
(0.4582) (0.2751)
Cash/AT 0.6691 -0.2460
(0.3013) (0.3356)
R&D Missing -0.1183 0.0487
(0.3781) (0.1708)
Observations 1,654 1,654 1,654 1,654
R-squared 0.945 0.961 0.945 0.962
Firm FE YES YES YES YES
Industry-Year FE YES YES YES YES

Diff Test (P-value) 0.0100** 0.0045%**
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Table 6: Environmental Score

This table examines the impact of the Greenhouse Gas Reporting Program (GHGRP) on Environmental scores over the
sample period from 2002 to 2014. The dependent variable is the firm’s total E score, calculated as the number of KLD
environmental strengths (scaled by the total environmental strengths items) minus the number of KLD environmental
concerns (scaled by the total environmental concerns items). The variable Emitter ranges from one to four, where one
indicates that a firm’s estimated 2005 COg2 emissions fall in the first quartile of its three-digit NAICS industry. Emissions
are estimated from process-level CO data using CO-to-COz conversion factors and aggregated at the firm level. Regressions
presented in this table include firm and industry-year fixed effects. Column (2) also include the following variables: R&D
Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA, Cash/AT,
and R&D Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered
by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following
notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2)

Variables E Score E Score
GHGRP xEmitter 0.0264** 0.0268**
(0.0106) (0.0102)
R&D Intensity -0.7693**
(0.3213)
XAD/AT 0.1324
(0.8716)
CAPX/AT 0.1261
(0.1740)
Ln(AT) -0.0571%**
(0.0094)
Tangibility 0.1025
(0.1709)
Labor/Capital 0.6651
(0.5859)
Tobin’s Q -0.0073
(0.0115)
Firm Age -0.0041
(0.0083)
Leverage -0.0001
(0.0001)
ROA 0.1439*
(0.0711)
Cash/AT -0.0382
(0.1048)
R&D Missing -0.0120
(0.0404)
Observations 4,090 4,090
R-squared 0.662 0.667
Firm FE YES YES

Industry-Year FE YES YES
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Table 7: Placebo Tests

This table reports placebo tests for the Greenhouse Gas Reporting Program (GHGRP), using data from 2002 to 2014.
Panel A uses other green patents, defined as OECD green patents excluding CPC Y02 patents, as the dependent variable.
Panels B and C use CPC Y02 or BERT-based low-carbon patents as the dependent variable, replacing the original Emitter
variable with the firm’s oil beta in Panel B and market beta in Panel C, respectively. In all panels, the dependent variables
are measured as the natural logarithm of one plus: (a) the number of relevant patents, (b) their citation counts, and (c)
their valuations. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later.
The variable Emitter ranges from one to four, where one indicates that a firm’s estimated 2005 COg2 emissions fall in
the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-COg
conversion factors and aggregated at the firm level. Oil beta and market beta are also categorized into quartiles by industry.
A value of one represents firms in the first quartile of oil or market beta within their three-digit NAICS industry. Both
betas are calculated using firm return data from 2007, excluding dates after December 26, 2007—the date the U.S. Congress
passed the Consolidated Appropriations Act of 2008. Oil beta $,;,; and market beta f,,qrket,; are estimated from the
regression: Ret; ;1 = a;+ Boil,i X Retosi ¢ + Bmarket,i X Retm,t +¢€4¢. Retyy ¢ is based on Brent crude oil futures prices, and
Retp,,¢ is based on the value-weighted market index. Regressions presented in this table include firm and industry-year
fixed effects. Control variables are R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin’s
Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. Standard errors, double-clustered by industry and year, are
reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1,
** indicates p < 0.05, and *** indicates p < 0.01.

Panel A. Other Green Patents

1) (2) (3) (4) (5) (6)
Other Green Other Green Other Green Other Green Other Green Other Green

Variables Count Count Cite Cite Valuation Valuation
GHGRP x Emitter 0.0162 0.0157 0.0144 0.0146 0.0178 0.0172
(0.0098) (0.0090) (0.0100) (0.0095) (0.0189) (0.0180)
Observations 5,573 5,573 5,573 5,573 5,573 5,573
R-squared 0.844 0.844 0.806 0.806 0.791 0.791
Controls NO YES NO YES NO YES
Firm FE YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES

Panel B. Treatment Based on Firm Oil Beta
1) (2) (3) (4) (5) (6)

Variabl Y02 Low-  BERT Low- Y02 Low-  BERT Low- Yén I};OW' BECRTbLOW'
ariables Carbon Count Carbon Count Carbon Cite Carbon Cite ar (?n ar (?n
Valuation Valuation
GHGRP xOil Beta -0.0210 -0.0293 -0.0302 -0.0312 -0.0111 -0.0292
(0.0247) (0.0306) (0.0241) (0.0262) (0.0361) (0.0491)
Observations 5,573 5,573 5,573 5,573 5,573 5,573
R-squared 0.905 0.926 0.859 0.892 0.847 0.889
Controls YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES
Panel C. Treatment Based on Firm Market Beta
1) (2) (3) (4) (5) (6)
Variabl Y02 Low-  BERT Low- Y02 Low-  BERT Low- Yén EOW' BECRTbLOW'
ariables Carbon Count Carbon Count Carbon Cite Carbon Cite ar (?n ar (?n
Valuation Valuation
GHGRP xMarket Beta 0.0124 0.0079 0.0258 0.0317 0.0416 0.0219
(0.0160) (0.0205) (0.0203) (0.0213) (0.0334) (0.0483)
Observations 5,573 5,573 5,573 5,573 5,573 5,573
R-squared 0.905 0.926 0.859 0.892 0.847 0.889
Controls YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES

Industry-Year FE YES YES YES YES YES YES




This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents for firms with high and low competition pressure. The sample period is from 2002
to 2014. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, and (b) their citations. GHGRP is represented
by a binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm’s estimated 2005 CO2
emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO2 conversion factors and aggregated at the firm
level. We classify firms into high and low competition pressure groups using two measures: (a) product market similarity and (b) climate risk analyst coverage. Firms with product market
similarity (Hoberg and Phillips 2016) in 2006 above the sample median are classified as High Product Similarity, and the remainder as Low Product Similarity. Firms with climate risk
analyst coverage above the sample median in 2006 are classified as High Climate Risk Analyst, and the remainder as Low Climate Risk Analyst. Regressions presented in this table include
firm and industry-year fixed effects. Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following

Table 8: Competition Pressure

notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Panel A. Product Similarity

(1) (2) (3) (4) (5) (6) (7) (8)
Variabl Y02 Low- Y02 Low- BERT Low- BERT Low- Y02 Low- Y02 Low- BERT Low- BERT Low-
ariables Carbon Count Carbon Count Carbon Count Carbon Count Carbon Cite Carbon Cite Carbon Cite Carbon Cite
Subsample Low Product High Product Low Product High Product Low Product High Product Low Product High Product
p Similarity Similarity Similarity Similarity Similarity Similarity Similarity Similarity
GHGRP x Emitter 0.0210 0.0505* 0.0216 0.0519* 0.0286 0.0538* 0.0172 0.0689*
(0.0294) (0.0243) (0.0382) (0.0266) (0.0395) (0.0260) (0.0476) (0.0328)
Observations 2,613 2,555 2,613 2,555 2,613 2,555 2,613 2,555
R-squared 0.912 0.914 0.923 0.934 0.872 0.867 0.892 0.907
Controls YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES YES YES
Panel B. Climate Risk Analyst Coverage
(1) (2) (3) (4) (5) (6) (7) (8)
Variabl Y02 Low- Y02 Low- BERT Low- BERT Low- Y02 Low- Y02 Low- BERT Low- BERT Low-
ariables Carbon Count Carbon Count Carbon Count Carbon Count Carbon Cite Carbon Cite Carbon Cite Carbon Cite
Subsample Low Climate High Climate Low Climate High Climate Low Climate High Climate Low Climate High Climate
p Risk Analyst Risk Analyst Risk Analyst Risk Analyst Risk Analyst Risk Analyst Risk Analyst Risk Analyst
GHGRP x Emitter -0.0084 0.0888** -0.0033 0.0980* -0.0172 0.1342%** -0.0201 0.1607***
(0.0124) (0.0377) (0.0159) (0.0490) (0.0162) (0.0353) (0.0174) (0.0422)
Observations 2,621 2,209 2,621 2,209 2,621 2,209 2,621 2,209
R-squared 0.869 0.903 0.893 0.923 0.816 0.848 0.843 0.884
Controls YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES YES YES
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The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Table 9: Price Efficiency

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents for firms with high versus low price efficiency. The sample period is from 2002 to
2014. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, and (b) their citations. GHGRP is represented by a
binary variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm’s estimated 2005 CO2 emissions
fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-CO2 conversion factors and aggregated at the firm level. We
classify firms into high and low price efficiency groups based on two measures: (a) option trading volume and (b) the probability of informed trading (PIN). Firms with option trading volume
in 2006 above the sample median are classified as High Option Trading, and the rest as Low Option Trading. Similarly, firms with PIN above the sample median are classified as High PIN,
and the rest as Low PIN. Regressions presented in this table include firm and industry-year fixed effects. Standard errors, double-clustered by industry and year, are reported in parentheses.

Panel A. Option Trading

(1) (2) (3) (4) (5) (6) (7) (8)
Variables Y02 Low- Y02 Low- BERT Low- BERT Low- Y02 Low- Y02 Low- BERT Low- BERT Low-
Carbon Count Carbon Count Carbon Count Carbon Count Carbon Cite Carbon Cite Carbon Cite Carbon Cite
Subsample Low Option High Option Low Option High Option Low Option High Option Low Option High Option
u p Trading Trading Trading Trading Trading Trading Trading Trading
GHGRP x Emitter 0.0218 0.0931** 0.0400 0.0900* 0.0159 0.1342*** 0.0327 0.1404***
(0.0351) (0.0382) (0.0000) (0.0453) (0.0315) (0.0354) (0.0000) (0.0398)
Observations 2,207 2,172 2,207 2,172 2,207 2,172 2,207 2,172
R-squared 0.809 0.924 0.845 0.943 0.738 0.874 0.783 0.907
Controls YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES YES YES
Panel B. PIN
(1) (2) (3) (4) (5) (6) (7) (8)
Variabl Y02 Low- Y02 Low- BERT Low- BERT Low- Y02 Low- Y02 Low- BERT Low- BERT Low-
ariables Carbon Count Carbon Count Carbon Count Carbon Count Carbon Cite Carbon Cite Carbon Cite Carbon Cite
Subsample High PIN Low PIN High PIN Low PIN High PIN Low PIN High PIN Low PIN
GHGRP x Emitter -0.0000 0.0625** 0.0146 0.0580* -0.0095 0.0922*** 0.0138 0.0833**
(0.0207) (0.0267) (0.0236) (0.0318) (0.0184) (0.0248) (0.0208) (0.0291)
Observations 2,702 2,726 2,702 2,726 2,702 2,726 2,702 2,726
R-squared 0.873 0.912 0.896 0.935 0.814 0.865 0.844 0.903
Controls YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES YES YES

&8
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Table 10: New Low-Carbon Experience Acquiring

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on firms acquiring inventors based on
their years of experience in low-carbon patenting. The sample covers the period from 2002 to 2014. The dependent variable
is the total years of CPC Y02 or BERT-based low-carbon inventor experience that a firm acquires from the labor market
in a given year. The total years of low-carbon inventor experience is the sum of the years between the hiring of experienced
inventors and the years they first patented low-carbon technology. An experienced inventor is defined as one with previous
low-carbon patents who was not previously employed by the firm. GHGRP is represented by a binary variable, with a value
of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a
firm’s estimated 2005 COg9 emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated
from process-level CO data using CO-to-COq conversion factors and aggregated at the firm level. Regressions presented
in this table include firm and industry-year fixed effects. Columns (2) and (4) also include the following variables: R&D
Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA, Cash/AT,
and R&D Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered
by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using the following
notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2) (3) (4)

Variables New Y02 Low- New Y02 Low- New BERT Low- New BERT Low-
Carbon Experience Carbon Experience Carbon Experience Carbon Experience
GHGRP x Emitter 0.8042*** 0.8434*** 1.0337%** 1.0786***
(0.2292) (0.2616) (0.3235) (0.3430)
R&D Intensity 8.7477 7.9021
(10.2061) (10.8834)
XAD/AT -93.2127 -111.7575
(75.6099) (87.0064)
CAPX/AT -2.0779 -1.9974
(14.3299) (15.4806)
Ln(AT) 2.6851 2.8679
(0.854) (2.3468)
Tangibility -1.2956 -1.5931
(4.5960) (5.1486)
Labor/Capital -10.0152 -8.0420
(20.7099) (21.3990)
Tobin’s Q 0.1915 0.1872
(0.5564) (0.6460)
Firm Age -0.1050 -0.1290
(0.1435) (0.1906)
Leverage -0.0022 -0.0014
(0.0071) (0.0074)
ROA 2.8491 3.1424
(2.0691) (2.1010)
Cash/AT -17.5495 -19.8603
(10.4523) (12.0972)
R&D Missing 0.2883 0.3178
(1.6747) (1.7820)
Observations 5,573 5,573 5,573 5,573
R-squared 0.757 0.759 0.760 0.762
Firm FE YES YES YES YES

Industry-Year FE YES YES YES YES
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Table 11: Existing Inventors’ Low-Carbon Patenting Activities

This table examines the impact of the Greenhouse Gas Reporting Program (GHGRP) on the low-carbon patenting activities
of firms’ existing inventors. The sample covers the period from 2002 to 2014. The dependent variables are the natural
logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents attributed to existing inventors, (b)
the citations of these patents, and (c) the valuations of these patents. Existing inventors are defined as those hired by
the firm who produced patents for the firm before 2008. GHGRP is represented by a binary variable, with a value of one
indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a firm’s
estimated 2005 CO2 emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated from
process-level CO data using CO-to-CO2 conversion factors and aggregated at the firm level. Regressions presented in this
table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity, XAD/AT,
CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The
definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and year, are
reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1,
** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2) (3) (4) (5) (6)

Existing Existing Existing Existing Existing Existing
Variables Inventors Y02 Inventors Inventors Y02 Inventors Inventors Y02 Inventors
Low-Carbon BERT Low- Low-Carbon BERT Low- Low-Carbon BERT Low-
Count Carbon Count Cite Carbon Cite Valuation Carbon Valuation
GHGRP x Emitter 0.0068 0.0116 0.0085 0.0190 0.0008 0.0080
(0.0161) (0.0174) (0.0174) (0.0197) (0.0397) (0.0284)
R&D Intensity 0.0118 0.0732 -0.1578 -0.0840 0.1477 -0.1416
(0.2039) (0.3477) (0.2362) (0.3052) (0.5066) (0.7373)
XAD/AT -0.0069 0.9271 1.1919 1.9687 -0.3795 1.5452
(1.5511) (1.9991) (1.1827) (1.5324) (3.8914) (4.0429)
CAPX/AT -0.1148 -0.1808 -0.2010 -0.2223 -0.0440 0.0998
(0.1921) (0.2169) (0.2343) (0.2129) (0.3352) (0.4491)
Ln(AT) 0.1192%* 0.1484** 0.1194%** 0.1464%** 0.2707%** 0.3134%**
(0.0407) (0.0513) (0.0386) (0.0473) (0.0629) (0.0739)
Tangibility -0.0293 0.0732 0.0326 0.0254 0.0076 0.1847
(0.0915) (0.1364) (0.1830) (0.1743) (0.2418) (0.2967)
Labor/Capital 0.0621 0.4416 -0.3289 -0.2022 0.3463 1.0430
(0.2394) (0.2918) (0.4400) (0.4439) (0.6228) (0.7352)
Tobin’s Q 0.0163 0.0129 0.0115 0.0196 0.0375** 0.0176
(0.0153) (0.0215) (0.0220) (0.0280) (0.0168) (0.0248)
Firm Age 0.0087 0.0096 0.0197*** 0.0198** 0.0365 0.0384
(0.0068) (0.0078) (0.0060) (0.0065) (0.0241) (0.0243)
Leverage -0.0003 -0.0001 -0.0002 -0.0000 -0.0000 0.0002
(0.0004) (0.0004) (0.0004) (0.0003) (0.0006) (0.0005)
ROA -0.0307 -0.0344 -0.0008 -0.0655 -0.0671 -0.2499
(0.0704) (0.0636) (0.0824) (0.0827) (0.2091) (0.1778)
Cash/AT -0.1056 -0.0421 -0.0174 -0.0710 0.0895 0.2738
(0.0677) (0.0624) (0.0921) (0.0640) (0.2620) (0.2062)
R&D Missing -0.0596 -0.0855 -0.1092 -0.0980 -0.2051* -0.3045**
(0.0779) (0.0788) (0.1202) (0.1021) (0.1134) (0.1381)
Observations 5,573 5,573 5,573 5,573 5,573 5,573
R-squared 0.902 0.924 0.847 0.880 0.844 0.883
Firm FE YES YES YES YES YES YES

Industry-Year FE YES YES YES YES YES YES
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Internet Appendix for “Grow in the Sun: Valuation and Development of Green
Innovation under Mandatory Carbon Disclosure”

Al. Representative Public Comments on the GHGRP Proposal

This section of the internet appendix presents selected public comments on the EPA’s initial
GHGRP proposal. The comments highlight significant uncertainty and disagreement over key
program elements at the time of the proposal.

Corporations express concerns about emissions calculations, continuous reporting require-
ments for facilities that reduce emissions, and ambiguous definitions, including those of natural
gas and offshore production facilities. For example, William A. Collins, Jr., Senior Director of
Regulatory Affairs at Occidental Petroleum Corporation, urges that EPA’s mandatory GHG re-
porting rule should be based only on actual emissions, not potential or allowable emissions, and
opposes the “once in, always in” policy that requires perpetual reporting even if emissions fall
below thresholds. He requests clarifications in definitions, excluding gases without commercially
significant hydrocarbons from “natural gas” and specifying that artificial islands are not “plat-
form structures,” and emphasizes that COs captured for enhanced oil recovery, which is largely
sequestered, should not be counted as emissions. Collins also recommends developing voluntary
or demonstration reporting protocols for supplied CO2 and sequestered COs and supports an-
nual rather than quarterly measurement to ensure accurate, practical, and legally sound report-
ing. Available at https://www.regulations.gov/comment/EPA-HQ-0AR-2008-0508-0452

Comment submitted by William W. Grygar II, Environmental & Regulatory Manager, Anadarko
Petroleum Corporation, emphasized several concerns regarding the GHGRP proposal. Anadarko
supported the 25,000 metric tons per year threshold, recommended delaying implementation by
one year, and opposed the “once in, always in” policy. They requested extending the an-
nual reporting deadline to June 30, excluding indirect emissions, and allowing self-certification
rather than third-party verification. Anadarko also highlighted the disproportionate burden
on onshore oil and gas facilities, urged clarifications for definitions such as “natural gas pro-
cessing facilities” and “fugitive emissions,” and recommended excluding CO2 used for en-
hanced oil recovery and avoiding double-counting in NGL reporting. Available at https:
//www.regulations.gov/comment/EPA-HQ-0AR-2008-0508-0459

Some industry associations argue that the 25,000 metric ton COsqe threshold is arbitrary. The
comment submitted by Joseph J. Croce, Senior Vice President of the Virginia Manufacturers
Association (VMA), discusses this issue on page 4 (available at https://www.regulation
s.gov/comment/EPA-HQ-0AR-2008-0508-0526). The VMA argues that the 25,000 tCOqe
threshold is arbitrary and not based on science. They note that it is unclear why 25,000 tCOqe
is preferred over 25,500 or 30,000 tCOs9e and that applying this threshold would impose burdens
on facilities not classified as major sources under existing Clean Air Act programs. Similarly,
Lauren E. Freeman and Norman W. Fichthorn, Hunton & Williams LLP, on behalf of the
Utility Air Regulatory Group (UARG), address the threshold on pages 4-5 of their comment
(available at https://www.regulations.gov/comment/EPA-HQ-0AR-2008-0508-0493). They
note that EPA did not explain any legal or regulatory basis for setting the threshold at 25,000
tons, which appears far above the 250-ton-per-year level established under the Clean Air Act
for PSD applicability, and they recommend that EPA clarify and justify this threshold before
proceeding.

Different stakeholders express divergent views on the reporting scope. RiskMetrics Group
recommends including Scope 2 emissions, whereas Teck Alaska Incorporated proposes limiting
reporting to upstream emissions to prevent double-counting. Comment by Geri Kantor and
Doug Cogan, RiskMetrics Group, is available at https://www.regulations.gov/comment/EP
A-HQ-0AR-2008-0508-0369; comment by Jeffrey L. Clark, Environmental Coordinator, Teck
Alaska Incorporated, is available at https://www.regulations.gov/comment/EPA-HQ-0AR-2
008-0508-0142.

Many commenters from certain industries opposed the proposed rule, arguing that it would
increase the regulatory burden. The Portland Cement Association notes that the rule would
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create a massive new reporting system for greenhouse gases and impose requirements greater
than any other EPA Clean Air Act information-gathering effort. The association emphasizes
that the obligations go far beyond what is needed to understand national emissions and would
impose disproportionately high costs on cement plants (Comment submitted by Andrew T.
O’Hare, Vice President, Regulatory Affairs, PCA, p. 2, available at https://www.regula
tions.gov/comment/EPA-HQ-0AR-2008-0508-0509). Similarly, the California Cattlemen’s
Association argues that livestock operations would face unnecessary reporting obligations, even
though agriculture accounts for a small share of national emissions, and that the rule applies
arbitrary thresholds without reflecting the actual impact of emissions (Comment submitted by
Justin Oldfield, Director, Industry Affairs, CCA, available at https://www.regulations.go
v/comment/EPA-HQ-0AR-2008-0508-0383).

DATA AND MATCHING DETAILS
B1. NEI Database

The National Emissions Inventory (NEI) is a national compilation of emissions sources that is
created by combining data from various state, local and tribal air agencies (SLTs) with informa-
tion from EPA emissions programs (e.g., Toxics Release Inventory (TRI), Acid Rain Program)
and data gathered for EPA regulatory development aimed at reducing air toxic emissions. To
create the NEI, the data from these different sources are blended together using quality assur-
ance procedures. We use this section to show how we match NEI facilities with public firms.

Step 1: To access the NEI data, we visit the website https://www.epa.gov/air-emissions
-inventories/2008-national-emissions-inventory-nei-data and download the “point”
data. These data include process-level emissions information for various facilities.

The term “point” refers to large stationary sources (e.g., electric utilities, heavy industry) that
have a distinct physical location. In contrast, “nonpoint” sources (e.g., field burning, residential
wood combustion) have emissions that are distributed across a county area. Additionally,
“mobile” category emissions, including “on-road” cars and trucks as well as “nonroad” sources
such as aircraft and agricultural field equipment, are also typically estimated across county
areas.

[Figure IA1 about here]

Step 2: In the NEI data, we utilize the “eis_facility_site_id,” which is the identification number
assigned to a facility in the EPA’s Emissions Inventory System (EIS). We use this EIS ID to
find the parent organization of a facility.

To find this information, we access the “National and State Comma Separated Value (CSV)
files” available on the EPA website at https://www.epa.gov/frs/epa-state-combined-csv
-download-files. The files include details of all Federal Reporting System (FRS) facilities.

Once we have downloaded these files, we use the “NATIONAL_ORGANIZATIO
N_FILE.CSV” and select the rows where the “pgm_sys_acrnm” is “EIS” and “pgm_sys
_id” matches the EIS ID of the facility. The “org_name” in this file provides the organization
name (as shown in Figure IA2).

[Figure IA2 about here]
In some cases, an organization’s name may be missing. In these instances, we extract the EIS
ID from the “pgm_sys_acrnms” column of the “NATIONAL_FACI

LITY _FILE.CSV” and use the “primary name” to identify the facility name (as shown in Figure
IA3). If the organization’s name is not available, we then use the facility name.

[Figure IA3 about here]
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Step 3: In this step, we prepare the data by cleaning any special characters, capitalizing
all names, and standardizing the suffixes of the NEI and Compustat firms’ names. This in-
cludes converting “CORPORATION” to “CORP,” “INDUSTRY” to “IND,” and “GROUP” to
“GRP,” among others.

Step 4: To match the names in the TRI and Compustat data sets, we utilize the SAS
“compged()” function, which is a fuzzy name-matching algorithm. This function calculates the
matching score (or edit distance) between two strings, with a score of 0 indicating that the
strings are identical. To make the matching process more efficient, we first ensure that the
initials of the names in the TRI and Compustat data sets are the same, and then calculate
the edit distance. We keep outputs for cases in which the matching score is no more than 520,
which yields a pool of potential matches.

Step 5: To verify the matches, we manually check the names from the output file. This
includes checking the matching score, conducting a Google search of names, and visiting firms’
websites to confirm that the two names refer to the same company.

B2. CO-to-COg4 Conversion

To determine the amount of COy emissions for each process at each facility, we employ
conversion factors outlined in the literature (Gurney et al. 2009; Gurney et al. 2010) . These
factors, detailed in the Vulcan Science Methods Documentation, can be found at: https:
//vulcan.rc.nau.edu/assets/files/Vulcan.documentation.v2.0.online.pdf

An overarching principle with respect to these factors is that when fuel is burned under
consistent conditions in standard industrial processes, it will consistently produce CO5 and CO
in proportionate amounts. We use these conversion factors to calculate the COs emissions for
each process, and then add up the process-level estimates to arrive at the total COy emissions
for a company.

The process for converting CO emissions to COq involves the following steps:

Step 1: We download the Source Classification Codes (SCCs) file from the website https:
//ofmpub.epa.gov/sccwebservices/sccsearch/, which contains a detailed description of
each process. The file contains four levels of description for combustion processes that produce
emissions. The higher levels contain more detailed information. For example, the SCC code
30500849 is for industrial processes (level 1), for mineral products (level 2), for clay ceramics
manufacture (level 3), and is for a roller kiln: natural gas-fired (level 4).

[Figure TA4 about here]

Step 2: We match the detailed description by using the SCC code in the NEI CO emissions
with the Source Classification Codes (SCCs) file. Therefore, we have a four-level description of
SCCs.

Step 3: Following Table A.1 of the Vulcan Science Methods Documentation, we find key
words in the four levels of the SCC description of each observation in the NEI. For example,
we find the key words for materials “bituminous coal” and modifier for “pulverized” in the four
levels of the SSC, and then assign the emission factors 0.021 for CO emissions.

[Figure IA5 about here]

Step 4: Following Table A.3 of the Vulcan Science Methods Documentation, we assign COq
factors for these materials. For example, the factor 0.0531 is for the material “natural gas,”
which SSCs include the key word “natural gas.”

[Figure IA6 about here]

Step 5: We use the following formula provided by Gurney et al. (2010) to calculate the
estimated CO9 emissions for each CO observation in the NEI:

12 PEy,;
Pl 44 PFy,

CF,y
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In cases where p indexes combustion process (e.g., turbine and reciprocating engine), f is the
fuel type such as distillate oil and natural gas, C' is the emitted amount for carbon, PE is the
amount of CO emissions, PF' is the emission factor of CO, and C'F' is the emission factor of
COa,. Finally, we aggregate the process-level estimated CO3 emissions at the firm-level.
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Figure IA1: Data Download

We use the To access the NEI data, we visit the website and download the “point” data.

Data Summaries

The data posted at this site will include only the latest version of the 2008NEI. This
webpage should not be used as a reference for past versions of the NEI and users wanting a
record of data used in their analysis should archive and document those inventories to
meet their own archival needs. Users should not assume that the data posted on this site
will stay the same as the data they use at a given point time.

The full detail data files for the Point, Onroad, Nonroad and Nonpoint data categories can
be downloaded from the list below. Please note these files are larger than previous
inventories and can be linked in Access if importing fails. These SCC data files do not
include “events” data -wildfires and prescribed burning emissions. The events data can be
found at the “Prescribed/Wildfires by Pollutant” link below under “Other Emissions
Summaries”. To obtain a complete inventory total, please include these data in addition to
the 4 SCC data files provided here.

® Point (ZIP CSV) (406.0 MB)
* Onroad (ZIP CSV) (208.0 MB)
* Nonroad (ZIP CSV) (322.0 MB)

* Nonpoint (ZIP CSV) (51.2 MB)

Additional Summary Data

Source: https://www.epa.gov/air-emissions-inventories/2008-national-emissions-inventory-nei-data
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Figure IA2: National Organization File

We use the “NATIONAL_ORGANIZATION_FILE.CSV” and select the rows where the “pgm_sys_acrnm” is “EIS” and the
“pgm_sys_id” matches the EIS ID of the facility. The “org_name” in this file provides the organization’s name.

registry_id pgm_sys_acrnm pgm_sys_id org_name
1 EIS 12663611 TESORO LOGISTICS OPERATIONS LLC
2 116680491780 EIS 6580011 KOCH INDUSTRIES, INC.
3 110000498131 EIS 1875011 TO BE MERGED INTO 863511
4 116000498131 EIS 863511 PETRO STAR, INC.
5 110eeas5e7693 EIS 661411 ALYESKA SEAFOODS INC.
6 1186888523595 EIS 12660411 ANCHORAGE WATER & WASTEWATER UTILITY
7 1leeeecel7es EIS 542511 TECK ALASKA, INC. (TECK)
8 1100060602250 EIS 12662311 GOLDEN VALLEY ELECTRIC ASSOC
9 116666707423 EIS 974811 TRIDENT SEAFQODS CORPORATION
18 1166809088355 EIS 541511 ALYESKA PIPELINE SERVICE CO
11 116682003153 EIS 974911 TRIDENT SEAFOODS
12 116682003233 EIS 18564811 ALASKA POWER & TELEPHOME
13 116662003386 EIS 18591411 ALASKA ELECTRIC LIGHT AND POWER
14 11ee82151340 EIS 1134011 US AIR FORCE (CLEAR)
15 116882376679 EIS 168585911 KODIAK ELECTRIC ASSOCIATION
16 11082465779 EIS 542611 TECK ALASKA, INC. (TECK)
17 116663037883 EIS 6579911 FAIRBANKS GOLD MINING INC
18 11eee3041554 EIS 680611 HILCORP ALASKA, LLC
19 11eeecee27e7 EIS 974511 US ARMY (FORT WAINWRIGHT)
28 1lleeaceez27e’ EIS 679211 DUPE IN 9746111
21 116686002767 EIS 12660811 DOYOM UTILITIES LLC
22 11eeve6377946 EIS 17987911 ALASKA POWER & TELEPHONE
23 110686532608 EIS 539611 PACIFIC ENERGY RESOURCES LTD.
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Figure IA3: National Facility File

In some cases, the organization’s name may be missing. In these instances, we extract the EIS ID from the
“pgm_sys_acrnms” column of the “NATIONAL_FACILITY_FILE.CSV” and use the “primary_name” to identify the fa-
cility name.

1C AIR:AKO0000000202000032, AIRS/AFS:0202000032, BR:AKD980987499, EIS:12663611, EPS:EPST10057094, 1C1S:2336, ICIS:

registry_id

primary_name

pgm_sys_acrnms

1 110080491735 OCEAN DOCK TERMINAL AND .. [ ATR:AK@O@0000202000032, AIRS/AFS:0202000032, BR:AKD98@987499, EIS:12663611, EPS:EPS10057094, ICIS:..
2 110000491744 INLET PERTROLEUM ANCHORA.. EIS:677611, ICIS:26080298608, ICIS:5870869, NPDES:AK@080370, OTAQREG:OTAQREG10027527, RCRAINFO:AKDO..
3 118000491762 UNIVAR USA AIR:AK@022080202000185, BR:AKD981765902, EIS:677711, ICIS:1800046105, ICIS:3601086096, ICIS:360123..
4 110000491780 FAIRBANKS PETROLEUM TERM.. EIS:680011, ICIS:600807563, NPDES:AKRO6ABS58, NPDES:AKR@6AF27, RCRAINFO:AKD@@O835833, TRIS:997@7FRT..
5 112000491824 TESORO ALASKA KETCHIKAN .. EIS:540611, NPDES:AK@@00523, RCRAINFO:AKD@99832198, TRIS:999@1TSRLS1010S
6 110060498131 ANCHORAGE TERMIMALS T AN.. AIR:1 3, AIR:AK 120. 31, AIR:AK 202000070, AIRS/AFS:0202000031, AIRS/AFS:02..
7 110080507693 ALYESKA SEAFOOD UNALASKA.. ATR:AKP080000201680004, AIRS/AFS:0201600004, CEDRI:CEDRI3186, EIS:661411, EPS:EPS10856652, ICIS:77..
8 110080510215 EC PHILLIPS AMD SON KETC. ATR:AKPO00000213000020, AIRS/AFS:0213000020, ICIS:3600200426, NPDES:AKG520001, OSHA-0IS:341887826
9 110000514079 KETCHIKAN CHLORINATION P..

10 110000516558 GREAT WESTERN CHEMICAL A.. RCRAINFO:AKD983069568
11 1180088517948 BRENNTAG PACIFIC BR:AKR@@@008836, EIS:10594111, ICIS:3601086188, ICIS:6683850, RCRAINFO:AKROO0000836, SSTS:066887AK..
12 11000523595 JOHN M ASPLUND WASTE WAT.. AIR:AK@0@2020202008023, AIRS/AFS:0202000023, BR:AKR@E0206219, CEDRI:CEDRIS2441, EIS:12660411, ICIS..
13 1100680526574 ALASKA PACIFIC SEAFOODS CEDRI:CEDRI3611, ICIS:1800019577, ICIS:6683849, NCDB:I10#198609111513 1, NCDB:I168#19960917AX002 1..
14 110080527920 ICICLE SEAFOODS SEWARD F.. AIR:AKP0@0000201080016, AIR:AKOOO0080212200016, AIRS/AFS:0201000016, CEDRI:CEDRI1428, NPDES:AKE001..
15 1100680528947 CHANGEPOINT NPDES : AKUBBO190
16 110000529599 TRIDENT SEAFOODS PILLAR .. ICIS:6683847, NPDES:AK@000825, NPDES:AKG528825, OSHA-0IS:314292434, OSHA-0IS:316898022, TRIS:9961W..
17 1100080601705 RED DOG MINE AIR:AK©008000218808002, AIRS/AFS5:0218800002, EIS:10566811, EIS:542511, EPS:EPS10044885, ICIS:31546..
18 110000602258 HEALY POWER PLANT AIR:AK@@@2000229008082, AIRS/AFS:0229000002, CAMDBS:6288, EGRID:6288, EIA-860:6288, EIS:12662311, ..
19 112000608502 ALASKA RAILROAD CORP BR:AKD981767403, ICIS:17@55, ICIS:19977, ICIS:19978, ICIS:60003538@, NCDB:C10#10-96344-81-NON, NCD..
28 110080707423 TRIDENT SEAFOODS SAND PO.. AIR:AKP880080201080025, AIRS/AFS:0201000025, CEDRI:CEDRI2619, EIS:974811, EPS:EPS10646876, ICIS:30..
21 1106680710632 EKUK FISHERIES  AIR:AKODO0000207000002, AIRS/AFS:02070000082, NPDES:AKG520037, SFDW:AK2261208, SFDW:AK2261208 32533
22 110080730193 NORTH PACIFIC SEAFOODS S. NCDB:T10#198911170988 1, NPDES:AKG520065, NPDES:AKG523857
23 1100080736151 NORQUEST SEAFOODS NPDES : AK@@45411
24 110000759162 SITKA WASTEWATER FACILITY NPDES:AKO©21474, NPDES:AKLO21474
25 116008760917 PETERSBURG WWTP NPDES:AK@©21458, NPDES:AKL@21458
26 1160008761453 HAINES WWTP NPDES:AK@©21385, NPDES:AKL@21385
27 110080779907 CCI INC RCRAINFO:AK@E00016709
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Figure TA4: Source Classification Codes (SCCs)

Contact Us
Source Classification Codes (SCCs)

SCERRIE Source Classification Codes (SCCs)

Air Emissions Inventorics This is a searchable database containing the most updated SCCs

list. You can do a keyword search by typing in a search term in
the box below. You can also filter your search by clicking on the
filter options to make a selection from the menu. Learn more
about SCCs and how they are structured.

Bulk Download Options
Intro to SCCs
Download the complete SCC list.

L GEG RS 3.69Mb CSV File

[ Select a Date ]

Download Updates

Help With SCCs

Envirofacts

WebFIRE

Find an SCC
Search for SCCs by keyword, Sector, or a partial number

D D

CHIEF

SCC Web Services ‘

User Guide

Comments/Questions

NEI_Help@epa.gov

Source: https://ofmpub.epa.gov/sccwebservices/sccsearch/

Figure IA5: Examples of CO Emission Factors

Ibs CO/ Ibs CO/
unit 10°btu  material name modifier

663 [TON 0.5 0.021 bituminous coal scc contains: "pulverized”
663 |TON 0.5 0.021 bituminous coal |scc contains: "cyclone"
663 [TON 0.6 0.025 bituminous coal |scc contains: "cogeneration”
663 [TON 275 11.441 bituminous coal |scc contains: "hand-fired"
663 |TON 6 0.250 bituminous coal |scc contains: "spreader stoker”
663 [TON 6 0.250 bituminous coal |scc contains: "overfeed stoker"
663 [TON 18 0.749 bituminous coal |scc contains: "atmospheric fluidized bed"
663 |TON 11 0.458 bituminous coal scc contains: "underfeed stoker"

Source: Table A.1 of Vulcan Science Methods Documentation
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Figure IA6: Examples of CO2 Emission Factors

tonnes heat
CO0./10°btu material name modifier content units
663 | 0.0931' bituminous coal 24.04° | 10°BTUITON
323 | 0.0067' subbituminous coal 17.51° | 10°BTU/TON
lee2 | 0.0949' bituminous/subbituminous Average of previous two 20.77° | 10°BTU/TON
717 | 0.0949' Coal Use previous row 20.77° | 10°BTU/TON
le4o | 0.1032" Anthracite 24.94 | 10°BTU/TON
|639 0.1032' anthracite culm Use previous row 24.94 | 10°BTU/TON
173 | 0.0961' Lignite 12.97° | 10°BTU/TON
209 | 0.0531 natural gas “natural gas pipeline” 1032° [ 10°BTUMO°FT®
251 | 0.0561 process gas “refinery fuel gas” entry 1068.6'| 10°BTU/10°FT?
553 | 0.0561 refinery gas “refinery fuel gas” entry 1068.6'| 10°BTU/10°FT®
310 | 0.0561 sour gas “refinery fuel gas” entry 1068.6'| 10°BTUM0°FT?
126 | 0.0561 Gas “refinery fuel gas” entry 1068.6'| 10°BTU/10°FT®
Source: Source: Table A.3 of Vulcan Science Methods Documentation

Figure IA7: GHGRP Report Verification Process

GHGRP Report Verification Process

@ Reporter

Feedback to
reporter on
failed checks

e-GGRT reporting tool >

Some “stopper” checks prevent
submission until corrected

@-GGRT database

self-certifies
and submits .E-GERT &
annual report — Reporters can correct or
A override some checks
e-GGRT conducts and submit and report
pre-submittal checks
; v Logic checks
(R (— Posl-g,utt;mlttal v Statistical checks
) a v Qutside date
resubmit the report ’
T o .
> checks phoaiTed
m Reporter . EPAcontacts the reporterto ~«————  EFPA
resolves a resolve failed checks reviews data
failed check in and failed
f ! S ansssssssmmesssnssessssennnannanans » checks
110k waye Explain to EPA why the failed check is not an error
l v No error flags
Verification -or-
completed v EPA determines

that the flagged
issue is not an
error

Source: https://www.epa.gov/sites/default/files/2017-12/documents/ghgrp_verification_factsheet.pdf
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Figure IA8: Parallel Trend Plots — Two Groups

These plots show the evolution of low-carbon innovation over time for high- and low-COg2 emitters. Panels A to C present
results for the count, citations, and valuation of CPC Y2 or BERT-based low-carbon patents, respectively. Vertical lines
indicate 90% confidence intervals for the estimated 8 values. The x-axis marks 2008 as year 0.
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Figure IA9: Parallel Trend Plots — SDID

These plots display the variation in low-carbon innovation over time for high- and low-COg2 emitters. Panels A to C report
results from the SDID model for the count, citations, and valuation of CPC Y02 or BERT-based low-carbon patents,
respectively. Vertical lines indicate 90% confidence intervals for the estimated g3 values.
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Figure IA10: Sensitivity Analysis using HonestDiD

This figure displays the results of the HonestDiD approach applied to the dynamic analysis, highlighting stable confidence
intervals for the average treatment effect in the post-treatment period. When Mbar = 0, we allow for violations of parallel

trends that are approximately linear, whereas for Mbar > 0, we permit more nonlinearity violations.

Panel C1. Y02 Valuation with Controls
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and cleaner energy.

Table IA1l: Keywords

The table presents keywords for locating Y02 patents covering subjects associated with carbon reduction, energy efficiency,

carbon dioxide
emissions

carbon removal

carbon capture
carbon footprint
reduction

carbon neutral

low carbon emis-
sion
reduce
emissions
carbon negative

carbon

combustion effi-
ciency

reduce fuel con-
sumption

fuel efficiency
power saving

energy saving
efficient power

energy consump-
tion
net-zero emission

regenerating
efficiently

power efficient
efficiently produc-
ing

conserve energy
energy cycle
energy recovery
solar

bioenergy
energy density

utilization rate

efficient method

carbon emissions

carbon dioxide re-
moval

carbon cycle
carbon footprint
reduce

climate positive

low carbon diox-
ide

reducing
emission
net zero emission

carbon

greenhouse
emission
reduce fuel con-
sume
fuel-efficiency
power save

gas

saving fuel
reduce energy
consumption
energy consume
net-zero emis-
sions

regenerate

clean energy

switch mode
conserve power

energy conserve
energy reuse
engine exhaust
zero waste

lowering the cost
energy capacity

internal combus-
tion
sustainable

carbon emissions
efficiency
removing carbon

carbon-neutral
carbon footprint
management

net zero

low-carbon emis-
sion
reducing
emissions
carbon emission

carbon

carbon neutral

low fuel consump-
tion

energy efficiency
saving more
power

energy save
reduce energy
consume

power consump-
tion

net-zero

regeneration
controlling com-
bustion processes
power supply
power conserve

fuel conserve
energy recycling
exhaust purifying

wind power

lower the cost
power capacity

adsorption

efficient system

carbon efficiency
remove carbon

decarbonization
carbon offset

carbon reduction

reduce carbon
dioxide

reduce green-
house gas

carbon emission
efficiency

climate positive
fuel efficient

energy efficient
saving power

fuel saving

low energy con-
sumption

power consume

renewable energy

efficiency
controlling
bustion
power density
power control

com-

conserve fuel
recycle
exhaust gas
hydropower

energy conversion
photovoltaic
power

fuel cell

fuel economy

climate
mitigation
carbon sequestra-
tion

carbon footprint
greenhouse  gas
emissions
greenhouse gas re-
duction

change

reduce carbon
emission

reducing  green-
house gas

carbon efficiency
carbon negative
fuel-efficient

energy-efficiency
saving energy

fuel save

low energy con-
sume

net zero emission

renewable

efficient
control
tion
sustainability
power loss

combus-

clean fuel
recycling

solar power
geothermal
ergy

energy storage
photovoltaic

e1n-

fluid loss

effi-

combustion
cient
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Table TA2: Summary Statistics of Keyword-Based Low-Carbon Patents

This table provides summary statistics for keyword-based low-carbon patents across the sample firms. A patent is classified
as a Keyword Low-Carbon Patent if its CPC class falls under the Y02 category and if it includes keywords related to
carbon reduction, energy efficiency, and cleaner energy in the technical field, background, and summary of the inventions.
Corresponding keywords can be found in Table IA1l. For Count, Cite, or Valuation, this table reports the raw numbers
without taking logarithms.

Variables Obs Mean SD pl0o p50 p90

Panel A. Patent Level RDD Sample

Keyword Low-Carbon Valuation 328 34.26 58.88 2.27 13.92 89.77
Brief Word Count 328 1.33 1.47 0.37 0.92 2.40
Cite Backward 328 18.17 27.82 3.00 10.00 32.00
Claims 328 3.07 1.99 1.00 3.00 5.00
Process Claim Ratio 328 0.40 0.37 0.00 0.33 1.00
Inventor Number 328 3.04 2.14 1.00 3.00 6.00
Inventor Average Age 328 44.14 7.35 35.50 44.00 53.00

Panel B. Firm Level DID Sample

Keyword Low-Carbon Count 5573 3.26 18.44 0.00 0.00 4.00
Keyword Low-Carbon Cite 5573 3.65 21.71 0.00 0.00 4.05
Keyword Low-Carbon Valuation 5573 52.87 350.78 0.00 0.00 45.04
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Table TA3: Results for Keyword-based Low-carbon Patents

This table examines the impact of the Greenhouse Gas Reporting Program (GHGRP) on keyword-based low-carbon
patents. A patent is classified as keyword-based low-carbon if its CPC class includes Y02 and its keywords relate to carbon
reduction, energy efficiency, or cleaner energy in the technical field, background, or summary of the invention. The list of
keywords is provided in Internet Appendix Table IA1l. Panel A shows the effect of the GHGRP on the market valuation
of keyword-based low-carbon patents using RDD models. The sample consists of keyword-based low-carbon patents filed
by sample firms between 2002 and 2006 and issued by the USPTO within 12 weeks before or after December 26, 2007,
the passage date of the Consolidated Appropriations Act that established GHGRP funding. The dependent variable is the
natural logarithm of patent valuation. The GHGRP is measured by a binary variable equal to one if a patent is issued on
or after December 26, 2007. Regressions include fixed effects for patent parent firms and four-digit CPC codes. Column
(1) reports results from local linear regressions with a 12-week bandwidth, and Column (2) uses a quadratic polynomial on
each side of the GHGRP cutoff date with the same bandwidth. All models control for patent-level characteristics, including
Brief Word Count, Cite Backward, Claims, Process Claim Ratio, Inventor Number, and Inventor Average Age. Standard
errors are double-clustered by CPC industry and issue week. Panel B shows the effect of the GHGRP on keyword-based
low-carbon patents using DID models over the 2002-2014 period. The dependent variables are the natural logarithm of one
plus (a) the number of keyword-based low-carbon patents, (b) citations to these patents, and (c) their market valuation.
The GHGRP is measured by a binary variable equal to one for 2008 and later. The variable Emitter ranges from one
to four, where one indicates that a firm’s estimated 2005 COg emissions fall in the first quartile of its three-digit NAICS
industry. Emissions are estimated from process-level CO data using CO-to-CO2 conversion factors and aggregated at the
firm level. All regressions include firm and industry-year fixed effects. Columns (2), (4), and (6) additionally control
for R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA,
Cash/AT, and an indicator for missing R&D data. Standard errors are double-clustered by industry and year and reported
in parentheses. Variable definitions are in Appendix A. Statistical significance is denoted as * for p < 0.1, ** for p < 0.05,
and *** for p < 0.01.

Panel A. Patent Valuation (Keyword)

(1) (2)

Variables Keyword Low-Carbon Valuation Keyword Low-Carbon Valuation
GHGRP 0.8076%*** 0.9054***
(0.1080) (0.1222)
Brief Word Count -0.0112 -0.0071
(0.0175) (0.0174)
Cite Backward -0.0015* -0.0018*
(0.0008) (0.0010)
Claims -0.0001 -0.0018
(0.0145) (0.0172)
Process Claim Ratio -0.0290 -0.0243
(0.0759) (0.0796)
Inventor Number 0.0002 0.0029
(0.0189) (0.0185)
Inventor Average Age 0.0008 0.0014
(0.0029) (0.0034)
Constant 2.3555%** 2.3795%**
(0.1637) (0.1916)
Observations 328 328
R-squared 0.943 0.944
Specification Local linear regression Quadratic polynomial
Firm FE YES YES
CPC4 FE YES YES
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Panel B. Firm Patenting Activities (Keyword)

(1) (2) (3) (4) (5) (6)

Keyword Keyword Keyword Keyword Keyword Keyword
Variables Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon
Count Count Cite Cite Valuation Valuation
GHGRP x Emitter 0.0395** 0.0399** 0.0451%* 0.0456*** 0.0643* 0.0660**
(0.0156) (0.0147) (0.0152) (0.0147) (0.0301) (0.0281)
R&D Intensity 0.1617 0.0122 0.4716
(0.1619) (0.2877) (0.3774)
XAD/AT -1.1229 -0.0222 -2.0279
(1.4458) (1.0808) (2.8741)
CAPX/AT 0.1804 0.0500 0.5187
(0.2151) (0.1907) (0.4857)
Ln(AT) 0.0668 0.0810** 0.1538%*
(0.0393) (0.0370) (0.0609)
Tangibility -0.1014 -0.0616 -0.1509
(0.0924) (0.0955) (0.2023)
Labor/Capital -0.4857 -0.6100 -0.5455
(0.5502) (0.6028) (0.7004)
Tobin’s Q 0.0111 0.0227 0.0078
(0.0119) (0.0157) (0.0358)
Firm Age -0.0039 0.0041 0.0098
(0.0087) (0.0073) (0.0240)
Leverage 0.0001 -0.0000 0.0003
(0.0002) (0.0003) (0.0003)
ROA 0.0488 0.0687 0.0218
(0.0683) (0.0563) (0.1616)
Cash/AT -0.2591%* -0.3339%** -0.1561
(0.0927) (0.0968) (0.2065)
R&D Missing -0.0348 -0.0013 -0.0653
(0.0754) (0.1016) (0.1357)
Observations 5,573 5,573 5,573 5,573 5,573 5,573
R-squared 0.891 0.892 0.837 0.838 0.825 0.826
Firm FE YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES
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Table TA4: Regression Discontinuity Design - Continuity in Patent Characteristics Across GH-

GRP

This table reports the characteristics of patents granted immediately before and after the GHGRP. Panel A presents
results for CPC Y02 low-carbon patents, and Panel B for BERT-based low-carbon patents. In both panels, Column (1)
reports summary statistics for patents granted before the GHGRP, Column (2) for those granted after, and Column (3)
the difference between Columns (1) and (2) with corresponding t-statistics. The reported F-statistic is from a multivariate
ANOVA (MANOVA) test, and the density test statistic (T) follows Cattaneo et al. (2018). Statistical significance is
denoted as *** for 1%, ** for 5%, and * for 10%.

Panel A. Y02 low-carbon patents

1)
Granted Before GHGRP

(2) 3)
Granted After GHGRP (1)-(2) t-value

Brief Word Count
Cite Backward
Claims

Process Claim Ratio
Inventor Number
Inventor Average Age
MANOVA test
Density test

1.36

21.15

3.09

0.40

3.11

44.93
F=1.40 (p-value=0.2122)
T=-0.86 (p-value=0.3914)

1.14 -1.83*
25.39 1.15
2.96 -0.78
0.39 -0.25
3.06 -0.23
43.86 -1.62

Panel B. BERT low-carbon patents

1)
Granted Before GHGRP

() 3)
Granted After GHGRP (1)-(2) t-value

Brief Word Count
Cite Backward
Claims

Process Claim Ratio
Inventor Number
Inventor Average Age
MANOVA test
Density test

1.15

22.66

3.04

0.39

3.03

44.15
F=1.26 (p-value=0.2718)
T=-0.42 (p-value=0.6716)

1.31 -1.95%
19.75 1.18
3.02 0.17
0.39 -0.2
2.95 0.58
44.87 -1.44
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Table TA5: Robust — Poisson Regression

This table shows robust test of our baseline results by using Poisson model. The sample period is from 2002 to 2014. The
firm-level dependent variables are (a) the number of CPC Y02 or BERT-based low-carbon patents, and (b) their citations.
GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable
Emitter ranges from one to four, where one indicates that a firm’s estimated 2005 CO emissions fall in the first quartile of
its three-digit NAICS industry. Emissions are estimated from process-level CO data using CO-to-COg conversion factors
and aggregated at the firm level. Regressions presented in this table include firm and industry-year fixed effects. Columns
also include the following variables: R&D Intensity, XAD/AT, CAPX/AT, Ln(AT) Tangibility, Labor/Capital, Tobin’s Q,
Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The definitions for these variables can be found in Appendix A.
Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are
indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2) ®3) (4)

. Y02 Low-Carbon Y02 Low-Carbon BERT Low-Carbon BERT Low-Carbon
Variables . .
Count Cite Count Cite
GHGRP x Emitter 0.094* 0.2180** 0.0878* 0.1810***
(0.0557) (0.1036) (0.0466) (0.0676)
R&D Intensity 2.8453%* -0.7855 1.7092%** 1.1161
(1.1409) (1.3712) (0.7765) (1.3153)
XAD/AT 4.0778 9.5971 7.2002 10.7759**
(8.9987) (9.7477) (6.4458) (5.4296)
CAPX/AT 4.6938%** 3.6218%** 1.6128* 1.2258
(1.8157) (1.3386) (0.8263) (1.1525)
Ln(AT) 0.4366** 0.3438* 0.4530** 0.4318**
(0.1856) (0.1861) (0.1947) (0.1998)
Tangibility -0.5701 -0.8535 0.4174 0.1203
(0.4100) (0.6942) (0.4927) (0.7795)
Labor/Capital -21.2843%** -37.7528%** -10.0447** -16.3345**
(7.6977) (8.4749) (4.4937) (7.0092)
Tobin’s Q -0.0340 0.0373 0.0110 0.0583*
(0.0313) (0.0501) (0.0181) (0.0346)
Firm Age - - 0.0062 0.0858
(0.1338) (0.1284)
Leverage -0.0019** -0.0024** -0.0020** -0.0025***
(0.0008) (0.0010) (0.0009) (0.0008)
ROA 0.5816** 0.7038 0.7794*** 0.6208
(0.2372) (0.5463) (0.2307) (0.4359)
Cash/AT -0.5027 -0.3887** -0.7090* -1.0870***
(0.3132) (0.1563) (0.3765) (0.2824)
R&D Missing 0.1103 -0.3419 0.2060 0.4455
(0.4497) (0.6312) (0.3236) (0.4305)
Observations 2,455 2,290 2,838 2,633
Pseudo R2 0.896 0.874 0.925 0.903
Firm FE YES YES YES YES
Industry-Year FE YES YES YES YES
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Table TA6: Robust — Firm Patenting Activities without Control Variables

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents without including
control variables. The sample period is from 2002 to 2014. Patents are classified using either the CPC Y02 code or a BERT-
based model. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based
low-carbon patents, (b) their citations, and (c) their valuation. We define a patent as BERT-based low-carbon if it either
carries a Y02 code or is classified as low-carbon by our fine-tuned BERT model. GHGRP is represented by a binary variable,
with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one
indicates that a firm’s estimated 2005 CO2 emissions fall in the first quartile of its three-digit NAICS industry. Emissions
are estimated from process-level CO data using CO-to-CO2 conversion factors and aggregated at the firm level. Regressions
presented in this table include firm and industry-year fixed effects. Standard errors, double-clustered by industry and year,
are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates p <
0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2) 3) (4) (%) (6)

Y02 BERT Y02 BERT Y02 BERT
Variables Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon
Count Count Cite Cite Valuation Valuation

GHGRP x Emitter 0.0364* 0.0443* 0.0449** 0.0512%* 0.0631%* 0.0782*

(0.0181) (0.0229) (0.0176) (0.0218) (0.0339) (0.0364)
Observations 5,573 5,573 5,573 5,573 5,573 5,573
R-squared 0.904 0.925 0.858 0.891 0.845 0.888
Firm FE YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES
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Table TA7: Robust — Excluding Firms with High Foreign Income

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents by excluding
firms with significant foreign income. We exclude firms with high foreign income, defined as those for which the ratio of
foreign pretax income to firm total assets in 2006 exceeds the 80th percentile of the sample. The sample period is from
2002 to 2014. The firm-level dependent variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based
low-carbon patents, (b) their citations, and (c) their valuation. GHGRP is represented by a binary variable, with a value of
one indicating that the year is 2008 or later. The variable Emittter ranges from one to four, where one indicates that a firm’s
estimated 2005 COg2 emissions fall in the first quartile of its three-digit NAICS industry. Indications are estimated from
process-level CO emissions using CO-to-COq conversion factors and aggregated at the firm level. Regressions presented
in this table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity,
XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA, Cash/AT, and R&D
Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and
year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates
p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2) 3) (4) (5) (6)

Y02 BERT Y02 BERT Y02 BERT
Variables Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon
Patents Count Cite Cite Valuation Valuation
GHGRP x Emittter 0.0386** 0.0461** 0.0304* 0.0400* 0.0741*** 0.0687*
(0.0174) (0.0225) (0.0172) (0.0232) (0.0260) (0.0341)
R&D Intensity 0.4127** 0.1270 0.0136 -0.0062 0.8384** -0.0353
(0.1729) (0.3057) (0.3620) (0.1599) (0.4085) (0.5666)
XAD/AT -2.5694 -1.9630 -0.8834 -0.2680 -5.4228 -1.2382
(2.3126) (2.9357) (1.8288) (2.1549) (4.4821) (5.2179)
CAPX/AT -0.0668 -0.1848 -0.1091 -0.2733 -0.2987 -0.2456
(0.2005) (0.2403) (0.2401) (0.2618) (0.3628) (0.4618)
Ln(AT) 0.0434 0.0771 0.0662 0.0749 0.1312 0.1943**
(0.0435) (0.0538) (0.0473) (0.0555) (0.0786) (0.0941)
Tangibility -0.0195 -0.0873 0.0909 -0.0625 -0.0325 -0.2439
(0.1723) (0.2061) (0.1875) (0.2044) (0.3637) (0.4111)
Labor/Capital -0.3486 0.8330 -0.4232 0.6440 -0.6246 1.1555
(0.6129) (0.9607) (0.4194) (1.0031) (0.9806) (1.3107)
Tobin’s Q 0.0104 0.0021 0.0250 0.0325 0.0401 0.0233
(0.0173) (0.0209) (0.0231) (0.0288) (0.0316) (0.0398)
Firm Age -0.0159%* -0.0137 -0.0119 -0.0079 -0.0142* -0.0011
(0.0079) (0.0085) (0.0071) (0.0084) (0.0075) (0.0095)
Leverage -0.0003 -0.0002 -0.0003 -0.0000 0.0001 0.0002
(0.0006) (0.0005) (0.0006) (0.0004) (0.0008) (0.0007)
ROA 0.0298 -0.0463 0.0339 -0.1190* 0.0528 -0.2346
(0.0507) (0.0586) (0.0560) (0.0662) (0.1389) (0.1749)
Cash/AT -0.0288 -0.0204 0.0840 -0.0442 0.0810 0.1550
(0.1193) (0.1679) (0.1049) (0.1495) (0.1704) (0.2645)
R&D Missing -0.0897 -0.0933 -0.1496 -0.1235 -0.1688 -0.1713
(0.0903) (0.0896) (0.1189) (0.0952) (0.1514) (0.1508)
Observations 4,440 4,440 4,440 4,440 4,440 4,440
R-squared 0.889 0.911 0.834 0.872 0.820 0.859
Firm FE YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES
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Table TA8: Firm Patenting Activities — Two Groups

This table examines the impact of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents by dividing
firms into two groups. The sample period covers 2002-2014. The firm-level dependent variables are the logarithm of one
plus (a) the number of CPC Y02 or BERT-based low-carbon patents, (b) their citations, and (c) their valuation. GHGRP
is represented by a binary variable, with a value of one indicating that the year is 2008 or later. The variable “Emittter”
is binary, where a value of one indicates that a firm’s estimated CO2 emissions in 2005 fall within the higher half of its
industry (based on the three-digit NAICS code). Estimated CO2 emissions are derived from process-level CO data in 2005,
using the CO-to-COz2 industry process conversion factors, and are then aggregated at the firm level. Regressions presented
in this table include firm and industry-year fixed effects. Columns also include the following variables: R&D Intensity,
XAD/AT, CAPX/AT, Ln(AT), Tangibility, Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA, Cash/AT, and R&D
Missing. The definitions for these variables can be found in Appendix A. Standard errors, double-clustered by industry and
year, are reported in parentheses. The estimated coefficient p-values are indicated using the following notation: * indicates
p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2) 3) (4) (5) (6)

Y02 BERT Y02 BERT Y02 BERT
Variables Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon
Count Count Cite Cite Valuation Valuation
GHGRP x Emittter 0.0949%* 0.1129** 0.1154** 0.1316** 0.1399* 0.1668**
(0.0414) (0.0476) (0.0471) (0.0505) (0.0673) (0.0729)
R&D Intensity 0.3418 0.2591 0.0004 0.1856 0.9530** 0.1660
(0.1933) (0.2169) (0.3473) (0.2485) (0.4180) (0.5586)
XAD/AT -0.8275 -0.5272 0.5826 0.6944 -0.5252 0.0879
(2.4206) (2.9720) (1.4907) (1.7949) (5.6918) (5.7370)
CAPX/AT -0.0257 -0.1569 -0.1828 -0.2827 -0.0297 -0.1314
(0.2310) (0.2475) (0.2730) (0.2451) (0.4344) (0.5133)
Ln(AT) 0.1194%* 0.1511%* 0.1344** 0.1543** 0.2618*** 0.2969***
(0.0512) (0.0641) (0.0499) (0.0588) (0.0718) (0.0901)
Tangibility 0.0292 0.0015 0.1797 0.0543 0.2066 -0.0088
(0.1599) (0.1824) (0.1822) (0.1852) (0.3493) (0.3420)
Labor/Capital -0.3363 0.8482 -0.5132 0.4683 -0.3012 1.5237
(0.6144) (0.9776) (0.5715) (0.8909) (0.8114) (1.2972)
Tobin’s Q 0.0360* 0.0314 0.0454* 0.0576** 0.0640* 0.0524
(0.0173) (0.0191) (0.0209) (0.0258) (0.0355) (0.0317)
Firm Age -0.0029 -0.0075 0.0086 0.0054 0.0169 0.0005
(0.0086) (0.0081) (0.0072) (0.0076) (0.0270) (0.0096)
Leverage -0.0002 -0.0001 -0.0001 0.0001 0.0000 0.0002
(0.0004) (0.0004) (0.0003) (0.0003) (0.0005) (0.0005)
ROA 0.0439 0.0056 0.0712 -0.0246 0.0644 -0.1954
(0.0778) (0.0731) (0.0743) (0.0801) (0.1747) (0.1638)
Cash/AT -0.1170* -0.0775 -0.0596 -0.1657** 0.1372 0.2339
(0.0626) (0.0962) (0.0828) (0.0747) (0.1922) (0.2977)
R&D Missing -0.0518 -0.0590 -0.0831 -0.0490 -0.1258 -0.1959
(0.0816) (0.0923) (0.1094) (0.1109) (0.1467) (0.1475)
Observations 5,573 5,573 5,573 5,573 5,573 5,573
R-squared 0.905 0.926 0.859 0.892 0.847 0.889
Firm FE YES YES YES YES YES YES
Industry-Year FE YES YES YES YES YES YES
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Table TA9: Firm Patenting Activities — SDID

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents using the
Synthetic Differences-in-Differences (SDID) method. The sample period is from 2002 to 2014. The firm-level dependent
variables are the logarithm of one plus (a) the number of CPC Y02 or BERT-based low-carbon patents, (b) their citations,
and (c) their valuation. GHGRP is represented by a binary variable, with a value of one indicating that the year is 2008
or later. The variable “Emittter” is binary, where a value of one indicates that a firm’s estimated CO2 emissions in 2005
fall within the higher half of its industry (based on the three-digit NAICS code). Estimated COg2 emissions are derived
from process-level CO data in 2005, using the CO-to-CO2 industry process conversion factors, and are then aggregated at
the firm level. Columns also include the following variables: R&D Intensity, XAD/AT, CAPX/AT, Ln(AT), Tangibility,
Labor/Capital, Tobin’s Q, Firm Age, Leverage, ROA, Cash/AT, and R&D Missing. The definitions for these variables can
be found in Appendix A. The estimated coefficient p-values are indicated using the following notation: * indicates p < 0.1,
** indicates p < 0.05, and *** indicates p < 0.01.

(1) (2) 3) (4) (%) (6)

Y02 BERT Y02 BERT Y02 BERT
Variables Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon Low-Carbon
Count Count Cite Cite Valuation Valuation
GHGRP x Emittter 0.0700* 0.1023** 0.0966** 0.1105%* 0.1143 0.1588%*
(0.0372) (0.0403) (0.0426) (0.0450) (0.0790) (0.0820)
Controls YES YES YES YES YES YES
Observations 5,018 5,018 5,018 5,018 5,018 5,018
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Table TA10: Robust — Real CO2 Emissions After 2010

This table presents the impact of the Greenhouse Gas Reporting Program (GHGRP) on firms’ COg2 emissions. The
dependent variable includes the natural logarithm of one plus estimated CO2 emissions for the pre-period of 2008, or the
actual CO9 emissions for the post-period between 2010 and 2014. The real CO2 emissions data from 2010 to 2014 are
obtained from the Greenhouse Gas Reporting Program. We aggregate facility-level real COg emission data into firm-level
data annually from 2010 to 2014. For firms lacking actual CO2 data but with NEI data and estimated COx2, we assigned a
value of zero to represent actual CO2 emissions in our sample. GHGRP is represented by a binary variable, with a value
of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one indicates that a
firm’s estimated 2005 COg9 emissions fall in the first quartile of its three-digit NAICS industry. Emissions are estimated
from process-level CO data using CO-to-COq conversion factors and aggregated at the firm level. Regressions presented
in this table include firm and industry-year fixed effects. The definitions for these variables can be found in Appendix A.
Standard errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are
indicated using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

1) (2)

Variables Real CO2 Real CO»
GHGRP x Emittter -0.4709*** -0.4885%**
(0.0954) (0.0972)
R&D Intensity -3.4207
(2.6056)
XAD/AT -11.4716
(10.5096)
CAPX/AT -0.0112
(1.3422)
Ln(AT) 0.0673
(0.1901)
Tangibility 0.9269
(1.7667)
Labor/Capital 8.1408
(9.4800)
Tobin’s Q 0.0873
(0.1220)
Firm Age -0.0744
(0.1151)
Leverage -0.0001
(0.0023)
ROA -1.0787*
(0.5982)
Cash/AT 0.9020
(1.0648)
R&D Missing -0.2237
(0.3830)
Observations 1,974 1,974
R-squared 0.947 0.947
Firm FE YES YES
Industry-Year FE YES YES
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Table IA11: Competition Pressure (Patent Valuation)

This table reports the impact of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents for firms with
high and low competition pressure. The sample period is from 2002 to 2014. The firm-level dependent variables are the
logarithm of one plus the valuation of CPC Y02 or BERT-based low-carbon patents. GHGRP is represented by a binary
variable, with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four,
where one indicates that a firm’s estimated 2005 COg2 emissions fall in the first quartile of its three-digit NAICS industry.
Emissions are estimated from process-level CO data using CO-to-COg conversion factors and aggregated at the firm level.
We classify firms into high and low competition pressure groups using two measures: (a) product market similarity and (b)
climate risk analyst coverage. Firms with product market similarity (Hoberg and Phillips 2016) in 2006 above the sample
median are classified as High Product Similarity, and the remainder as Low Product Similarity. Firms with climate risk
analyst coverage above the sample median in 2006 are classified as High Climate Risk Analyst, and the remainder as Low
Climate Risk Analyst. Regressions presented in this table include firm and industry-year fixed effects. Standard errors,
double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated using
the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Panel A. Product Similarity

(1)
Variables Y02 Low-Carbon

(2)
Y02 Low-Carbon

(3)
BERT Low-Carbon

(4)
BERT Low-Carbon

Valuation Valuation Valuation Valuation
Subsample Low Product High Product Low Product High Product

Similarity Similarity Similarity Similarity
GHGRP X Emittter 0.0248 0.0945* 0.0311 0.0842%*

(0.0603) (0.0471) (0.0619) (0.0441)

Observations 2,613 2,555 2,613 2,555
R-squared 0.869 0.851 0.889 0.895
Controls YES YES YES YES
Firm FE YES YES YES YES
Industry-Year FE YES YES YES YES

Panel B. Analyst Coverage

1)
Y02 Low-Carbon

(2)
Y02 Low-Carbon

(3)
BERT Low-Carbon

(4)
BERT Low-Carbon

Variables Valuation Valuation Valuation Valuation
Low Climate Risk High Climate Risk Low Climate Risk High Climate Risk

Subsample

Analyst Analyst Analyst Analyst
GHGRP xEmittter -0.0083 0.1293* -0.0044 0.1508*

(0.0452) (0.0653) (0.0469) (0.0779)
Observations 2,621 2,209 2,621 2,209
R-squared 0.731 0.843 0.785 0.889
Controls YES YES YES YES
Firm FE YES YES YES YES
Industry-Year FE YES YES YES YES
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Table IA12: Price Efficiency (Patent Valuation)

This table reports the effect of the Greenhouse Gas Reporting Program (GHGRP) on low-carbon patents for firms with high
versus low price efficiency. The sample period is from 2002 to 2014. The firm-level dependent variables are the logarithm
of one plus the valuation of CPC Y02 or BERT-based low-carbon patents. GHGRP is represented by a binary variable,
with a value of one indicating that the year is 2008 or later. The variable Emitter ranges from one to four, where one
indicates that a firm’s estimated 2005 COg2 emissions fall in the first quartile of its three-digit NAICS industry. Emissions
are estimated from process-level CO data using CO-to-CO2 conversion factors and aggregated at the firm level. We classify
firms into high and low price efficiency groups based on two measures: (a) option trading volume and (b) the probability of
informed trading (PIN). Firms with option trading volume in 2006 above the sample median are classified as High Option
Trading, and the rest as Low Option Trading. Similarly, firms with PIN above the sample median are classified as High
PIN, and the rest as Low PIN. Regressions presented in this table include firm and industry-year fixed effects. Standard
errors, double-clustered by industry and year, are reported in parentheses. The estimated coefficient p-values are indicated
using the following notation: * indicates p < 0.1, ** indicates p < 0.05, and *** indicates p < 0.01.

Panel A. Option Trading

1)
Y02 Low-Carbon

(2)
Y02 Low-Carbon

(3)
BERT Low-Carbon

4)
BERT Low-Carbon

Variables Valuation Valuation Valuation Valuation
Low Option High Option Low Option High Option

Subsample Trading Trading Trading Trading
GHGRP x Emittter 0.0313 0.1677** 0.0691 0.1496%**

(0.0651) (0.0759) (0.0726) (0.0516)
Observations 2,207 2,172 2,207 2,172
R-squared 0.749 0.849 0.779 0.896
Controls YES YES YES YES
Firm FE YES YES YES YES
Industry-Year FE YES YES YES YES
Panel B. PIN

1) (2) (3) 4)
Variabl Y02 Low-Carbon Y02 Low-Carbon BERT Low-Carbon BERT Low-Carbon
ariables Valuation Valuation Valuation Valuation

Subsample High PIN Low PIN High PIN Low PIN
GHGRP xEmittter -0.0187 0.1138%* 0.0013 0.1101%*

(0.0283) (0.0506) (0.0302) (0.0470)
Observations 2,702 2,726 2,702 2,726
R-squared 0.797 0.849 0.853 0.890
Controls YES YES YES YES
Firm FE YES YES YES YES
Industry-Year FE YES YES YES YES
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